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Chapter 1

Introduction

We study the pricing of cardinality bundles, where firms set prices that depend only on the size

of the purchased bundle. The cardinality bundling (CB) problem we study was originally pro-

posed by Hitt and Chen (2005) and it involves consumers having a specific preference structure

called Spence-Mirrlees Single Crossing Property (SCP).

In Chapter 2, we show that the optimal prices to the problem can be obtained in strongly

polynomial time. The solution approach we developed is useful in developing an algorithm to

solve the quantity-discount problem proposed by Spence (1980).

In Chapter 3, we studies the pricing for cardinality bundles (CB) when bundling in-

volves complex costs. We first extend the existing CB model to allow fixed costs in adding

additional bundles. We show that CB problem with fixed costs can be solved as a shortest-path

problem. We then extend the CB model in another way to solve CB problem with submodu-

lar cost structure. Such analysis is especially useful when there exists economies of scale in

production.

The existing analytical framework lacks sub-additivity constraints on bundle pricing,

which limits its application in reality. In Chapter 4, we solve the CB problem with additional

constraints on bundle prices. We first study the CB problem with marginal decreasing prices

3



and prove that it is a shortest-path problem. Second, we propose a dynamic programming algo-

rithm to solve the CB problem with unit decreasing prices. Third, we analyze the CB problem

with sub-additive prices and convert its MINLP formulation to a mixed-integer programming

(MIP) one. Finally, we provide analytical and numerical analysis on the gaps between different

CB models.
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Chapter 2

Cardinality Bundling with Spence-Mirrlees Reser-

vation Prices

2.1 Introduction

Bundling and its benefits have been studied extensively in the literature. For example, Bakos

and Brynjolfsson (1999) show that when products are synergistic, offering bundles of prod-

ucts can yield higher profits than selling them separately. The earliest work on bundling (e.g.,

Stigler, 1963, Adams and Yellen, 1976, McAfee et al., 1989) focused on mixed bundling,

wherein every combination of goods is sold at a possibly different price. However, because

the number of combinations quickly increases with the number of goods, the pricing problem

becomes intractable except for a small number of goods (Hanson and Martin, 1990). So, alter-

nate bundling schemes – such as component pricing, where only the components are sold; or

pure bundling, where only the bundle is sold – have also been studied and deployed. The focus

of this work is to study another bundling scheme called cardinality bundling or, in short, CB.

In CB, bundles of equal cardinality or size are sold at the same price. That is, for a firm

that sells J goods, consumer may purchase any one good for a listed price, a bundle of any

two goods for a different price, and so on and so forth. In contrast to mixed bundling (which
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requires pricing 2J − 1 bundles), CB only requires prices for J bundles. Perhaps because

of the simplicity of the pricing scheme, CB has been adopted in practice. Pricing for theme

parks within entertainment complexes such as Disney World are based on CB. Consumers can

purchase multi-day (2, 3, 4 or 5 day) passes and can choose to visit any of the four theme

parks each day. Similarly, Eastlink cable TV allows its consumers to choose their channel

combinations within the cardinality bundles (12 or 20 channels) purchased.

The current literature on CB is relatively sparse and we review it briefly here. Most rel-

evant to the current paper is Hitt and Chen (2005), where they study the pricing of cardinality

bundles assuming that each consumer is restricted to buy at most one bundle. They explore

conditions under which CB can attain the same profit as mixed bundling. Further assuming

that consumers’ reservation price satisfy Spence-Mirrlees Single Crossing Property (SCP), they

propose and analyze a readily computable pricing strategy. Wu et al. (2008) also restrict the

consumer to purchase at most one bundle and seek to solve the CB pricing problem as a nonlin-

ear mixed-integer program. They use Lagrangian relaxation, subgradient ascent, and heuristic

methods to derive bounds for the problem. Chu et al. (2011) consider a CB model where unit

prices for bundles decrease with increasing size. They use computations and real data to argue

that profit from their CB model is almost the same as that from mixed bundling.

We begin by considering the model and the proposed pricing strategy of Hitt and Chen

(2005) for cardinality bundles assuming that reservation prices follow SCP. We show that the

optimal prices can be obtained in polynomial time, by solving a linear programming (LP) prob-

lem. In contrast, the techniques proposed in Hitt and Chen (2005) may not generate optimal

prices. The LP reformulation provides many insights into cardinality bundling. It paves the

way for developing useful approximation schemes for the continuous case (see Spence (1980)

and Section 2.3), allows us to extend our analysis to models with complex cost structures, such
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as fixed costs for bundle setup or variable costs with economies of scale (as discussed in Chap-

ter 3), and reveals valid inequalities that help determine prices that disincentivize consumers

from purchasing more than one bundle .

2.2 CB Discrete Case: Model & Analysis

A customized cardinality bundling strategy models a situation where a vendor offers a menu

of products that may be purchased in a bundle, whose price is determined by its size. The

consumer is free to choose any products as long as the number of goods she chooses matches

the bundle size for which she has paid. This model was originally proposed by Hitt and Chen

(2005), where they assume that the consumers can be ordered such that a consumer of higher

type not only assigns a higher value to bundles of a given size but also derives higher marginal

value from increasing the bundle size. When the consumers can be ordered this way, their

reservation prices are said to satisfy the Spence-Mirrlees Single Crossing Property (SCP).

In this section, we consider the cardinality bundling problem, which is modeled to

optimally choose the sizes and prices of the bundles a vendor should offer in the market. Our

basic model is the same as that in Hitt and Chen (2005) and we review it here for the sake of

completeness. Consider a vendor who sells J products and assume that there are I consumers

in the market. In the following, we denote the bundle of size j as Bundle j. We assume WLOG

that all bundles, 1, . . . , J are offered in the market and the vendor decides their prices. We

denote the price of Bundle j as pj . Obviously, the consumer does not pay anything for Bundle

0, whose price is therefore fixed at 0. We assume that the cost of the Bundle j for vendor is cj

and that the total cost to the vendor is the sum of the costs for all the bundles sold. Clearly, c0

is 0. The model makes a reasonable assumption that a consumer’s willingness-to-pay (WTP) is

non-decreasing with the bundle size,1 which would be trivially true if extra units can be freely

1Hitt and Chen (2005) imposes WTP for each consumer to be concave in j, which we relax in our model.
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disposed. The model further assumes that each consumer can purchase at most one bundle.

Let wij ≥ 0 denote the WTP of Consumer i for Bundle j. For every i, we set wi0 to

zero to denote that consumers, who do not purchase anything, do not derive any value out of

the vendor’s products. Since WTPs are non-decreasing with bundle size, wij ≥ wij′ for j ≥ j′.

Since the choice of the bundle rests with the consumer, if Consumer i purchases Bundle ji, this

bundle must maximize her consumer surplus, i.e., ji ∈ arg maxj{wij − pj}. Let Ji be the set

of bundles Consumer i prefers with price vector p. If |Ji| > 1, we assume that Consumer i

purchases a Bundle ji that belongs to arg maxj{pj − cj | j ∈ Ji}, i.e., the surplus-maximizing

bundle that yields the most profit to the vendor. This assumption is typical in the literature and

is without loss of generality.2

Let xij be 1 if Consumer i ∈ {1, 2, . . . , I} buys Bundle j ∈ {0, 1, 2, . . . , J} and 0

otherwise. Then, CBP can be formulated as follows (see Hitt and Chen, 2005):

CBP1 : Max
xij ,pj

I∑
i=1

J∑
j=0

xij(pj − cj)

s.t.
J∑

j′=0

(wij′ − pj′)xij′ ≥ wij − pj ∀i, ∀j (2.1)

J∑
j=0

xij = 1 ∀i (2.2)

p0 = 0 (2.3)

xij ∈ {0, 1} ∀i, ∀j. (2.4)

2To see this, let J ′(j) = {j′ | pj′−cj′ < pj−cj} be the set of bundles that provides less profit to vendor than j.
Observe that since the number of consumers and bundles is finite, there exists an ε > 0 such that even if the price of
a bundle that a consumer does not prefer is reduced by Jε, the consumer continues to prefer the bundles in Ji after
the change. Now, consider a new pricing scheme p′, where the price of Bundle j is set to p′j = pj−|J ′(j)|ε. Then,
it is easy to verify that, when the prices are p′, Consumer i prefers the Bundle ji ∈ arg max{pj − cj | j ∈ Ji}
over other bundles in Ji and, since |J ′(j)| < J , this preference is also over bundles not in Ji. Further, the vendor
does not lose more than JIε in the profit when he prices the bundles using p′ instead of p. Since ε can be chosen
to be arbitrarily small, this yields a sequence of solutions for which vendor’s profit converges to the one obtained
under our assumption.
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Let (x∗, p∗) be a solution that generates the maximum profit for the vendor. Assuming (3.2),

Constraints (3.1) enforce incentive compatability (IC) and individual rationality (IR) for Con-

sumer i. The left hand side models the consumer surplus from the purchase decision and the

right hand side models the consumer surplus from the purchase of alternate bundles. The case

with j = 0 ensures that consumer only purchases bundles with non-negative surplus. Con-

straints (3.2) enforce that each consumer purchases only one bundle. Observe that CBP1 is a

mixed integer nonlinear program (MINLP) since the price vector pj and consumer decisions

xij are variables and their products appear in the objective and in Constraint (3.1).

Like in other nonlinear pricing problems, Hitt and Chen (2005) assume that consumer

valuations satisfy the Spence-Mirrlees Single Crossing Property (SCP) (see Spence, 1980). We

also make the same assumption, which imposes the following ordering on the consumers’ WTP

for the bundles:

wij ≥ wi′j ∀i > i′, (2.5)

wij − wij′ ≥ wi′j − wi′j′ ∀i > i′, ∀j > j′. (2.6)

The interpretation of these conditions is straightforward. A consumer with a higher index has

a (weakly) higher WTP for any bundle. Also, the WTP exhibits increasing differences, i.e., as

bundle size increases, the WTP for a higher-indexed consumer increases more rapidly than the

WTP for a lower-indexed consumer. Essentially, this assumption states that consumers can be

ordered by types, with higher type consumers valuing the products and marginal changes in

bundle sizes more than the lower type ones. Before we develop an efficient solution for this

problem, we review the currently available approaches using examples.

Example 1 Consider a scenario with I = 4 consumers, J = 4 bundle sizes, and costs cj = 0
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Table 2.1: Willingness-to-pay for Example 1

Bundle Consumers’ WTP
size I1 I2 I3 I4

0 0 0 0 0
1 26 36 58 120
2 47 62 91 180
3 58 77 113 221
4 62 83 123 240

for all j. Suppose the WTP for the consumers are as given in Table 3.1. It can be verified easily

that they satisfy SCP. We use BARON (Tawarmalani and Sahinidis, 2002) to solve the MINLP

formulation of CBP1. (Note that BARON guarantees that it finds the global optimal solution

at termination.) The optimal solution thus found is to set p∗1 = p∗2 = 47, p∗3 = 62, and p∗4 = 72.

It is easy to check that, with these prices, Consumer 1, 2, 3, and 4 buy Bundles 2, 3, 4, and 4

respectively. The optimal profit for the vendor is 253.3

We now make a small change to the setting of Example 1 and illustrate that the optimal

assignment for a consumer depends on the WTP of all other consumers.

Example 2 In the setting of Example 1, change w41 from 120 to 100, so that WTPs still satisfy

SCP. If CBP1 is now solved using BARON, the optimal solution assigns Consumer 1 to Bundle
3Result 3 in Hitt and Chen (2005) claims that the following approach optimally solves CBP1, which we show

later isn’t always the case. Consumer i is assigned to the largest bundle size j that satisfies the following condition:

(I − i+ 1)(wij − wi,j−1)− (I − i)(wi+1,j − wi+1,j−1) ≥ cj − cj−1. (2.7)

We remark that, when Consumer i is assigned a bundle, the WTP of consumers other than i and i+ 1 are ignored.
Here, the right hand side is 0 since we assume cj′ = 0 for all 1 ≤ j′ ≤ J . The left hand side values are shown in
Table 2.2.

Bundle LHS values
size I1 I2 I3 I4
0
1 -4 -8 16 120
2 6 12 -14 60
3 -1 1 3 41
4 -2 -2 1 19

Table 2.2: Left hand side values of Equation (2.7)

For Example 1, the above approach yields the same solution as the optimal solution found earlier using BARON.
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0 yielding a profit of 256.4 There is no optimal allocation that assigns Bundle 2 to Consumer

1.5 Any allocation that ignores the WTP of Consumer 4 while allocating bundle to Consumer 1

will thus not yield optimal profit. 6,7

The only available approaches to solve CBP1 use either an MINLP solver or a MIP

solver on a linearization of CBP1 that does not use a global solver on CBP1 directly. The

MINLP-/MIP-based approach is, however, not amenable to comparative statics because global

optimality certificates are typically neither small nor easy to obtain. In this section, we de-

velop an alternate solution approach that is efficient, guarantees optimality, and is amenable to

comparative statics.

2.2.1 Properties of the Optimal Solution

First, we identify some properties of the optimal solution.8

Proposition 3 There exists an optimal pricing scheme that is nondecreasing with bundle size.

Proposition 4 There exists an optimal solution to CBP1 that satisfies:

J∑
j′=j

xi+1j′ ≥
J∑

j′=j

xi,j′ i = 1, . . . , I − 1, ∀j. (2.8)

That is, there exists an optimal solution where the mapping from consumer types to bundle sizes

is non-decreasing, i.e., for any i < I , if Consumer i buys Bundle j, then Consumer i+ 1 buys a

Bundle j′ such that j′ ≥ j. Further, for any given price vector, there exists a feasible allocation

of bundle sizes to consumer types that is non-decreasing.
4The optimal assignment of Consumer 1, 2, 3, and 4 is to Bundles 0, 0, 1, and 4 respectively. The corresponding

prices are p∗1 = 58 and p∗2 = p∗3 = p∗4 = 198.
5In fact, if Consumer 1 is restricted to purchase Bundle 2, the vendor cannot obtain a profit more than 253.
6Hitt and Chen (2005) claims that it is optimal to assign Consumer 1 to Bundle 2 even in this case. This is

so, because for i = 1, Equation (2.7) is independent of w41. However, as shown above, this is not an optimal
assignment.

7In the proof of Result 3, Hitt and Chen (2005) modify the procedure when higher type consumers do not buy
larger sized bundles. This modification does not apply here.

8All the proofs are provided in the appendix.
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Proposition 5 There exists an optimal pricing scheme such that if two bundle sizes j and j′ are

bought by some consumers and j′ > j then pj′ − cj′ > pj − cj .

Proposition 6 Among the consumers purchasing a non-zero bundle size, the lowest indexed

one is charged at her WTP in every optimal solution.

Proposition 4 is particularly interesting, since it provides redundant, yet rather impor-

tant, constraints that facilitate the solution of CBP1. Further, Proposition 4 applies to other

bundling problems where WTPs follow SCP, including those where consumers may purchase

more than one bundle (Kannan et al., 2014a). Propositions 3, 4, and 5 imply that prices are

higher for larger-sized bundles purchased; the higher type consumers purchase weakly larger-

sized bundles; and the profits also increase with the purchased bundle sizes.

2.2.2 A Solution Approach

In this section, we refromulate CBP1 so as to develop a solution approach. A key step in

reformulating the problem is that optimal profit satisfies a substructure optimality condition

that is totally unimodular. Then, we show that there exists a simple approach to solve the dual

of the reformulation.

Reformulating the MINLP to a 0-1 IP

We first provide some intuition into what makes it possible to solve CBP1 quickly. First,

assume that the vendor fixes a certain bundle size that the first consumer will purchase. Since

the first consumer must purchase one of Bundles 0, . . . , J , this yields J + 1 problems for the

vendor to solve. The key property that enables the vendor to solve the problem is that once the

first consumer is allocated Bundle j, the remaining problem can be solved by solving a smaller

cardinality bundling problem, i.e., one which has Consumers 2, . . . , I and Bundles j, . . . , J .

This subproblem can then be solved recursively using the same technique. Before we provide
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a formal proof of our algorithm, we build some intuition into the problem structure.

Consider the cardinality bundling problem where the vendor only considers Consumers

i′, . . . , I and prices the bundles so that each of these consumers buys one of the Bundles

j′, . . . , J . To accomplish this, by Proposition 4, it suffices to restrict i′ to purchase a bundle

of size at least j′ and to remove Consumers 1, . . . , i′ − 1. More generally, assume that the

vendor wishes to ensure that i′ buys one of the options from a set of bundle sizes, say J ′.

Then, the corresponding problem can be formulated by adding the constraint,
∑

j∈J ′ xi′j = 1,

to CBP1. We denote this problem as CBP(i′, j′ | J ′) and the corresponding optimal profit

as ΠCBP(i′,j′|J ′). Obviously, ΠCBP(i′,j′|{j′,...,J}) = maxj≥j′ Π
CBP(i′,j′|{j}).9 Therefore, it suffices

to find a way to solve CBP(i′, j′ | {j′}), whose solution can in turn be obtained by solving

CBP(i′ + 1, j′ | {j′, . . . , J}). As it turns out, this is because the purchasing decision of Con-

sumers i′ + 1, . . . , I are the same in the two problems. If we denote the set {j′, . . . , J} as

j′≥:

ΠCBP(i′,j′|{j′}) = ΠCBP(i′+1,j′|j′≥) + (wi′j′ − cj′)︸ ︷︷ ︸
sale of j′ to i′

+ (I − i′)(wi′+1j′ − wi′j′)︸ ︷︷ ︸
restrictions on prices

. (2.9)

The first adjustment is because of the revenue and cost from selling j′ to i′ and the second is

because the price of Bundle j′ is constrained to the WTP of Consumer i′ in CBP(i′, j′ | {j′})

whereas it is constrained to the WTP of Consumer i′ + 1 in CBP(i′ + 1, j′ | j′≥). In order to

make the result also apply to the case when i′ = I , we define wI+1j = wIj . To capture this

difference succinctly, we let vi′j′ denote wi′j′ − (I − i′)(wi′+1j′ − wi′j′) and rewrite (2.9) as:

ΠCBP(i′,j′|{j′}) = ΠCBP(i′+1,j′|j′≥) + (vi′j′ − cj′).

Now, we formally show that the cardinality bundling problem can be linearized into a

0-1 integer program using the above notation.

9Further, by Proposition 4, ΠCBP(i′,j′|{j}) = ΠCBP(i′,j|{j}) because if i purchases j, then every higher type
consumer purchases a bundle j or, higher and j ≥ j′.
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Proposition 7 CBP1 can be reformulated as the following 0-1 integer linear problem:

CBP2 : Maxxij

{
I∑
i=1

J∑
j=0

(vij − cj)xij

∣∣∣∣∣ (3.2), (3.4), (3.7)

}
.

Let x∗ be an optimal solution to CBP2. Let {i0, . . . , ik} be the lowest type consumers that

purchase a certain bundle size and, for any j, let r′(j) = arg minr

{
ir |
∑J

j′=j x
∗
ij′ = 1

}
.

If there is no feasible solution, set pj = wIJ + ε for an arbitrary ε > 0. Otherwise, let

j(i) =
∑J

j=0 jxij and

pj = wi0j(i0) +

r′(j)∑
r=1

(
wirj(ir) − wirj(ir−1)

)
. (2.10)

Converting CBP1 into CBP2 is possible because
∑I

i=1

∑J
j=0 vijxij captures the total

revenue for any feasible xij . Thus, vij is the incremental revenue from selling Bundle j to

Consumer i.

We return to the setting of Example 2 to illustrate the application of Proposition 7 and

compute the maximum profit for the vendor in this case. Table 2.3 shows vij values for Example

2. So, to compute the profit, the appropriate vij values are summed up. For example, if a vendor

tries to serve Consumers 1, 2, 3, 4 with Bundles 1, 2, 3, 4 respectively, then the total vendor

profit is v11 + v22 + v33 + v44 = 245. The maximum profit is the summation of vij that yields

the maximum value and is such that xij satisfy Constraints (3.2), (3.4), and (3.7). In particular,

this implies that the only admissible strategies are such that higher type consumers are served

larger-sized bundles. In this case, the maximum profit evaluates to v1,0+v2,0+v3,1+v4,4 = 256.

In fact, CBP2 can be solved without the binary restrictions (3.4) because its constraint

matrix is totally unimodular.
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Table 2.3: Computing vij for Example 2

Bundle vij
size I1 I2 I3 I4

0 0 0 0 0
1 -4 -8 16 100
2 2 4 2 180
3 1 5 5 221
4 -1 3 6 240

Proposition 8 The constraint matrix of CBP2 is totally unimodular.

Since the constraint matrix of CBP2 is totally unimodular, we can relax its binary re-

strictions.

Linear Program

Next, we reformulate CBP2 as a linear program (LP).

Proposition 9 Let aij =
∑J

j′=j xi+1,j′ −
∑J

j′=j xij′ , where xI+1,j,∀j 6= J is understood to be

0 and xI+1,J is understood to be 1. Then, CBP2 is equivalent to the following CBP2a:

CBP2a : Max
xij ,aij

I∑
i=1

J∑
j=0

(vij − cj)xij

s.t. aij − ai,j+1 + xij − xi+1,j = 0 ∀(i, j) 6= (I, J) (2.11)

aIJ + xIJ = 1 (2.12)

aiJ+1 = 0 ∀i (2.13)

aij ≥ 0; xij ≥ 0 ∀i, ∀j. (2.14)

Recall that the original cardinality bundling problem appeared to be an MINLP problem, which

has now been transformed into an LP, CBP2a. Therefore, we are now able to draw upon the

general comparative static results from the LP literature and apply them to the CBP context to

generate managerial insights. In the following subsection, we develop a few related insights.
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However, before we proceed, we formally show next that CBP2a can be solved “fast.”

Theorem 10 CBP2d is the dual of CBP2a and can be solved within O(IJ) time.

CBP2d : Min
lij

lI,J

s.t. lij ≥ lij−1 i = 0, . . . , I; j = 1, . . . , J (2.15)

lij ≥ li−1j + vij − cj i = 1, . . . , I; j = 0, . . . , J (2.16)

l00 = 0.

2.2.3 Comparative Statics

Invoking the sensitivity results from LP, we can infer that the seller profit is concave in

cj and convex in vij (Theorem 5.3 in Bertsimas et al., 1997). In the following paragraphs, we

consider some additional comparative static results.

Consider the cost parameters first. We say that for any two cost vectors c′ and c′′, the

marginal cost of c′ is less than that of c′′ if for all j ≥ 1, c′j − c′j−1 ≤ c′′j − c′′j−1. We say

the marginal cost is strictly less if the inequality is strict. Although the solution approach of

Hitt and Chen (2005) is inadequate, their insight regarding the weak reduction in the size of

cardinality bundles with increasing marginal cost still holds.

Corollary 11 Assume that marginal cost of c′ is less than that of c′′. Then, for every optimal

allocation x′ with c′ there exists an optimal allocation s with c′′ such that each consumer is

allocated a bundle of weakly smaller size in s than in x′. Similarly, for every optimal allocation

x′′ with c′′ there exists an optimal allocation t with c′ such that each consumer is allocated a

bundle of weakly larger size in t than in x′′. If the marginal cost of c′ is strictly less than that

of c′′ then every optimal allocation x′ with c′ allocates a bundle of size no smaller than any

optimal allocation x′′ with c′′.
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Next, we study how changes to consumers’ WTP affect the solution (e.g., when the

seller pursues advertising efforts). Since CBP2d is convex in vij and vij is a linear transforma-

tion of wij , CBP2d is convex in WTP (Theorem 3.2.2 in Boyd and Vandenberghe, 2004), and

therefore, so it is in CBP2. Notice, when WTPs do not satisfy SCP, CBP2 may not be convex

in the WTPs.10

Increasing WTP (even if it is subject to SCP) does not guarantee an increase in seller

profit. From Examples 1 and 2, it should be clear that increasing the consumers’ WTP can

decrease the profit. However, increasing consumers’ WTP (of course, subject to SCP) on the

purchased bundles will always increase vendor profits. So, it is important for the sellers to

target the WTP increases.

Next, consider the scenario when the seller cannot increase the WTPs but can only shift

the WTP from one consumer type to the other (for example, seller pursues homogenization

efforts). We first study the profit implications in the context of information goods, where cj =

0 ∀j. Let w denote a given I × J WTP matrix. Define w′ = W(i1, i2, w) as a function which

10In the following example, we illustrate that when WTPs do not satisfy SCP, CBP2 may not be convex in the
WTPs. Consider a scenario with I = 2 consumers, J = 3 bundle sizes, and costs cj = 0 for all j. SupposeW1 is
one WTP matrix as given in the second and third columns of Table 2.4 andW2 is another WTP matrix as given in
the fourth and fifth columns of Table 2.4. Notice, the WTP of Consumer 1 inW2 is the same as that of Consumer
2 inW1 and the WTP of Consumer 2 inW2 is the same as that of Consumer 1 inW1. The optimal solutions for
both problems are p∗1 = p∗2 = 12, p∗3 = 34 and the optimal profits are Π∗1 = Π∗2 = 46. LetW3 = 1

2W1 + 1
2W2,

as shown in the last two columns in Table 2.4. The optimal solution is p∗1 = p∗2 = p∗3 = 26 and the optimal profit
is Π∗3 = 52 > 1

2Π∗1 + 1
2Π∗2.

Table 2.4: Willingness-to-pay

Bundle W1 W2 W3

size I1 I2 I ′1 I ′2 I ′′1 I ′′2
1 10 16 16 10 13 13
2 12 18 18 12 15 15
3 12 40 40 12 26 26

17



maps w to another I × J matrix w′, such that, for any j,

w′ij =


wij if i < i1 or i > i2

1
i2−i1+1

∑i2
i′=i1

wi′j if i1 ≤ i ≤ i2.

That is, consumers indexed between i1 and i2 are homogenized so that their individual WTPs

in the transformed setting is the average of their original WTPs; whereas the other consumers

remain unaffected. Let Π∗CBP (w) denote the optimal profit of a CBP problem for a given w

WTP matrix.

Proposition 12 When cj = 0, for each i′, Π∗CBP (W(i′, I, w)) ≥ Π∗CBP (w).

Proposition 12 shows that homogenizing improves the seller profit only if it involves the high-

est consumer type.11 A corollary is that homogenizing across all consumer types (i.e., us-

ing W(1, I, w) as WTP) will weakly increase the profit. Notice that, if costs are non-zero,

even when the highest consumer type is included for homogenization, the seller profit can de-

crease.12

Apart from the comparative static results, we were also interested in exploring the rela-

tionship between vij andwij terms. In doing so, we discovered a result that may be tangential to

11We illustrate that merging may decrease the seller profit when the highest consumer types are not involved by
using the following example.

Table 2.5: Willingness-to-pay

Bundle WTP
size I1 I2 I3
1 2 10 13
2 4 12 20

Consider a scenario with I = 3 consumers, J = 2 bundle sizes, and costs cj = 0 for all j. Suppose the WTP
for the consumers are as given in Table 2.5. Obviously, the optimal solution is p∗1 = 10, p∗2 = 17 and the optimal
profit is 27. If we merge Consumer 1 and 2, then w′11 = w′21 = 6, w′12 = w′22 = 8, which leads to a new optimal
solution of p′∗1 = 6, p′∗2 = 13 and a lower optimal profit of 25.

12Consider a scenario with I = 2, J = 1, and costs c1 = 10. Suppose w11 = 4 and w21 = 20. the optimal
solution is p∗1 = 20 and the optimal profit is 10. If we merge Consumer 1 and 2, then w′11 = w′21 = 12, which
leads to a new optimal solution of p′∗1 = 12 and a lower optimal profit of 4.
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the analysis thusfar but useful (for computational purposes) in quickly generating example val-

ues of WTPs satisfying SCP. As mentioned before, given WTPs, vij = wij−(I−i)(wi+1j−wij).

So,

I∑
i′=i

vi′j =
I∑
i′=i

(I−i′−1)wij−
I−1∑
i′=i

(I−i′)wi+1j =
I∑
i′=i

(I−i′−1)wij−
I∑

i′=i+1

(I−i′−1)wij = (I−i−1)wij.

Therefore,

wij =
1

I − i− 1

I∑
i′=i

vi′j. (2.17)

This shows that there is a one-to-one linear transformation relating w to v. Given the relation-

ship, we show next that we may choose v arbitrarily for the first I − 1 consumers and still find

WTPs that satisfy SCP and are increasing in j.

Proposition 13 Given vij for i ∈ {1, . . . , I − 1} and j ∈ {1, . . . , J}, there exist wij for

i ∈ {1, . . . , I} amd j ∈ {0, . . . , J} that satisfy SCP and are increasing in j.

2.3 Continuous Case: Model and Analysis

We now investigate a continuous version of the problem treated in Section 3.2. One applica-

tion of the continuous problem is in quantity discount pricing, which was explored by Spence

(1980).13 The continuous version can also be applied in cardinality bundling, when the goods

are not discrete. For example, many restaurants charge based on weight (for e.g., kilos in Brazil)

regardless of the kind of food chosen by the consumer on their plate. The main difference is

that bundle sizes are not restricted to integer values 1, . . . , J but can take any real value. The

problem for the vendor is then to identify the optimal pricing function for all real-valued sizes,

which turns out to be significantly more difficult. Nevertheless, we show that the new insights

developed in Section 3.2 can be used to approach this problem.
13The discrete case analyzed in Hitt and Chen (2005) was heavily inspired by Spence (1980).
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2.3.1 Prior Related Work

The model here is similar to that in the previous section except that we use a continuous variable

y ∈ R+ to represent the bundle sizes, instead of using an index j to denote discrete sizes.

Every variable that had an index j before now becomes a function of y instead. In particular:

p(y) represents the price of bundle size y; c(y) the cost of Bundle y; wi(y) the Consumer i’s

WTP for bundle size y. We also define yi to denote the bundle size Consumer i purchases

and corresponds to j(i) =
∑J

j=0 jxij in the discrete case. Spence (1980) also assumes WTPs

satisfy SCP and models it as w′i(y) < w′i+1(y) for all y. We relax these conditions slightly to

the weak inequality and generalize them to the non-differentiable case as follows:14

0 = wi(0) ≤ wi(y) ≤ wi+1(y) ∀y (2.18)

wi(y + d)− wi(y) ≤ wi+1(y + d)− wi+1(y) ∀y ∀d ≥ 0. (2.19)

Assuming p(0) = 0, the vendor’s decision problem is then as follows:

CBPc1 : Max
yi,p(y)

I∑
i=1

(p(yi)− c(yi))

s.t. wi(yi)− p(yi) ≥ wi(y)− p(y) ∀i ∀y. (2.20)

We first review the approach suggested in Spence (1980). Assuming that WTPs satisfy

SCP conditions with a strict inequality, he shows that every optimal solution must satisfy yi+1 ≥

yi for all i < I − 1. Then, given yi, i = 1, . . . , I , he substitutes the optimal prices, obtaining

the optimization problem in the space of y variables. Then, the paper ignores the constraints

14Since w′i(y) ≤ w′i+1(y) for all y, it follows that
∫ d

y
w′i(y

′)dy′ ≤
∫ d

y
w′i+1(y′)dy′ for all y and d, which in

turn implies that wi(y + d) − wi(y) ≤ wi+1(y + d) − wi+1(y) for all y and d. On the other hand, wi+1(y +

d) − wi+1(y) ≥ wi(y + d) − wi(y) implies that limd→0
wi+1(y+d)−wi+1(y)

d ≥ limd→0
wi(y+d)−wi(y)

d or that
w′i+1(y) ≥ w′i(y).
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yi+1 ≥ yi to obtain an unconstrained optimization problem and sets its derivative to zero,

yielding the following local optimality condition:

(I − i+ 1)w′i(yi)− (I − i)w′i+1(yi) = c′(yi). (2.21)

We now interpret the approach of Spence (1980) using our results in Section 3.2. As-

sume that the optimal bundle sizes the consumers buy are given by y∗i , i = 1, . . . , I . Then,

CBPc1 restricted to these bundle sizes reduces to a discrete problem. Since y∗i , i = 1, . . . , I

must be optimal to this restricted problem, the results of our previous section still apply. There-

fore, with the slightly relaxed SCP conditions (2.18) and (2.19), the results of Spence (1980)

still hold. In particular, Proposition 4 shows that there exists an optimal solution with y∗i+1 ≥ y∗i

for all i < I and Proposition 7 shows that CBPc1 can be rewritten as:

CBPcy : Max
yi

I∑
i=1

(vi(yi)− c(yi))

s.t. yi+1 ≥ yi 1 ≤ i ≤ I − 1, (2.22)

where vi(yi) = wi(yi)− (I − i)(wi+1(y)− wi(y)) and wI+1(y) is assumed to be wI(y). Then,

Equation (2.21) is the same as setting the derivative of the objective of CBPcy to zero, i.e.,

v′i(yi) = c′(yi).15

Solving (2.21) may not seem hard since each consumer’s decision is independent of oth-

ers. However, this approach only works if Constraints (2.22) are automatically satisfied by the

solution. Otherwise, the optimality conditions do not decompose. Once the optimal Lagrangian

multipliers are known, the remaining optimality conditions (those of the inner problem of the

Lagrangian dual) can still be decomposed. However, for a given i, the Lagrangian multiplier

15More generally, when v and c are not necessarily differentiable, then the above optimality condition general-
izes to zero belonging to the subdifferential of vi(yi)− c(yi).
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of yi+1 ≥ yi gets multiplied with the decision of both Consumers i and i + 1. Therefore, the

problem of determining the optimal multipliers links the consumers together.

Besides Constraints (2.22) being ignored in the optimality conditions, there is another

subtle issue with Spence’s approach. The optimality condition in (2.21 is a local optimality

condition, which would be reasonable, if the objective had a unique local maximum (for exam-

ple if it was strictly concave). However, as shown in the next example, vi(·) is often nonconvex,

and there may be many points where the derivative of the objective of CBPcy is zero.

Example 14 In CBPc1, assume that consumers can choose any bundle size y, as long as

0 ≤ y ≤ J , where J is an even number, and let c(y) be identically zero. Let wi(y) = 1 +

I
I−i+1

(πy + log(1 + y)) − cos(πy) ∀i. Each consumer’s WTP is increasing in y and the

WTPs satisfy SCP. It follows that vi(y) = 1 − cos(πy). Therefore, if yi is even, it satisfies

(2.21). Since every consumer can be assigned Bundles {0, 2, . . . , J},
(
J
2

+ 1
)I solutions satisfy

Condition (2.21). Moreover, let J = 4I − 2, and observe that there are exponentially many

solutions that satisfy Condition (2.21) and satisfy Constraint (2.22). To see this, consider 2I

solutions obtained by allocating bundle sizes in {4(i− 1), 4i− 2} to Consumer i.

Spence (1980) does not mention the fact that there may be many solutions that satisfy Condi-

tion (2.21). There is, thus, no guidance available on selecting the best solution among them.

If one ignores Constraint (2.22), this situation can be remedied by selecting, for Consumer i,

the bundle size yi that maximizes vi(y)− ci(y) by solving a one-dimensional global optimiza-

tion problem. However, in the presence of Constraint (2.22), the situation is significantly more

complex. Thus, the approach based on Condition (2.21) is deficient in that it ignores Con-

straint (2.22) and does not provide any way of selecting the global optimal solution from many

possible local optima.
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2.3.2 Reformulation and Approximation

We assume that the vendor only provides bundles of size Y or smaller. This assumption is

reasonable since the vendor is typically limited by a production capacity. In other words, we

include the constraint 0 ≤ yi ≤ Y for all i in CBPcy. As illustrated in Section 2.3.1, solving

CBPc1 is challenging since it requires the determination of the optimal price function p(y)

instead of pricing a discrete set of bundles and has infinitely many incentive compatability

constraints of the type (3.33), one for each y. These issues can be somewhat sidestepped

by reformulating CBPc1 as CBPcy which has finitely many continuous variables. However,

since the resulting functions vi(·) are in general non-convex, the problem remains challenging

to solve, especially in the presence of Constraints (2.22).

First, we remark that it is possible to extend the approach used in formulating CBP2d to

solve the continuous case. In particular, the problem aims to find functions li(·), i = 1, . . . , I ,

such that:

CBPcyd : min
li(y)

lI(Y )

s.t. li(y) ≥ li−1(y) + vi(y)− c(y) i = 1, . . . , I, 0 ≤ y ≤ Y (2.23)

l0(y) = 0 0 ≤ y ≤ Y (2.24)

li(y) is non-negative and non-decreasing i = 1, . . . , I, 0 ≤ y ≤ Y (2.25)

Appendix 5.1.12 shows that CBPcyd is a valid reformulation. The above approach solves the

continuous cardinality bundling problem by computing li(y) = sup{li−1(y′) + vi(y
′)− c(y′) |

y′ ≤ y} for each i.

We remark that the convex reformulation CBP2 (without the integrality constraints)

for the discrete case does not extend easily to the continuous case. Note that, for CBP2, the

bundle size that Consumer i buys is yi =
∑J

j=0 jxij . At the binary values of xij , these reduce
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to
∑J

j=0 jxi+1j ≥
∑J

j=0 jxij . However, when xij take continuous values, Constraints (3.7)

are tighter:
∑J

j=0 jxi+1j =
∑J

j=1

∑j
j′=1 xi+1j =

∑J
j′=1

∑J
j=j′ xi+1j ≥

∑J
j′=1

∑J
j=j′ xij =∑J

j=1

∑j
j′=1 xij =

∑J
j=0 jxij , where the inequality follows from Constraints (3.7). The con-

verse does not hold for continuous values of xij .16 This explains why CBPcy is not convex

although CBP2 is a convex program when the superfluous binary restrictions are removed.

For a set, S, let conv(S) and projx S denote respectively the convex hull of S and the

projection of S to the space of x variables. Let {kj}Jj=0 ∈ [0, Y ]J+1, where 0 = k0 < · · · <

kJ = Y . Consider y′ ∈ RI , with 0 ≤ y′i ≤ Y for all i that satisfies Constraints (2.22) and

extend y′ to (y′, x′) ∈ RI × RI×J so that

x′ij =



0 if y′i ≤ kj−1 or y′i ≥ kj+1

y′i−kj−1

kj−1−kj if kj−1 < y′i < kj

kj+1−y′i
kj+1−kj if kj ≤ y′i < kj+1,

(2.26)

where k−1 and kJ+1 are understood to be 0 and Y + 1 respectively. Define

S =

(y, x)

∣∣∣∣∣∣∣∣∣∣
yi =

J∑
j=0

kjxij,∀i;
J∑
j=0

kjxij ≥
J∑
j=0

kjxi+1j, i = 1, . . . , I − 1

J∑
j=0

xij = 1,∀i; xijxij′ = 0,∀i, j, j′ ≥ j + 2; xij ≥ 0,∀i, j

 , (2.27)

and observe that (y′, x′) is the only solution in S that projects to y′. Next, we compute conv(S).

16To see this, let J = 2 and define xi0 = xi2 = 0.5, xi1 = xi+1,0 = xi+1,2 = 0, and xi+1,1 = 1. Then,
although

∑J
j=0 jxij ≤

∑J
j=0 jxi+1j , xiJ 6≤ xi+1J .
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Lemma 15 The convex hull of S is given by:

S ′ =

(y, x)

∣∣∣∣∣∣∣∣∣∣
yi =

J∑
j=0

kjxij,∀i;
J∑

j′=j

xij′ ≤
J∑

j′=j

xi+1j′ , ∀j, i = 1, . . . , I − 1;

J∑
j=0

xij = 1,∀i; xij ≥ 0,∀i, j

 . (2.28)

LetA = {y | (2.22), 0 ≤ yi ≤ Y, ∀i}. Then, projy S
′ = projy S = A. Further, conv(projx S) =

projx S
′.

By Lemma 15, the continuous cardinality bundling problem can be written as:

CBPcx : Maxxij

{
I∑
i=1

(
vi

(
J∑
j=0

kjxij

)
− c

(
J∑
j=0

kjxij

)) ∣∣∣∣∣ x ∈ projx S.

}
.17

We now show that whenwi(·) and c(·) are piecewise linear functions whose breakpoints

form a subset of {k1, . . . , kJ}, then CBPcx can be solved quickly. First, observe that kj ≤ y ≤

kj+1,

wi(y) =
kj+1 − y
kj+1 − kj

wi(kj)+
y − kj
kj+1 − kj

wi(kj+1) = xijwi(kj)+xij+1wi(kj+1) =
J∑

j′=0

xij′wi(kj′),

where the second equality is from (2.26), and the third equality is because it follows from (2.26)

that xij′ = 0 for all j′ 6∈ {j, j + 1}. Similarly c(y) =
∑J

j=0 xijc(kj). We define wij = wi(kj),

cj = c(kj), and vij = wij − (I − i)(wi+1j − wij), where wI+1j is understood to be wIj . Then,

CBPcx can be rewritten as:

CBPcxL : Maxxij

{
I∑
i=1

J∑
j=0

(vij − cj)xij

∣∣∣∣∣ x ∈ projx S.

}
17Maxyi

{∑I
i=1

(
v(yi)− c(yi)

) ∣∣ y ∈ A} reformulates to Maxxij

{∑I
i=1

(
v
(∑J

j=0 kjxij
)
− c
(∑J

j=0 kjxij
)) ∣∣∣ (y, x) ∈ S

}
,

which reduces to CBPcx since the objective only depends on x.
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Now, since the objective is linear, by Lemma 15, we replace projx S with projx S
′ and rewrite

CBPcxL as:

CBPcxL2 : Maxxij

{
I∑
i=1

J∑
j=0

(vij − cj)xij

∣∣∣∣∣ x ∈ projx S
′

}
.

Thus, we have shown the following result.

Theorem 16 When wi(·) and c(·) are piecewise linear functions, whose breakpoints form a

subset of {k1, . . . , kJ}, the continuous cardinality bundling problem can be solved as CBPcxL2.

Observe that CBPcxL2 is identical to the discrete cardinality bundling problem CBP2 for

which we developed an O(IJ) algorithm in Section 2.2.2. Therefore, it follows from Theo-

rem 16 that the continuous cardinality bundling problem with piecewise-linear functions can

be solved in O(IJ) time.

Corollary 17 When wi(·) and c(·) are piecewise linear functions, whose breakpoints form a

subset of {k1, . . . , kJ}, there exists an optimal solution where every consumer purchases a

bundle in {k1, . . . , kJ}, i.e., yi ∈ {k1, . . . , kJ} for all i.

Now, we relax the assumption that wi and c are piecewise linear functions and consider

the more general case of Lipschitz continuous functions. Recall that a function f(x) is said

to be Lipschitz continuous with Lipschitz constant Lf on an interval [a, b], if there is a non-

negative constant Lf such that |f(x1)−f(x2)| ≤ Lf |x1−x2| for all x1, x2 that belong to [a, b].

We assume that wi(y) and c(y) are Lipschitz continuous with Lipschitz constant β. We will

construct piecewise linear approximation for wi(y) (resp. c(y)). Say, we wish to approximate

the solution within ε. Then, we choose k = ε
I(2I+1)β

and J = dY
k
e. We let kj = jk for
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j ∈ 0, . . . , J − 1 and kJ = Y . Then, for kj ≤ y ≤ kj+1, we define

wki (y) =
kj+1 − y
kj+1 − kj

wi(kj) +
y − kj
kj+1 − kj

wi(kj+1) and ck(y) =
kj+1 − y
kj+1 − kj

c(kj) +
y − kj
kj+1 − kj

c(kj+1).

Observe that wki (·) and ck(·) are piecewise linear functions. Let Πc be the optimal value of

CBPcx and Πk denote the optimal profit when wki (y) and ck(y) are the WTP for Consumer i

and the cost for producing y.

Theorem 18 For a given ε, define k = ε
I(2I+1)β

. Then, Πk ≤ Πc ≤ Πk + ε. Further, Πk can be

computed in O
(
I2(I+2)βY

ε
+ I
)

time.

2.4 Conclusion

Pricing of cardinality bundles has not been widely studied in literature although this bundling

scheme is increasingly being adopted in industry. Our paper provides a comprehensive analysis

of the problem when the consumer’s willingness to pay satisfies Spence-Mirrlees condition and

consumers are restricted to buy only one bundle. In this paper, we first study the cardinality

bundling problem in the context of discrete bundle sizes, the problem first considered in Hitt and

Chen (2005). We provide a solution approach that can solve the problem efficiently. Then we

use the underline structures from the discrete problem to revisit the quantity discount problem

proposed in Spence (1980) and derive insights and solution approaches.
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Chapter 3

Cardinality Bundles with Complex Costs

3.1 Introduction

Cardinality bundling, or, in short, CB, is a kind of bundling strategy where bundles of equal

cardinality or size are sold at the same price. One example of how firms adopt CB is the

way Disney World sells themepark tickets. Consumers can purchase multi-day (2, 3, 4 or 5

day) passes from Disney World. A consumer who purchases a 2-day pass can choose any two

themeparks and enter each one for one day. Similarly, a consumer who purchases a 3-day pass

can choose any three themeparks and enter each one for one day, and so on so forth. The

key characteristic of CB is that the seller only prices for the cardinality of its goods and let

consumers choose the combination of goods they want under the cardinality.

In fact, CB has been adopted by a variety of firms in practice. With the emergence

and rapid growth of low-cost reproduction and distribution technologies for information goods,

these goods providers are more and more attracted to CB. For example, Eastlink, a cable TV

service provider in Canada, sells bundles of either 12 channels or 20 channels and let consumers

pick which channels they would like to include in the proposed bundles. Similarly, Netflix, the

online DVD rental firm, prices subscription options based on the number of DVDs a consumers
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rents each time.

Actually several other types of bundling have been adopted in practice. The first one

is mixed bundling, wherein every possible combination of goods is sold at a possibly different

price. Mixed bundling is the most profitable bundling strategy. However, Hanson and Martin

(1990) shows that the pricing problem for mixed bundling is only tractable when the number

of goods is small. Other two types of bundling considered are: component bundling and pure

bundling. In component bundling, individual components, rather than the bundles, are priced.

In pure bundling, only a bundle with all possible products is sold. Pricing for these two types

of bundling is relatively easy. But in most cases, these two strategies do not guarantee optimal

profits. Chu et al. (2011) shows that in many cases CB is close to the profitability of mixed

bundling and more profitable than component pricing and pure bundling.

The models presented in this paper extend the CB models in Kannan et al. (2014b).

Before we go into the details of Kannan et al. (2014b), we first review the literature on CB. Hitt

and Chen (2005) is the first analytical modeling paper which studies the pricing of CB. They

build the basic CB model assuming that consumers’ reservation price satisfy Spence-Mirrlees

Single Crossing Property (SCP). Their basic model and the SCP assumption are also used in

Kannan et al. (2014b) and this paper. They also explore the properties of the optimal solution

for the CB problem. Wu et al. (2008) relax the SCP assumption and propose a nonlinear mixed-

integer programming approach to analyze the CB problem. Chu et al. (2011) use computational

and empirical results to show that in many cases, CB is as profitable as mixed bundling.

Kannan et al. (2014b) solve the basic models of CB problem. They first consider the

model presented in Hitt and Chen (2005) and show that it can be solved as a linear programming

(LP) problem within polynomial time. They also consider a continuous version of the CB

problem where the seller can price bundle sizes at continuous values rather than being restricted
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to integer values, same as the quantity discount problem that is explored by Spence (1980).

This paper extends Kannan et al. (2014b) in three ways. First, we show that the ba-

sic CB model in Kannan et al. (2014b) can be reformulated as a shortest-path problem. The

network structure underlying the shortest-path formulation provides many insights into cardi-

nality bundling . Second, we modify the model to include a fixed costs for the seller to add

an additional bundle and show that with the fixed costs, the problem can still be solved as a

shortest-path problem. We notice that Wu et al. (2008) has a similar setting of including fixed

costs. The third extension is to analyze the CB problem without additively separable cost struc-

ture. We prove that even without additively separable cost structure, if the production cost is

submodular, the above two kinds of problems are still solvable in strong polynomial time. So-

lutions we developed here can be implemented to a wide scope of industries where economies

of scale exists in production.

3.2 Basic Model and a Shortest-Path Reformulation

In this section we first review the model and some important results from Kannan et al. (2014b).1

Then we show that the problem can be reformulated as a shortest-path problem. The shortest-

path structure we develop here not only reveals a simple structure for the CB problem, but also

paves a way to solve more complicated problems in the following sections.

3.2.1 Basic Model

The model is developed from a seller’s perspective who sells J products to I consumers in the

market. In the following, we denote the bundle of size j as Bundle j. WLOG, all bundles,

1, . . . , J are assumed to be offered in the market. We denote the price of Bundle j as pj and the

cost of Bundle j as cj . The seller’s objective is to maximize the profit, which is calculated as

the sum of all prices for all the bundles sold minus the sum of all the costs for the corresponding

1Please refer to Kannan et al. (2014b) for a complete version of the mode setup and analyses.
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bundles. We use Bundle 0 to represent consumers’ choice of not purchasing and set p0 = 0 and

c0 = 0.

We denote the willingness-to-pay (WTP) of Consumer i for Bundle j as wij . For each

consumer i, WTP is assumed to be non-decreasing with the bundle size and wi0 is assumed to

be zero. Each consumer i is assumed to only purchase one bundle, j ∈ {0, 1, 2, . . . , J}, that

maximizes her surplus calculated as wij − pj . Let xij be 1 if Consumer i ∈ {1, 2, . . . , I} buys

Bundle j ∈ {0, 1, 2, . . . , J} and 0 otherwise. Then, CBP can be formulated as follows (see Hitt

and Chen, 2005):

Let xij be 1 if Consumer i ∈ {1, 2, . . . , I} buys Bundle j ∈ {0, 1, 2, . . . , J} and 0

otherwise. Then, the problem can be formulated as follows (see Kannan et al., 2014b):

CBP1 : Max
xij ,pj

I∑
i=1

J∑
j=0

xij(pj − cj)

s.t.
J∑

j′=0

(wij′ − pj′)xij′ ≥ wij − pj ∀i, ∀j (3.1)

J∑
j=0

xij = 1 ∀i (3.2)

p0 = 0 (3.3)

xij ∈ {0, 1} ∀i, ∀j. (3.4)

Constraints (3.2) represents the assumption that each consumer purchases one bundle. Con-

straints (3.1) requires that consumer surplus from the purchased bundle to be no less than that

from any other alternatives.

Following Kannan et al. (2014b), we assume that consumer valuations satisfy the Spence-

Mirrlees Single Crossing Property (SCP) (see Spence, 1980), stating that consumers can be or-

dered by types. Higher type consumers (with higher indexes) are willing to pay more on each

31



bundle size than lower type consumers (with lower indexes) do, and more for each addition

unit. Thus, we impose the following ordering on the consumers’ WTP for the bundles:

wij ≥ wi′j ∀i > i′, (3.5)

wij − wij′ ≥ wi′j − wi′j′ ∀i > i′, ∀j > j′. (3.6)

In Kannan et al. (2014b), the authors explore a few properties of the optimal solution of

CBP1. Next, we review one of those properties that is especially useful in the extended models

which will be discussed later on. Proposition 4 in Kannan et al. (2014b) states that consumers

with higher indexes always purchase bundle sizes larger than consumers with lower indexes.

Thus, we can add the following redundant yet useful constraints into the model:

J∑
j′=j

xi+1j′ ≥
J∑

j′=j

xi,j′ i = 1, . . . , I − 1, ∀j. (3.7)

Notice, the proof of this proposition still holds even if there are fixed costs in the model (dis-

cussed in Section 3.3) or the costs have a general submodular form (discussed in Section 3.4).

3.2.2 A Shortest-Path Reformulation

Kannan et al. (2014b) demonstrates that a solution to CBP1 can be obtained by solving a

linear programming problem. Next, we show that CBP1 can also be solved as a shortest path

problem.

Following Kannan et al. (2014b), we use the following formulation to linearly transform

the WTP matrix wij to another matrix vij:

vij = wi,j + (I − i)(wi,j − wi+1,j) (3.8)
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The way we transform wij to vij plays an important role in developing the solution approach

for CBP1. A detailed discussion on the definition of vij and its implications is provided in

Kannan et al. (2014b). In short, vij captures that when the seller allocates Consumer i to

purchase Bundle j, how his revenue will change. It combines the gain from the bundle sold

and the loss from seller’s decremental ability to extract surplus from consumers other than i.

by transforming wij to vij , we are able to reformulate CBP1 to a shortest-path formulation.

Theorem 19 CBP1 is equivalent to the following shortest path problem on a graph which has

2I(J + 1) + 2 nodes and (I + 2)(J + 1) + (I − 1)(J + 1)(J + 2)/2 edges:

CBP3 : Minxij ,χijj′
−

I∑
i=1

J∑
j=0

(vij − cj)xij

s.t.
J∑
j=0

χ00j = 1 (3.9)

χ00j = x1j (3.10)
J∑
j=0

χIjJ = 1 (3.11)

χIjJ = xIj (3.12)

xij =
J∑

j′=j

χijj′ ∀i∀j (3.13)

j∑
j′=0

χi−1,j′,j = xij ∀i ∀j (3.14)

χijj′ ∈ {0, 1} ∀i ∀j ∀j′ ≥ j. (3.15)

The problem formulation in Theorem 19 can be seen as a shortest-path problem on a suitable

acyclic network. Therefore, one can use a combinatorial algorithm that traverses the vertices in

the order generated by a topological sort and finds the shortest path in linear time.

Example 20 Consider a scenario with I = 4 consumers, J = 4 bundle sizes, and costs cj = 0

for all j. Suppose the WTP for the consumers are as given in Table 3.1. It can be verified easily
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Table 3.1: WTP and vij values for Example 20

Bundle Consumers’ WTP
size I1 I2 I3 I4

0 0 0 0 0
1 26 36 58 100
2 47 62 91 180
3 58 77 113 221
4 62 83 123 240

Bundle vij
size I1 I2 I3 I4

0 0 0 0 0
1 -4 -8 16 100
2 2 4 2 180
3 1 5 5 221
4 -1 3 6 240

Figure 3.1: The shortest path problem formulation for Example 20
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that they satisfy SCP. The corresponding vij values are also shown in Table 3.1.

We illustrate the shortest-path structure of CBP3 on Example 20.Figure 3.1 illustrates the asso-

ciated network where the source node is the top-left node and the sink node is the bottom-right

node. One unit of flow starts from the source node, travels through the network, and finally

arrives at the sink node. Each edge in the network is directed from left to right. Observe that,

the edges in the network point sideways or downwards, but not upwards. It is consistent with

Proposition 4 in Kannan et al. (2014b), stating that the consumers with higher indexes purchase

weakly larger sized bundles than consumers with lower indexes. The network has a multipartite

structure, each partition corresponding to a consumer. Apart from the source node and the sink

node, there are 2I(J + 1) nodes, with two nodes for each pair of consumer and bundle size.

There are two types of edges in the network, solid and dotted. The solid edges connect two

nodes that correspond to Consumer i purchasing Bundle j and the dotted edges connect the

different partitions of the network. The variable xij indicates the flow on the solid edge, and
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χijj′ is the flow on the dotted edge that connects the end node of the edge with xij flow with

the start node of the edge with xi+1,j′ flow. The per unit cost of flow through the solid edge is

−vij + cj whereas there is no cost for the flow through the dotted edge. In Figure 3.1, there are

two numbers shown above each solid edge. The number outside the parenthesis is the cost per

unit flow on the edge. The number inside the parenthesis is the shortest distance to this node

from the source node. The actual assignment of consumers to bundles is obtained from the

nodes that the shortest path visits.Observe that, the shortest path can be computed by keeping

track of the predecessor of each node.

We remarked earlier that the algorithm for solving the shortest path problem on an

acyclic network takes linear time. Since this network has O(IJ2) edges, a straightforward

implementation takes this much time. However, we can exploit the network structure to make

the algorithm faster. We traverse the nodes, one consumer at a time, from left to right. For each

consumer, we visit the nodes from smallest bundle size to largest bundle size. For each pair

of consumer and bundle sizes, (i, j), there are two nodes, namely the start and end node of the

edge with xij flow. We denote the longest path to the start node of (i+ 1, j) as lij . Then, define

lij = max{lij−1, li−1j + vij − cj}, where l0j is understood to be zero. These computations take

O(IJ) time and solve CBP3. The formulation of this method is exactly the same as that of

CBP2b given in Kannan et al. (2014b).

3.3 Fixed Costs

In this section, we discuss the CB problem with fixed costs in setting up each bundle size.

Such an extension is particularly important to sellers, such as on-line music stores, who could

provide a huge amount of bundle sizes in the market. In fact, sellers in many industries will

limit the number of bundles they provide to the consumers. For example, Eastlink only sells

bundles of 1 channel, 12 channels, and 20 channels in the market. One important reason is
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that setting up and managing each additional bundle size is costly to the seller. We notice that

the nonlinear mix-integer model developed in Wu et al. (2008) has a constant fixed cost to add

each additional bundle size. Next, we modify CBP1 to handle the situation when the seller

incurs a fixed cost fj if at least one consumer is allocated to Bundle j. All the other settings

and assumptions in CBP1 are not changed.

Let oj be 1 if Bundle j ∈ {0, 1, . . . , J} is available in the market and 0 otherwise. Then,

the CB problem with fixed costs can be formulated as follows:

CBPf : Max
xij ,pj ,oj

I∑
i=1

J∑
j=0

xij(pj − cj)−
J∑
j=0

fjoj

s.t. (3.1), (3.2), (4.2), (3.4)

xij ≤ oj ∀i;∀j (3.16)

oj ∈ {0, 1} ∀i, ∀j. (3.17)

Constraints (3.16) requires Bundle j to be available on the market if it is purchased by any

consumer. The additional item −
∑J

j=0 fjoj in the objective function represents the deduction

in profit due to the fixed costs. Obviously, if fj = 0 ∀j, then CBPf is same as CBP1. Interest-

ingly, we can modify the shortest-path formation CBP3 to make it be able to solve CBPf.

Theorem 21 CBPf is equivalent to the following shortest path problem on a graph which has

2I(J + 1) + 2 nodes and (I + 2)(J + 1) + (I − 1)(J + 1)(J + 2)/2 edges:

CBP3f : Minxij ,χijj′
−

I∑
i=1

J∑
j=0

(vij − cj)xij +
I∑
i=1

J∑
j=0

J∑
j′=j+1

χijj′fj′

s.t. (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15).

Observe that the only difference between CBP3 and CBP3f is that there is an additional item
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Figure 3.2: The shortest path problem formulation for Example 22
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in the objective function of CBP3f: +
∑I

i=1

∑J
j=0

∑J
j′=j+1 χijj′fj . The interpretation of this

change is actually straightforward. In any solution of CBP3f, when χijj′ = 1 for some i, j, and

j′ > j, it captures that conditionally on Consumer i is allocated to Bundle j, Consumer i + 1

is allocated to a larger size Bundle j′ larger than Bundle j. As a result, the seller incurs a fixed

cost fj′ to make Bundle j′ available and thus reduces his profit by the same amount.

We now add fixed costs to Example 20 to illustrate the underlining shortest-path struc-

ture of CBP3f.

Example 22 In the setting of Example 20, add f1 = 2, f2 = 5, f3 = 4, and f4 = 3 as fixed

costs for setting each bundle size accordingly.

Figure 3.2 illustrates the associated network of CBP3f. It is quite similar as the network

of CBP3 shown in Figure 3.1. The only difference is that in Figure 3.1, there is no cost for

any dotted edges, but in Figure 3.2, each downwards dotted edge has a cost for the flow to go

through. Each downwards edge represents that the next consumer purchases a different bundle

size than the one purchased by the the previous consumer, and therefore, the seller need to incur
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a corresponding fixed cost to make this bundle size available. Notice that the all there is no cost

for any sidewards dotted edge, representing that if the next consumer makes the same purchase

decision as the previous consumer, the seller will not incur any new fixed cost. Same as CBP3,

the shortest path on this graph represents the optimal solution of CBP3f.

We next show that there exists a fast algorithm to solve CBP3. We next show that

CBP3f can be reformulated to the following CBP3a, and then show that there exists a fast

algorithm to solve the dual of it.

Proposition 23 ∀i ∈ {1, 2, . . . , I}, ∀j ∈ {0, 1, . . . , J}, Let aij = xij, bij =
∑j−1

j′=0 xij′ −∑j−1
j′=0 xi+1,j′ , cij =

∑j−1
j′=0 χi−1,j′j, and dij = xi−1,j , where x0j, ∀j and χ0jj′ , ∀j, ∀j′ are

understood to be 0. Let aI+1,j = bI+1,j = cI+1,j = dI+1,j = 0, ∀j{0, 1, . . . , J + 1}, and

ai,J+1 = bi,J+1 = ci,J+1 = di,J+1 = 0, ∀i{1, 2, . . . , I + 1}. Then, CBP3f is equivalent to the

following CBP3a:

CBP3a : Max
aij ,bij ,cij ,dij

I∑
i=1

J∑
j=0

(vij − cj − fj)cij +
I∑
i=1

J∑
j=0

(vij − cj)dij

s.t. aij + bij − bi,j+1 − ci+1,j = 0 ∀i, ∀j (3.18)

−ai,j+1 + cij + dij − di+1,j = 0 ∀i, ∀j (3.19)

aIJ + bIJ + cIJ + dIJ = 1 ∀i, ∀j (3.20)

aij ≥ 0; bij ≥ 0; cij ≥ 0; dij ≥ 0 ∀i, ∀j. (3.21)
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Theorem 24 CBP3d is the dual of CBP3a and can be solved within O(IJ) time.

CBP3d : Min
l1ij ,l

2
ij

z

s.t. l1ij ≥ l1ij−1 i = 0, . . . , I; j = 1, . . . , J (3.22)

l1ij ≥ l2ij−1 i = 0, . . . , I; j = 1, . . . , J (3.23)

l2ij ≥ l1i−1j + vij − cj − fj i = 1, . . . , I; j = 0, . . . , J (3.24)

l2ij ≥ l2i−1j + vij − cj i = 1, . . . , I; j = 0, . . . , J (3.25)

z ≥ l1IJ (3.26)

z ≥ l2IJ (3.27)

l100 = l200 = 0.

3.4 Submodular Cost Function

In this section, we go back to assume there are no fixed costs and focus on another extension on

bundle costs. In Kannan et al. (2014b), the authors solve CB problems with both the discrete

bundle sizes and the continuous bundle sizes. For both cases, the authors assume a separable

cost structure, i.e., the cost of goods sold to a consumer depends only on the bundle size she

buys. As mentioned before, this cost structure was studied earlier by Hitt and Chen (2005)

and Spence (1980). Observe also that the shortest-path algorithm applies even if the costs are

consumer-specific, i.e., cj are replaced with cij . Nevertheless, cost structures, such as scale

economies, cannot be accommodated even with consumer-specific costs. For example, these

models cannot capture a cost-component that is concave in the sum of the bundle sizes sold to

the consumers. This is because the cost of selling an additional unit to a consumer depends on

what other consumers purchase. In this section, we extend our analyses to a more general cost
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structure. We remark that although we express these changes in terms of costs, they can also be

used to model additional value generated for the vendor by sale of extra goods to consumers.

For example, these ideas can be used to model a convex value function that depends on the total

sales, which may capture benefits due to externalities or larger market presence.

3.4.1 Discrete Case

In this section, we consider the discrete case where Bundles 0, . . . , J are offered by the vendor,

and a cost function C ′(j1, . . . , jI) – where, for each i, ji represents the bundle size allocated

to Consumer i – is submodular in {j1, . . . , jI}. We define zij =
∑J

j′=j xij . Then, observe that

xij = zij − zij+1, where ziJ+1 is understood to be zero. Also, observe that the bundle ji that

Consumer i purchases is:

ji =
J∑
j=0

jxij =
J∑
j=1

j∑
j′=1

xij =
J∑

j′=1

J∑
j=j′

xij =
J∑

j′=1

zij′ . (3.28)

If we define C(z) = C ′
(∑J

j=1 zij, . . . ,
∑J

j=1 zIj

)
, then the vendor’s decision problem is:

CBPg : Maxzij

I∑
i=1

J∑
j=0

vij(zij − zij+1)− C(z)

s.t. zi0 = 1 ∀i (3.29)

zij ≥ zij+1 ∀i; ∀j ≤ J − 1 (3.30)

zij ≤ zi+1j ∀i ≤ I − 1; ∀j (3.31)

zij ∈ {0, 1} ∀i; ∀j. (3.32)

Given the definition of zij , Constraint (3.29), Constraint (3.31), and Constraint (3.30) are equiv-

alent to Constraint (3.2), Constraint (3.7), and the non-negativity of xij variables respectively.

Therefore:
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Proposition 25 The feasible region of CBPg (resp., relaxation of CBPg with no integrality

constraints on z) is obtained via a one-to-one linear transformation zij =
∑J

j′=j xij from the

feasible region of CBP2 (resp., relaxation of CBPg with no integrality constraints on x).

We next show that the feasible region of CBPg forms a lattice family (Schrijver, 2003).

A family C of sets is called a lattice family if for all A, B ∈ C, it holds that A∪B, A∩B ∈ C.

A set A can be mapped into binary values using its incidence vector, i.e., a vector χA whose

entries are labeled with the elements of the universal set and χAi = 1 ⇔ i ∈ A, otherwise

χAi = 0. We claim that the binary solutions feasible to CBPg are incidence vectors of a lat-

tice family. In order to show this, consider two feasible solutions z1 and z2 and construct

z′ (resp., z′′) such that z′ij = max{z1
ij, z

2
ij} (resp., z′′ij = min{z1

ij, z
2
ij}). We verify that z′

and z′′ are feasible to CBPg. First consider z′. Constraints (3.29) and (3.32) are obviously

satisfied. The following shows that z′ satisfies Constraint (3.30): z′ij = max{z1
ij, z

2
ij} ≥

max{z1
ij+1, z

2
ij} ≥ max{z1

ij+1, z
2
ij+1} = z′ij+1, where the inequalities follow because z1 and

z2 satisfy Constraint (3.30). Similarly, it follows that z′ satisfies Constraint (3.31). The ar-

guments for showing feasibility of z′′ are similar. We refer to z′ (respectively, z′′) as the join

(respectively, the meet) of z1 and z2 and denote it as z1 ∨ z2 (respectively, z1 ∧ z2).

Proposition 26 For any z in the feasible region of CBPg and i ∈ {1, . . . , I}, let ji be as given

in (3.28). Then, C(z) is submodular over the feasible region of CBPg.

We remark that Proposition 26 only shows the submodularity ofC(z) for points feasible

to CBPg.2 We now show that CBPg can be solved in strongly polynomial time, which thereby

yields an efficient algorithm for the vendor to price the bundles.

2Consider, for example, allocations x1 and x2 such that, for some i, x1i1 = 0.5, x1i3 = 0.5, and x2i2 = 1. Let z1

and z2 be the corresponding solutions in the z-space and define z′ = z1 ∨ z2 and z′′ = z1 ∧ z2. Then, it follows
that z1i = (1, 1, 0.5, 0.5) and z2i = (1, 1, 1, 0). Using (3.28), the first solution corresponds to j1i = 2, and the
second solution also corresponds to j2i = 2. But, z′i = (1, 1, 1, 0.5) and z′′i = (1, 1, 0.5, 0) and the corresponding
j′i = 2.5 whereas j′′i = 1.5. Therefore, for general z, the submodularity does not follow.
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Theorem 27 If C(z) is submodular over the feasible region of CBPg, and for a given z, C(z)

can be evaluated in strongly polynomial time, then CBPg can be solved in strongly polynomial

time.

We remark that the algorithm that is used in Theorem 27 to solve CBPg in polyno-

mial time is based on extending C(z) from the lattice family to a submodular function over

[0, 1]I×(J+1), which still attains the same maximum. Then, the new function can be maximized

in polynomial time using the algorithm of Schrijver (2000) or Iwata et al. (2001). Exposing the

structure of this problem brings many tools from supermodular optimization that can be used

to bear on the cardinality bundling problem. For example, one can readily say that the optimal

solutions of CBPg forms a non-empty subcomplete lattice of its feasible set (Corollary 2.7.1 in

Topkis, 1998).

We now consider a more interesting application. Assume that C(z) = C ′′(m, z) where

m are some parameters of the cost function. Assume C ′′(m, z) is submodular in (−m, z)

space. Then, it follows from Theorem 2.7.6 in Topkis (1998) that the optimal solution is a

supermodular function of m. In the setting of Section 3.2, this can be interpreted by letting m

denote the marginal cost vector, i.e., mj = cj − cj−1. Assume now two settings, with marginal

costs m1 and m2 and assume m1 ≥ m2. Then, the reduction in profit for an increase in m1 by

some ∆ is no more than the reduction in profit for an increase in m2 by the same ∆.

In this setting, we can also extend the result of Corollary 11 in Kannan et al. (2014b).

According to this corrollary, if the marginal cost decreases, then every consumer will shift to

purchase weakly larger sized bundles. First, we provide a standard definition of set ordering.

Given two sets of allocations X ′ and X ′′ we say that a set X ′ v X ′′, or that X ′ is smaller than

X ′′, if for every allocation z′ ∈ X ′ and z′′ ∈ X ′′, it holds that z′ ∧ z′′ ∈ X ′ and z′ ∨ z′′ ∈ X ′′.

Corollary 28 If C ′′(m, z) is submodular in (m, z) then the set of optimal solutions of CBPg
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are increasing in m, i.e., consumers buy non-increasing bundle sizes with increase in m. Let

m1 > m2 and assume that C ′′(m, z) has strictly increasing differences in (m, z). If z′ (resp.

z′′) is an optimal solution to CBPg with m1 (resp. m2) then z′ ≥ z′′.

3.4.2 Continuous Case

In this section, we explore the extension of the continuous case to allow for submodular cost

functions. The continuous case with separable costs are discussed in Kannan et al. (2014b).

Here we first briefly review the model. The model is similar to CBP1 except that we use a

continuous variable y ∈ R+ to represent the bundle sizes, instead of using an index j to denote

discrete sizes. Then all the other variables xij and pj , and parameters wij that are previously

indexed with j ,now become a function of y: xi(y), p(y), and wi(y). Thus the continuous

problem can be modeled as:

CBPc1 : Max
yi,p(y)

I∑
i=1

(p(yi)− c(yi))

s.t. wi(yi)− p(yi) ≥ wi(y)− p(y) ∀i ∀y. (3.33)

Next, based on CBPc1, we discuss the continuous case with submodular cost function.

As before, we define vi(y) = wi(y) − (I − i)(wi+1(y) − wi(y)) for all i, where wI+1(y) is

assumed to be wI(y). Then, , we reformulate the cardinality bundling problem as:

CBPgcy : Maxyi

I∑
i=1

vi(yi)− C ′(y1, . . . , yI)

s.t. yi+1 ≥ yi 1 ≤ i ≤ I − 1 (3.34)

0 ≤ yi ≤ Y ∀i, (3.35)
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where we assume that C ′(y) is submodular in y. Let k(·) : {0, . . . , J} → [0, Y ] be such

that 0 = k(0) < · · · < k(J) = Y . We assume that for all i, wi(y) are piecewise-linear

with breakpoints that belong to {k(0), . . . , k(J)}. In Kannan et al. (2014b), we also assumed

piecewise-linearity for the cost. We extend this assumption to the current setting. Observe that

this requires some detail since C ′(·) is now a multi-dimensional function.

Consider a y ∈ RI that is feasible to CBPgcy. For each i, let a(yi) = arg minj{yi −

k(j) | k(j) ≤ yi}. If k(a(yi)) = Y define g(yi) = 0, otherwise define g(yi) = yi−k(a(yi))
k(a(yi)+1)−k(a(yi))

.

Assume that π = (π(1), . . . , π(I)) is a permutation of {1, . . . , I} that sorts g(yi) such that

g(yπ(1)) ≥ · · · ≥ g(yπ(I)). If g(yi) = g(yi′) for some i < i′, we assume that π−1(i′) < π−1(i).

Let ei be a unit vector such that eii = 1 and eii′ = 0 for i 6= i′. For r = 0, . . . , I , define

ar = (a(y1), . . . , a(yI)) +
∑r

i=1 e
π(i). Let yr be defined so that yri = k(ari ) if ari ≤ J and

yri = Y otherwise. It is clear that, for all i, yri ∈ {k0, . . . , kJ}. Therefore, yr satisfies Con-

straint (3.35). We now argue that ari ≤ ari+1 for i ≤ I − 1. Observe that this implies that yr

satisfies Constraint (3.34) and is feasible to CBPgcy because k(j) ≤ k(j′) for j < j′.

Lemma 29 ari ≤ ari+1 for i ≤ I − 1. Consequently, yr is feasible to CBPgcy.

For notational convenience, define π(0) = 0, π(I+1) = I+1, g(y0) = 1, and g(yI+1) =

0. We now assume thatC ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr). For example, we discuss

later that this property is satisfied by piecewise linear or concave cost functions. Observe that,

for all r, g(yπ(r)) − g(yπ(r+1)) ≥ 0 and
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
= g(y0) − g(yI+1) = 1.
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Furthermore

I∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
yri

= k(a(yi))

π−1(i)−1∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
+ k(a(yi) + 1)

I∑
r=π−1(i)

(
g(yπ(r))− g(yπ(r+1))

)
= k(a(yi))(1− g(yi)) + k(a(yi) + 1)g(yi)

= yi.

(3.36)

Therefore, y can be expressed as a convex combination of feasible points yr, r = 0, . . . , I

and we have assumed that the convex combination underestimates the cost. This hypothesis

is sufficient to show that the solution of the continuous cardinality bundling problem can be

restricted to lie on the breakpoints.

Theorem 30 Assumewi(·) are piecewise linear with breakpoints in {k(0), . . . , k(J)}. Further,

assume that C ′(y) is submodular and C ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr). Then,

there exists an optimal solution y∗ to CBPgcy that is such that, for all i, y∗i ∈ {k(0), . . . , k(J)}.

Let z∗ be optimal to

CBPgcz : Maxzij

{
I∑
i=1

J∑
j=0

vij(zij − zij+1)− C(z) | (3.29), (3.30), (3.31), (3.32)

}
,

where, C(z) = C ′
(∑J

j=1

(
k(j)− k(j − 1)

)
z1j, . . . ,

∑J
j=1

(
k(j)− k(j − 1)

)
zIj

)
. Then, y∗

may be chosen such that y∗i =
∑J

j=1

(
k(j)− k(j − 1)

)
z∗ij .

Since, by Theorem 27, CBPgcz can be solved in strongly polynomial time, we have the

following:
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Corollary 31 Assume wi(·) are piecewise linear with breakpoints in {k(0), . . . , k(J)}. Fur-

ther, assume that C ′(y) is submodular and C ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr).

Then, CBPgcy can be solved in strongly polynomial time (assuming k(0), . . . , k(J) are part of

the input).

We remark that Theorem 30 generalizes Theorem 16 and Corollary 17 in Kannan et al. (2014b).

This is because the cost functions treated in Kannan et al. (2014b) are additively separable,

i.e., sum of one-dimensional functions, which are always submodular. Further, piecewise-

linearity assumed in Kannan et al. (2014b) is a special case of the requirement C ′(y) ≥∑I
r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr) in Theorem 30. In fact, in the case of one-dimensional

functions, the right-hand side is precisely the piecewise linear function with breakpoints at

(k(0), . . . , k(J)). Since the inequality holds trivially, the generalization follows. Similarly, the

following result can be easily obtained.

Corollary 32 Assume wi(·) are piecewise linear with breakpoints in {k(0), . . . , k(J)}. Fur-

ther, assume that C ′(y) is concave and submodular. Then, CBPgcy can be solved using

CBPgcz in strongly polynomial time (assuming k(0), . . . , k(J) are part of the input).

Now, we consider the general case, where the WTP and cost functions are not necessar-

ily piecewise-linear. We assume that wi(·) and C ′(·) are Liptschitz continuous with Lipschitz

constant β, i.e., for all i, |wi(yi) − wi(y
′
i)| ≤ β|yi − y′i| and |C ′(y) − C ′(y′)| ≤ β‖y − y′‖.

We show that Theorem 30 gives an approach to approximate the solution of this more gen-

eral problem. We construct piecewise-linear approximations of wi(y) and C ′(·). Assume

we choose k = ε
2β(I2+

√
I)β

and J = dY
k
e. We let k(j) = jk for j = 0, . . . , J − 1 and

k(J) = Y . Then, we define: wki (y) =
kj+1−y
kj+1−kjwi(k(j)) +

y−kj
kj+1−kjwi(k(j + 1)) and C ′k(y) =∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr). Observe that wki (·) and C ′k(·) satisfy the hypotheses of

Theorem 30. Let Πc be the optimal value of CBPgcy and Πk denote the optimal profit when
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wki (·) and C ′k(·) are the WTP for Consumer i and the cost function respectively.

Theorem 33 For a given ε, define k = ε
2β(I2+

√
I)β

. Then, Πk ≤ Πc ≤ Πk + ε. Further, Πk can

be computed in time that is polynomial in I , Y , β, 1
ε
, and the time taken by the oracle call to

compute C ′(y).

3.5 Conclusion

In this paper, we first extend the existing CB model to allow fixed costs in adding additional

bundles. We show that CB problem with fixed costs can be solved as a shortest-path problem.

We then extend the CB model in another way to solve CB problem with submodular cost struc-

ture. Such an analysis is especially useful when there exists economies of scale in production.
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Chapter 4

Cardinality bundles with Constrained Prices

4.1 Introduction

This paper studies a bundling schemed called cardinality bundling (CB). in CB, sellers price

for the number of goods and let consumers choose with specific products they what. Pricing

for toppings of pizza is a simple example of CB. In many pizza stores, consumers are priced for

the number of toppings regardless of the specific topping types. Similarly, Disney World uses

CB to sell theme park tickets. Instead of selling tickets for each park separately, Disney World

prices consumers for the number of visits to all its theme parks. More generally, information

goods providers such as Netflix and Blockbuster, telecommunication service providers such

as AT&T, and cable TV providers such as Eastlink, are also implementing CB in selling their

products or services.

The current literature on CB is relatively sparse and we review it briefly here. Most

relevant to the current paper is Hitt and Chen (2005), where they study the pricing of cardinality

bundles assuming that each consumer is restricted to buy at most one bundle. They explore

conditions under which CB can attain the same profit as mixed bundling. Further assuming

that consumers’ reservation price satisfy Spence-Mirrlees Single Crossing Property (SCP), they
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propose and analyze a readily Wu et al. (2008) also restrict the consumer to purchase at most

one bundle and seek to solve the CB pricing problem as a nonlinear mixed-integer program.

They develop a heuristic algorithm based on Lagrangian relaxation and subgradient ascent to

solve the problem, and provide a lower-bound on the profit. Even at the termination of their

algorithm, they report a significant gap between the lower- and upper-bounds on the profit. Chu

et al. (2011) consider a CB model where unit prices for bundles decrease with increasing size.

They use computations and real data to argue that profit from their CB model is almost the

same as that from mixed bundling. Lahiri et al. (2013) study cardinality bundling in the context

of pricing of wireless services. They analytically compare CB with another pricing regime in

which each wireless service is charged separately and show that both regimes may perform

better than the other under different conditions. computable pricing strategy.

Kannan et al. (2014b) analytically studies the optimal pricing strategies for CB prob-

lems with SCP consumer valuations. They show that the optimal prices to the problem can

be obtained, in strongly polynomial time, by solving a shortest-path problem. Based on the

network structure underlying the shortest path formulation, they develop an algorithm to solve

the quantity-discount problem proposed by Spence (1980). Lastly, they also study the char-

acteristics of the underlying problem that lead to similar strongly polynomial time solution

approaches.

The models in Hitt and Chen (2005) and Kannan et al. (2014b) assume that each con-

sumer can only purchase no more than one bundle. This assumption is valid in some industries.

For example, each home usually has no more than one cable TV connection and therefore

is only able to purchase at most one cable TV bundle. Other examples include toppings of

pizza and cellular data pricing plans. However, in some other industries, consumers are not

restricted to only purchase one bundle. For example, consumers can easily purchase multiple
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bundles of songs at on-line music stores. As a result, the insights obtained by these works do

not necessarily extend to situations when the consumers may purchase more than one bundle.

In this paper, we relax the one bundle per consumer assumption. We introduce sub-additive

constraints on bundle prices to ensure that the consumer incentive compatibility is not violated

even if consumers are allowed to purchase more than one bundle of goods.

In reality, three main types of sub-additive price schemes are used in different indus-

tries. (1) Marginal decreasing prices (MDP) where the marginal price of each additional unit

is weakly decreasing, which is also known as multiple-part tariff pricing (Wilson, 1993). (2)

Unit decreasing prices where the unit price of each bundle is weakly decreasing. Since this

type of price scheme is first introduced by Chu et al. (2011) as bundle-size pricing (BSP), we

also call it BSP in this paper. (3) General form of sub-additive prices (CBSP) where the price

of any bundle is no less than the total price of any two other bundles which can together form

the previous one. In this paper, we study these various kinds of CB problems with different

constraints on bundle prices. In order to get tractable and meaningful results, we additionally

assume Spence-Mirrlees Single Crossing Property (SCP) on consumers’ reservation price. We

first develop a shortest-path solution approach for MDP. Second, we propose a dynamic pro-

gramming algorithm to solve BSP. Third, we analyze the CB problem with sub-additive prices

and convert its MINLP formulation to a mixed-integer programming (MIP) one. Finally, we

provide analytical and numerical analysis on the gaps between different CB models.

4.2 Marginal Decreasing Prices (MDP)

4.2.1 Model

In this section, we consider the cardinality bundling problem with marginal decreasing prices.

The model is built upon that in Kannan et al. (2014b) and we review it here for the sake of
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completeness. Consider a vendor who sells J products and assume that there are I consumers

in the market. In the following, we denote the bundle of size j as Bundle j. We assume WLOG

that all bundles, 1, . . . , J are offered in the market and the vendor decides their prices. We

denote the price of Bundle j as pj . Obviously, the consumer does not pay anything for Bundle

0, whose price is therefore fixed at 0. We assume that the cost of the Bundle j for vendor is cj

and that the total cost to the vendor is the sum of the costs for all the bundles sold. Clearly, c0

is 0. The model makes a reasonable assumption that a consumer’s willingness-to-pay (WTP) is

non-decreasing with the bundle size, which would be trivially true if extra units can be freely

disposed.1 The model further assumes WTP for each consumer to be concave in j.

Let wij ≥ 0 denote the WTP of Consumer i for Bundle j. For every i, we set wi0 to

zero to denote that consumers, who do not purchase anything, do not derive any value out of

the vendor’s products. Since WTPs are non-decreasing with bundle size, wij ≥ wij′ for j ≥ j′.

Since the choice of the bundle rests with the consumer, if Consumer i purchases Bundle ji, this

bundle must maximize her consumer surplus, i.e., ji ∈ arg maxj{wij − pj}. Let Ji be the set

of bundles Consumer i prefers with price vector p. If |Ji| > 1, we assume that Consumer i

purchases a Bundle ji that belongs to arg maxj{pj − cj | j ∈ Ji}, i.e., the surplus-maximizing

bundle that yields the most profit to the vendor. This assumption is typical in the literature and

is without loss of generality.2

Kannan et al. (2014b) assume that each consumer can only purchase no more than one

bundle. We relax this assumption in this paper and allow consumers to purchase more than one

bundle. As a result, such a relaxation leads to enforce the seller to always set the bundle prices

that satisfies sub-additive constraints. In this section, we impose the first kind of sub-additive

prices: marginal decreasing prices, or MDP. It is straightforward that if the marginal price for

1Hitt and Chen (2005) imposes WTP for each consumer to be concave in j, which we relax in our model.
2see Kannan et al. (2014b) for more details about this assumption.
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each additional unit is weakly decreasing, than the price of any bundle will always be weakly

less than the total price of any other two smaller-sized bundles which can form the previous

one. As a result, any rational consumer will never purchase more than one bundle.

Let xij be 1 if Consumer i ∈ {1, 2, . . . , I} buys Bundle j ∈ {0, 1, 2, . . . , J} and 0

otherwise. Then, MDP can be formulated as follows:

MDP1 : Max
xij ,pj

I∑
i=1

J∑
j=0

xij(pj − cj)

s.t.
J∑

j′=0

(wij′ − pj′)xij′ ≥ wij − pj ∀i, ∀j (4.1)

p0 = 0 (4.2)

pj − pj−1 ≤ pj−1 − pj−2 ∀j ≥ 2 (4.3)
J∑
j=0

xij = 1 ∀i (4.4)

xij ∈ {0, 1} ∀i, ∀j. (4.5)

Let (x∗, p∗) be a solution that generates the maximum profit for the vendor. Constraints (4.1)

enforce incentive compatability (IC) and individual rationality (IR) for Consumer i. The left

hand side models the consumer surplus from the purchase decision and the right hand side

models the consumer surplus from the purchase of alternate bundles. The case with j = 0

ensures that consumer only purchases bundles with non-negative surplus. Constraints (4.3)

enforce the marginal price of each bundle to be weakly decreasing. Constraints (4.4) enforce

that each consumer purchases only one bundle.

Like in other nonlinear pricing problems, Kannan et al. (2014b) assume that consumer

valuations satisfy the Spence-Mirrlees Single Crossing Property (SCP) (see Spence, 1980). We

also make the same assumption, which imposes the following ordering on the consumers’ WTP
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for the bundles:

wij ≥ wi′j ∀i > i′, (4.6)

wij − wij′ ≥ wi′j − wi′j′ ∀i > i′, ∀j > j′. (4.7)

The interpretation of these conditions is straightforward. A consumer with a higher index has

a (weakly) higher WTP for any bundle. Also, the WTP exhibits increasing differences, i.e., as

bundle size increases, the WTP for a higher-indexed consumer increases more rapidly than the

WTP for a lower-indexed consumer. Essentially, this assumption states that consumers can be

ordered by types, with higher type consumers valuing the products and marginal changes in

bundle sizes more than the lower type ones.

4.2.2 Properties of the Optimal Solution

First, we identify some properties of the optimal solution.3 Let wmij = wij − wi,j−1 ∀i ∀j ≥ 1

and wmi0 = 0 be the marginal WTP of each consumer i for each additional unit of goods j. Let

pmj be the marginal price for each unit of goods j. Similarly, let cmj be the marginal cost for

each unit of goods j.

Proposition 34 There exists an optimal solution to MDP1 that satisfies:

J∑
j′=j

xi+1j′ ≥
J∑

j′=j

xi,j′ i = 1, . . . , I − 1, ∀j. (4.8)

That is, there exists an optimal solution where the mapping from consumer types to bundle sizes

is non-decreasing, i.e., for any i < I , if Consumer i buys Bundle j, then Consumer i+ 1 buys a

Bundle j′ such that j′ ≥ j. Further, for any given price vector, there exists a feasible allocation

of bundle sizes to consumer types that is non-decreasing.
3All the proofs are omitted.
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Proposition 35 There exists an optimal pricing scheme such that if two bundle sizes j and j′

are bought by some consumers and j′ > j then pj′ − cj′ > pj − cj .

Lemma 36 Among the consumers purchasing a non-zero bundle size, the lowest indexed one

is charged at her WTP in every optimal solution.

Proposition 34, 35, and Lemma 36 are proved in Kannan et al. (2014b) when there is

no constraints on bundle prices. In this paper, we show that in CB models such as MDP, BSP,

or CBSP, where the bundle prices are constrained with various kinds of conditions, Proposition

34, 35, and Lemma 36 are still valid and therefore can be useful to derive solution approaches

for these problems.

In MDP1, we have an additional property that plays a critical roll to solve the problem.

Proposition 37 In the optimal solution, pm∗j , the optimal marginal price for any unit j, satisfies

the following condition:

pm∗1 ∈ {wm11, · · · , wmI1}, pm∗j ∈ {wm1j, · · · , wmi′j, pm∗j−1}∀j ≥ 2,

where i′ = arg Maxi{wmij ≤ pm∗j−1}. That is, the optimal marginal price for any unit j is priced

at the same marginal price as Bundle j − 1, or at some consumer’s marginal WTP on Bundle

j that is no more than pm∗j−1.

By Proposition 37, we know that pm∗1 ∈ {wm11, · · · , wmi′1}, or, the marginal price of the

first unit is priced at one consumer’s marginal WTP for the first unit. Next, we can easily get

pm∗2 ∈ {wm11, · · · , wmI1,

wm12, · · · , wmI2}, or, the marginal price of the first unit is priced at one consumer’s marginal WTP

for the first two units. Recursively, we have pm∗j ∈ {wm11, · · · , wmI1, wm12, · · · , wmI2, · · · , wm1j, · · · , wmIj}.
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Proposition 38 Let vjij′ = (I − i′ + 1)(wmij′ − cmj ) where i′ = arg Mini′′{wmi′′j ≥ wmij }. vjij′

capture how the total profit will change if the marginal price of Bundle j is priced at the

marginal WTP of Consumer i for Bundle j′.

Next, we convert MDP1 to a shortest path problem. Let xjij′ , j′ ≤ j be a binary variable

to indicate whether the marginal price of Bundle j is priced at the marginal WTP of Consumer

i for Bundle j′. Let chiĩj̃
′

jij′ , j
′ ≤ j, j̃′ ≤ j − 1 be a binary variable to indicate whether the

marginal price of Bundle j is priced at wmij′ while that of Bundle j − 1 is priced at wm
ĩj̃′

. Let

vĩj̃
′

jij′ , j
′ ≤ j, j̃′ ≤ j − 1 captures how the total profit will change if χĩj̃

′

jij′ = 1.

vĩj̃
′

jij′ =



0 if wmij′ = wm
ĩj̃′

0 if wmij′ ≤ wm
ĩj̃′

and j′ = j

−
∑I

i=1wiJ otherwise.

(4.9)

Then we can reformulate MDP1 to the following shortest-path problem:

Theorem 39 MDP1 is equivalent to the following shortest path problem on a graph which has

(I + 1)I(J + 1) + 2 nodes and no more than I3(J + 1)2/2 edges:
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MDP2 : Min
xjij′ ,χ

ĩj̃′
jij′

−
J∑
j=0

I∑
i=1

j∑
j′=1

vjij′xjij′ −
J∑
j=0

I∑
ĩ=1

j−1∑
j̃′=1

I∑
i=1

j∑
j′=1

vĩj̃
′

jij′χ
ĩj̃′

jij′

s.t.
I∑
i=1

x1i1 = 1 (4.10)

J∑
j′=1

I∑
i=1

xJij′ = 1 (4.11)

I∑
ĩ=1

j−1∑
j̃′=1

χĩj̃
′

jij′ = xjij′ , ∀i ∀j ∀j′ ≤ j (4.12)

xjĩj̃′ =
I∑
i=1

j∑
j′=1

χĩj̃
′

jij′ , ∀ĩ ∀j ∀j̃′ ≤ j − 1 (4.13)

χĩj̃
′

jij′ ∈ {0, 1} ∀i ∀j ∀j
′ ≤ j ∀ĩ ∀j̃′ ≤ j − 1. (4.14)

4.3 Unit Decreasing Prices (BSP)

Instead of imposing the marginal decreasing prices, another way to solving the problem without

the single bundle restriction on the consumer is to impose a non-increasing unit price constraint

on the prices set by the vendor. In such a case, naturally, no consumer will have an incentive to

buy more than one bundle to form the bundle of her desired size. Chu et al. (2011) considers

such a restriction, pj
j
≥ pj+1

(j+1)
∀j ≤ J − 1, in their cardinality bundling formulation and refer to

it as the Bundle-Size Pricing (BSP). The vendor’s decision problem is then

BSP1 : Max
xij ,pj

I∑
i=1

J∑
j=0

xij(pj − cj)

s.t. (4.1), (4.2), (4.4), (4.5),

pj/j ≥ pj+1/(j + 1) ∀j ≤ J − 1 (4.15)
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The non-increasing unit price constraint is specified in Equation (4.15). Because of this con-

straint, the problem does not retain the structure of the shortest-path problem for MDP1. No-

tice, Proposition 34, 35, and Lemma 36 are still valid under BSP1 but Proposition 37 is not

valid anymore. We next develop some new properties for BSP1. From now on, we relax the

concavity assumption on consumers’ WTP.

Proposition 40 For a given price scheme, assume that Bundle j is purchased by some con-

sumer(s). Also assume that pj+1, pj+2, · · · , pJ are all high enough so that no consumer pur-

chase any bundle size greater than j. If we reduce pj+1 to a certain level such that some con-

sumer change to purchase pj+1, then this consumer purchases Bundle j before pj+1 is changed.

Next, we develop a unit-price based dynamic programming algorithm for solvingBSP1

when the costs are separable in bundle sizes. In this algorithm, the unit prices can only take

discrete values. The feasible set of unit prices correspond to a grid of length ε. There are totalK

points on the grid. K is determined by K = WIJ/ε, where WIJ is last consumer’s willingness-

to-pay for the largest bundle size. We use the variable k = 1 to denote the individual grid points

and uk as the corresponding unit price. largest bundle size. We use k = 0, 1, . . . , K for grid

step index and uk for unit price on grid step k.

According to the definition of BSP, all bundle sizes are available in the market and

the unit price of each bundle is no more than a smaller-sized bundle. Our algorithm start with

finding out the maximum total profit when the unit price of Bundle 1 is priced at uk and the unit

price of any other larger-sized bundle is also priced at uk. This situation is same as providing

all bundles with the same unit price uk. For each grid index k, we can easily find out which

consumer i is the lowest type consumer starting to purchase and how many units she want to

purchase according to her WTP. Similarly, we can also find out how many units each other

higher type consumer purchases and then get the total profit by the vendor. We denote this
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profit value as Πi1k. More generally, let Πijk be the maximum total profit if bundle size j is

the first one to be provided at unit price uk (i.e., the unit price of any smaller-sized bundle is

greater than uk) and consumer i is the first one to start purchasing this bundle.

We have already show how to calculate Πi1k ∀i, ∀k. We can then calculate Πi2k ∀i, ∀k,

based on Πi1k results. We use a function ∆(i, 2, k, i′, 1, k′) to calculate the change in to-

tal profit for a reducing in unit price. It basically calculates which consumers will switch

from purchasing Bundle 1 to Bundle 2 because of the availability of Bundle 2 and how many

units each of these consumers purchase with the new unit price. Therefore, we have Πi2k =

max Πi′1k′ + ∆(i, 2, k, i′, 1, k′). By using the same recursive logic, we can continue to calcu-

late Πijk for any larger bundle size j as well and can finally find the optimal solution for the

BSP problem.

The pseudo-code for the algorithm is shown as follows:

for i, j; i <= I, j <= J do
u0 = wij/j;
πijK = Π(i, j);
for i1, j1, k1; i ≤ i1 ≤ I, j ≤ j1 ≤ J, k1 ≤ K do

for i2, j2, k2; i2 ≤ i1, j2 ≤ j1, k2 ≤ k1 do
Πtemp = Πi2j2k2 + ∆(i2, j2, k2, i1, j1, k1)
if Πtemp ≥ Πi1j1k1 then

Πi1j1k1 = Πtemp

end if
end for

end for
if maxk{ΠIJk} > Πmax then

Πmax = maxk{ΠIJk};
end if

end for

Theorem 41 When the costs are separable in bundle sizes, for any given total error εt, let the

grid step length parameter be ε = 2εt/(J + 1)JI . Then the proposed algorithm guarantees

that the gap between the optimal profit and the solution generated by the algorithm is no more

than εt. Moreover, the computation complexity is O(I3J4K2), where K = WIJ/ε.
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4.4 Sub-Additive Price (CBSP)

In the previous section, we remove consumers’ incentives to purchase more than one bundle by

imposing the non-decreasing unit price constraint. However, in some cases it may be a more

strict constraint than necessary. The following example illustrates that the non-decreasing unit

price constraint may reduce vendor’s profits.

Example 42 A music store can offer a single song for $4 each, and a bundle size 10 for $10. If

someone wants 11 songs, she needs to pay $14 to get a bundle and a single song, which has a

higher unit price than that of bundle size 10. Imposing the non-decreasing unit price constraint

in this scenario will reduce vendor’s profits.

To overcome this issue, we propose a CBSP model, cardinality bundling problems with

sub-additive prices, in this section. Formulating the CBSP problem is similar to BSP1, ex-

cept replacing the non-increasing unit price Constraints (4.15) with the following price sub-

additivity constraints:

pj ≤ pj′ + pj−j′ ∀j ∀j′ <
1

2
(j + 1)

Proposition 43 Solutions to CBP and BSP are respectively the lower and upper bounds for

CBSP.

CBP is the CB problem without any constraints on bundle prices. It is easy to understand the

rationale behind this result. On one hand, CBP is the same problem as CBSP except that the

price sub-additivity constraints are relaxed. One the other hand, price constraints in BSP are

stricter constraints than sub-additivity constraints in CBSP, leading to an underestimation of

CBSP.

When the costs are separable, it is possible to create an MIP formulation. Notice that

the nonlinearity of the objective function in CBSP comes from xijpj . Therefore, we introduce
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qij = xijpj to replace all the nonlinear items. By adding Constraints (4.20) - (4.23), we can

reformulate CBSP as an MIP:

CBSP1 : Max
xij ,qij

I∑
i=1

J∑
j=0

qij − xijcj

s.t.
J∑
j=0

xij = 1 ∀i (4.16)

J∑
j′=0

(wij′xij′ − qij′) ≥ wij − pj ∀i, ∀j (4.17)

pj ≤ pj′ + pj−j′ ∀j ∀j′ <
1

2
(j + 1) (4.18)

pj ≤ pj+1 ∀j ≤ J − 1 (4.19)

qij ≥ xijp
L
j ∀j (4.20)

qij ≤ xijp
U
j ∀j (4.21)

qij ≥ xijp
U
j + pj − pUj ∀j (4.22)

qij ≤ xijp
L
j + pj − pLj ∀j. (4.23)

Here, pLj and pUj are upper and lower bound for each pj . Constraints (4.20) - (4.23) ensure that

if xij = 0, then qij = 0, and if xij = 1, then qij = pj . Therefore, MIP formulation CBSP1

always has the same solution as the MINLP CBSP problem.

4.5 Gap Analyses

We also numerically evaluated how well the three mechanisms compare when the costs are

zero. Table 4.1 shows five numerical examples with 20 consumers and 20 bundles sizes. All

consumers’ WTP is randomly generated according to SCP. In Column three to five, optimal

profits for CBP, CBSP, and BSP are shown. We can see that for all the problems, CBP optimal

value is (weakly) greater than that of CBSP which is (weakly) greater than that of BSP. We
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Table 4.1: Comparison of CBP, CBSP, and BSP

Optimal profit Gap
Problem No. Problem size(I,J) CBP CBSP BSP CBP BSP

1 20,20 152.384 149.884 148.679 1.67% -0.80%
2 20,20 0.8 0.78 0.775 2.56% -0.64%
3 20,20 16.199 16.123 16.119 0.47% -0.02%
4 20,20 22.536 22.536 22.504 0.00% -0.14%
5 20,20 39.435 39.014 38.902 1.08% -0.29%

Average 46.271 45.667 45.396 1.16% -0.38%

observe that the gaps can be large when using CBP compared to BSP. To investigate this issue

further, we have also theoretically analyzed the gap between CBP and CBSP, and that between

BSP and CBSP when the costs are separable in bundle sizes. Let Π∗CBP , Π∗BSP , and Π∗CBSP be

the optimal profits if the seller implements CBP, BSP, or CBSP respectively.

Proposition 44 When the costs are separable in bundle sizes:

• The gap between the optimal profits of CBP and CBSP can be infinity.

max

{
Π∗CBP
Π∗CBSP

}
=∞.

• The gap between the optimal profits of CBSP and BSP is smaller than a factor of 8.

max

{
Π∗CBSP
Π∗BSP

}
≤ 8.

4.6 Conclusion

In this study, we first study the CB problem with marginal decreasing prices and prove that it

is a shortest-path problem. Second, we propose a dynamic programming algorithm to solve

the CB problem with unit decreasing prices. Third, we analyze the CB problem with sub-

additive prices and convert its MINLP formulation to a mixed-integer programming (MIP) one.
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Finally, we provide analytical and numerical analysis on the gaps between different CB models.

We reconcile the differences in the optimal solutions obtained via different formulations of

cardinality bundling in the literature.

There are several ways to extend the current study. First, there is still room to improve

the performance of proposed dynamic programming algorithm for the BSP problem by com-

bining it with LP cuttings. Second, CBSP problem has only been converted to an MIP, which

is still N-P hard. Third, the gap analysis between MDP to BSP is still missing. Last but not

least, analyzing cardinality bundling problems without Spence-Mirrlees condition can provide

a wider application of these pricing schemes in reality.
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Chapter 5

Appendix

5.1 Proofs

5.1.1 Proof of Proposition 3

Proof. Assume p′ is an optimal price vector that is not non-decreasing and k, the smallest

index for which p′k > p′k+1, is the largest among all optimal price vectors. We claim that for

every feasible solution to CBP1 and for all i, xik = 0. Otherwise, Constraint (3.2) implies

that xik′ = 0 for all k′ 6= k. Since wik ≤ wik+1, wik − p′k < wik+1 − p′k+1 which violates

Constraint (3.1). Therefore, xik = 0. Consider now a price vector p such that pj = p′j for all

j 6= k and pk = pk+1. Let (x, p′) be feasible to CBP1. Since xik = 0, the objective value for

x is the same for both p′ and p. We claim that (x, p) is also feasible to CBP1 and therefore

the optimal value with price p does not decrease. This is because
∑J

j′=0(wij′ − pj′)xij′ ≥∑J
j′=0(wij′ − p′j′)xij′ ≥ wik+1 − p′k+1 ≥ wik − pk, where the first inequality follows since

p′ ≥ p, the second because (x, p′) is feasible, and the last because wik+1 ≥ wik and pk = p′k+1.

Further, existence of k′ > k such that pk′ > pk′+1 contradicts the choice of p′. Therefore, p

must be non-decreasing.
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5.1.2 Proof of Proposition 4

Proof. We show the result for a fixed price vector. Then, the first part follows by applying the

argument to an optimal price vector. Observe that there are finitely many solutions to CBP1 in

the x-space for a given p. We consider the allocations that yield the most profit and order them

arbitrarily. Let jk(i′) denote the bundle Consumer i′ buys in the kth such solution to CBP1.

Then, let k′ = arg maxk mini′′
{
i′′ | jk(i′′) > jk(i

′′ + 1)
}

. This means that k′ is the optimal

solution where the first consumer that buys a larger sized bundle than her immediate successor

is of the highest type. Let i ∈ arg mini′′{i′′ | jk′(i′′) > jk′(i
′′+1)}. Now, construct the solution

j(·) where j(i′) = jk′(i
′) when i′ 6= i+ 1 and j(i+ 1) = jk′(i). We show that j(·) is a feasible

assignment of bundles to consumers which achieves at least the same objective function value,

thus deriving a contradiction to the choice of k′. Since we do not change the assignment for

any i′ 6= i+ 1, we only need to verify that j(·) satisfies wi+1j(i+1)− pj(i+1) ≥ wi+1j − pj for all

j. Now, consider the following chain of inequalities:

0 ≥ wi+1jk′ (i)
− pjk′ (i) − wi+1jk′ (i+1) + pjk′ (i+1)

≥ wijk′ (i) − pjk′ (i) − wijk′ (i+1) + pjk′ (i+1)

≥ 0,

where the first inequality follows because i+1 chooses jk′(i+1), the second inequality because

jk′(i) > jk′(i + 1) implies by SCP that wi+1jk′ (i)
− wi+1jk′ (i+1) ≥ wijk′ (i) − wijk′ (i+1) and the

last inequality because i chooses jk′(i). Therefore, equality holds throughout. Then, for any j,

it follows that

wi+1j(i+1) − pj(i+1) = wi+1jk′ (i)
− pjk′ (i) = wi+1jk′ (i+1) − pjk′ (i+1) ≥ wi+1j − pj,
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where the first equality follows because j(i + 1) = jk′(i), the second equality follows from

the argument above, and the first inequality because i+ 1 chooses jk′(i+ 1) under the feasible

solution jk′(·). Therefore, we have shown that j(·) is a feasible assignment of bundles to

consumers. Now, we show that the corresponding objective value does not decrease. This

follows since

∑
i′

(
pj(i′) − cj(i′)

)
=
∑
i′ 6=i+1

(
pjk′ (i′) − cjk′ (i′)

)
+ pjk′ (i) − cjk′ (i) ≥

∑
i′

(
pjk′ (i′) − cjk′ (i′)

)
,

where the first equality follows by the definition of j(·). The first inequality follows because

pjk′ (i) − cjk′ (i) ≥ pjk′ (i+1) − cjk′ (i+1) is implied by wijk′ (i) − pjk′ (i) − wijk′ (i+1) + pjk′ (i+1) = 0

and optimality of jk′(·) for p. Otherwise, jk′(i+ 1) yields the same surplus to i′ as jk′(i), which

means j′(i′) = jk′(i
′) for i′ 6= i and j′(i) = jk′(i + 1) is feasible, yielding a strictly higher

objective value than jk′(·).

5.1.3 Proof of Proposition 5

Proof. Consider an optimal solution such that no other optimal solution allocates a subset of

the bundle sizes to the consumers. Assume that the bundle sizes sold are {jk, . . . , j1} where

jk < · · · < j1 and the corresponding price vector is p′. If J 6∈ {jk, . . . , j1}, we assume

without loss of generality that p′J = wIJ + ε for some ε > 0. Similarly, we assume that for

j 6∈ {jk, . . . , j1} ∪ {J}, the price is min{pj′ | ∃j′ ≥ j, j′ ∈ {jk, . . . , j1} ∪ {J}}. So, by

optimality of j′, no consumer purchases any bundles not in {jk, . . . , j1}.

We assume that k ≥ 2 since there is nothing to show otherwise. We show by induction

on r that p′jr+1
− cjr+1 < p′jr − cjr for all r < k. Consider r = 1. By Proposition 4, Consumers

i, . . . , I purchase Bundle j1 for some i ≤ I . Construct a price vector p′′ where p′′j = p′j for

j < j1 and p′′j1 = wIj1 + ε. Any consumer that does not purchase j1 does not alter her decision
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since the surplus of non-preferred bundles only decreased with p′′. Since Consumer i − 1

continues to buy Bundle j2, by Proposition 4, Consumers i, . . . , I only consider bundles j2

or higher. Since j1 does not offer any surplus, all these consumers will purchase Bundle j2.

Observe that p′j2 − cj2 ≤ p′j1 − cj1 . Otherwise, the optimal solution with p′′ attains a strictly

higher profit. If p′j2 − cj2 = p′j1 − cj1 , the optimal profit attained with p′′ is the same as that

with p′. However, this contradicts the selection of the optimal solution with minimal number of

bundles allocated to consumers. Therefore, p′j2−cj2 < p′j1−cj1 . Now, for the induction step, we

assume that p′jr − cjr < p′jr−1
− cjr−1 and show that p′jr+1

− cjr+1 < p′jr − cjr . Let {i1, . . . , it} be

the consumers that purchase Bundle jr. Then, consider the price vector p′′ such that p′′j = p′j for

j 6= jr and p′′jr = p′jr−1
. Observe that any consumer who does not purchase jr does not change

their decision since, by Proposition 3, the surplus of non-preferred items only reduced with the

price change. It follows from Proposition 4 that any consumer in {i1, . . . , it} now purchases

one of the bundles {jr+1, jr, jr−1}. We first show that with p′′, no consumer strictly prefers

jr. Let i ∈ {i1, . . . , it}. Then, wijr − p′′jr = wijr − p′jr−1
≤ wijr−1 − p′jr−1

= wijr−1 − p′′jr−1
.

Therefore, Consumer i weakly prefers Bundle jr−1 over jr under price p′′. Since we assumed

that consumers purchase bundle sizes that offer most profit to the vendor (among the sizes

that offer maximum surplus), it follows from the induction hypothesis that each consumer

prefers Bundle jr−1 over jr. Now, assume that p′jr+1
− cjr+1 ≥ p′jr − cjr , i.e., Bundle jr+1

offers more profit to the vendor as compared to jr. Since all the consumers in {i1, . . . , it} now

purchase either Bundle jr−1 or jr+1, both of which offer either same or more profit to the vendor

compared to p′jr − cjr , the profit under p′′ must be optimal, and thus contradicts the minimality

of the bundles allocated to consumers. Therefore, p′jr+1
− cjr+1 < p′jr − cjr .

5.1.4 Proof of Proposition 6

Proof. Let i1 be the lowest indexed consumer who purchases a bundle of non-zero size, say
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j1 > 0. Let p∗ be the optimal price vector. Clearly, p∗j1 ≤ wi1j1 . Now, assume that p∗j1 < wi1j1 .

Consider p′ = p∗ + ∆, where ∆ = wi1j1 − p∗j1 > 0 and a consumer i′ that purchased a

bundle, j′ > 0. Then, wi′j′ − p∗j′ ≥ wi′j1 − p∗j1 ≥ wij1 − p∗j1 = ∆, where the first inequality is

because i′ prefers j′ over j1 and the second inequality follows from SCP and i′ > i1. Therefore,

wi′j′ − p′j′ = wi′j′ − p∗j′ − ∆ ≥ 0. This shows that any consumer that purchases j′ with p∗

still prefers j′ to not purchasing anything. For any consumer, the relative preference between

bundles of non-zero size does not change. Therefore, all consumers that purchased any product

still purchase the same product. The consumers that did not purchase a product with p∗ do not

have incentive to purchase a product with p′ because the surpluses have reduced. Therefore,

the consumer purchasing decisions do not change. If I ′ is the set of consumers that purchase a

bundle of non-zero size, the vendor makes an additional |I ′|∆ profit due to the increase in price.

Since i1 ∈ I ′, it follows that |I ′| ≥ 1. However, this yields a contradiction to the optimality of

p∗ since p′ yields a strictly higher profit.

5.1.5 Proof of Proposition 7

Proof. For a given x that satisfies (3.2), (3.4), and (3.7), we obtain the optimal prices. Let

J ′ be the set of bundles of non-zero size that some consumers buy. We will derive the prices

for the bundles in J ′ by solving an optimization model. Given the prices of the bundles in J ′,

we show how to price the remaining bundles. If J 6∈ J ′, the price for Bundle J is assigned

to be wIJ + ε. The price of Bundle 0 is fixed at 0. Now consider a remaining bundle, j ∈

{1, . . . , J}\(J ′ ∪ {J}). The vendor does not want any consumer to purchase this bundle.

Therefore, he may price j at the price of Bundle j′ = min{j′′ | j′′ ≥ j, j′′ ∈ J ′ ∪ {J}}. Since

j ≤ J , it follows that the minimum in the definition of j′ is attained.

Now, we compute prices for the bundles in J ′ by solving CBP1 with x variables fixed

to the values given. To emphasize that optimization is in the space of the p variables, we refer
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to this formulation as CBPp. We will show that CBPp can be reformulated into a model that

is much simpler. We replace the consumers that do not purchase any bundle with the highest

type consumer that does not purchase any bundle. (Clearly, if this consumer does not have an

incentive to purchase a bundle, the lower-type consumers will not either.) If every consumer

purchases some bundle, we create a consumer whose WTP for all bundles is 0 and therefore

does not buy any bundle. Then, we reindex the consumers to 1, . . . , I ′. We denote the reindexed

WTP as w′ and w′I′+1j = w′I′j . We denote by j(i) the bundle that is assigned to Consumer i.

We reformulate CBPp as:

CBP1a : Max
pj(i)

I′∑
i=1

(pj(i) − cj(i)) (5.1)

s.t. w′ij(i) − pj(i) ≥ w′ij(i′) − pj(i′) 1 ≤ i, i′ ≤ I ′ (5.2)

p0 = 0 (5.3)

It can be verified easily that CBP1a and CBPp are equivalent. We assume without loss of

generality, by re-indexing the bundles, that the bundles sizes are {0, 1, . . . , |J ′|}.

Let {i0, i1, . . . , iJ ′} be the lowest-type consumers who buy Bundle j, where by defi-

nition, i0 = 1. Now, we rewrite Constraint (5.2) as w′ij(i) − pj(i) ≥ w′ij − pj for all i and

j ∈ {0, . . . , |J ′|}. Since the constraint for j = j(i) holds trivially, we decompose this con-

straint for a Consumer i as follows:

w′ij(i) − pj(i) ≥ w′ij − pj ∀j < j(i) (5.4)

w′ij(i) − pj(i) ≥ w′ij − pj ∀j > j(i). (5.5)

We show that all constraints in (5.4) are redundant except those corresponding to some i ∈

{i1, . . . , i|J ′|} and j = j(i) − 1. Note that there is no constraint of the type (5.4) for i = 1.
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Observe that:

w′ij(i)−w′ij =

j(i)−1∑
j′=j

(w′ij′+1−w′ij) ≥
j(i)−1∑
j′=j

(w′ij′+1j
′+1−w′ij′+1j

′) ≥
j(i)−1∑
j′=j

(pj′+1−pj′) = pj(i)−pj,

where the first inequality is because of SCP and ij′ ≤ i for all j′ ≤ j(i), and the second

inequality uses (5.4) for some i ∈ {i1, . . . , i|J ′|} and where j = j(i)− 1. Therefore, we replace

(5.4) by the following:

w′ijj − pj ≥ w′ijj−1 − pj−1 1 ≤ j ≤ |J ′|. (5.6)

We will now show that in every optimal solution the inequalities in (5.6) are binding. We

consider a feasible p to CBP1a where at least one of the (5.6) is not binding. Then, we show

that p is not optimal by constructing p′ which is feasible, has at least one more (5.6) binding, and

has a higher objective function value than p. Let j′ = arg min{j | w′ijj − pj > w′ijj−1 − pj−1},

the index of the first inequality that is not binding, and ∆ = w′ij′j′ − pj′ > w′ij′j′−1 − pj′−1.

Then, consider the price vector p′, where p′j = pj for j < j′ and p′j = pj + ∆ otherwise. Then,

it is easy to see that for j 6= j′, the left hand side of (5.6) changes by the same amount as the

right hand side. Therefore, if the inequality was binding for p then it remains binding for p′.

Further, the adjustment of p′j′ guarantees that (5.6) is binding for j = j′. Now, we show that p′

is also feasible to (5.5). If j(i) < j′ the inequality follows since the surplus of bundles that the

consumer does not buy only increases. If j(i) ≥ j′, then both sides of the inequality decrease

by the same amount. Therefore, the constraint holds. Now,

I′∑
i=1

pj(i) − cj(i) <
ij′−1∑
i=1

(p′j(i) − c′j(i)) +
I′∑

i=ij′

(p′j(i) − c′j(i)),
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where the inequality follows because ij′ ≤ I ′ and p′i > pi for i ≥ ij′ .

Constraint (5.5) is redundant since:

w′ij − w′ij(i) =

j∑
j′=j(i)+1

(w′ij′ − w′ij′−1)

≤
j∑

j′=j(i)+1

(w′ij′j′ − w
′
ij′j
′−1)

=

j∑
j′=j(i)+1

(pj′ − pj′−1)

= pj − pj(i).

Here, the first inequality follows from SCP and that ij′ ≥ i whenever j′ ≥ j(i) + 1, the second

equality because (5.6) is tight at an optimal solution.

For any j ∈ J ′, we give a closed-form formula for pj . Since pj(1) = 0 and Con-

straint (5.6) is binding,

pj =

j∑
r=1

(
w′irj(ir) − w′irj(ir−1)

)
.

It is easy to verify that the above formula is equivalent to (2.10). We define i|J ′|+1 = I ′+ 1 and
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let w′I′+1j = w′I′j . We now evaluate the objective function value for CBP1a.

I′∑
i=1

(
pj(i) − cj(i)

)
=

|J ′|∑
j=1

ij+1−1∑
i=ij

pj −
I∑
i=1

J∑
j=1

cijxij

=

|J ′|∑
j=1

ij+1−1∑
i=ij

j∑
r=1

(
w′irj(ir) − w′irj(ir−1)

)
−

I∑
i=1

J∑
j=1

cijxij

=

|J ′|∑
r=1

|J ′|∑
j=r

ij+1−1∑
i=ij

(
w′irj(ir) − w′irj(ir−1)

)
−

I∑
i=1

J∑
j=1

cijxij

=

|J ′|∑
r=1

(
(I ′ − ir + 1)w′irj(ir) − (I ′ − ir+1 + 1)w′ir+1j(ir)

)
−

I∑
i=1

J∑
j=1

cijxij

=

|J ′|∑
r=1

ir+1−1∑
i=ir

(
(I ′ − i+ 1)w′irj(ir) − (I ′ − i)w′ir+1j(ir)

)
−

I∑
i=1

J∑
j=1

cijxij

=
I∑
i=1

J∑
j=1

(vij − cij)xij.

Here, the forth equality uses w′10 = 0 and w′I′+1j = w′I′j . By Proposition 4, every consumer

i′, who purchases a bundle of non-zero size, is reindexed to some consumer in {1, . . . , I ′}. Let

this index be i and observe that I − i′ = I ′ − i. Therefore, the last equality follows.

5.1.6 Proof of Proposition 8

Proof. Consider any subset, T of the allocation variables, xij . By Theorem III.1.2.7 in

Nemhauser and Wolsey (1988), the constraint matrix of CBP2 is totally unimodular if and only

if T can be partitioned into two subsets T1 and T2 such that for every constraint,
∑I

i=1

∑J
j=1 dijxij ≤

d0, in CBP2: ∣∣∣∣∣∣
∑

(i,j)∈T1

dij −
∑

(i,j)∈T2

dij

∣∣∣∣∣∣ ≤ 1. (5.7)

We construct such a partition. For Consumer i, let T contain {xij1 . . . , xijki}. If ki is odd, we

include {xij1 , xij3 , . . . , xijki} in T1. Otherwise, we include {xij2 , xij4 , . . . , xijki}. The remain-

ing variables are in T2. We do the same for every consumer. Now, consider the variables in T

that have a non-zero coefficient in Constraint (3.7). Among these, let the number of variables
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for Consumer i that belong to T1 (resp. T2) be ai (resp. bi). Clearly, bi ∈ {ai − 1, ai} and the

same conclusion holds for Consumer i + 1’s allocation. Then, for Constraint (3.7), the sum

of the coefficients for variables in T1 minus the sum of coefficients for variables in T2 equals

ai − bi − ai+1 + bi+1. Then,

−1 ≤ −ai+1 + bi+1 ≤ ai − bi − ai+1 + bi+1 ≤ ai − bi ≤ 1.

We have thus verified (5.7) for Constraint (3.7). Verification for Constraint (3.2) is easy since

dki
2
e − bki

2
c ≤ 1. Further, (5.7) holds trivially for bound constraints since they have only one

variable with non-zero coefficient.

5.1.7 Proof of Proposition 9

Proof. We first show that CBP2 can be reformulated to the following problem:

CBP2b : Max
xij

I∑
i=1

J∑
j=0

(vij − cj)xij

s.t. (3.7)

J∑
j=0

xIj ≤ 1 (5.8)

xij ≥ 0 ∀i, ∀j. (5.9)

First, observe that xij ≤
∑J

j′=0 xij = 1. Therefore, xij ≤ 1 can be dropped from CBP2.

Obviously, (5.8) is implied by (3.2). Therefore, CBP2b is a relaxation of CBP2. We now show

the reverse inclusion. We next prove that (3.2) is also implied by (5.8) and (3.7). Clearly, for

any i,
J∑
j=0

xij ≤
J∑
j=0

xIj ≤ 1.
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The first inequality follows from (3.7) and the second from (5.8). Since xi0 does not appears in

the objective function of CBP2, if
∑J

j=0 xij < 1 for some i, we can set xi0 = 1−
∑J

j=0 xij and

make
∑J

j=0 xij = 1 without affecting the objective value or any other constraints. Therefore,

CBP2b is equivalent to CBP2.

Next, we prove that CBP2a is equivalent to CBP2b. Given a solution x feasible to

CBP2b. We show that we can construct (a, x) that is feasible to CBP2a that has the same

objective. Let aij =
∑J

j′=j xi+1,j′−
∑J

j′=j xij′ . Here, xI+1,J is assumed to be 1 and xI+1,j,∀j 6=

J is 0. Observe that (2.11) is satisfied by definition:

aij − ai,j+1 + xij − xi+1,j

=
J∑

j′=j

xi+1,j′ −
J∑

j′=j

xij′ − (
J∑

j′=j+1

xi+1,j′ −
J∑

j′=j+1

xij′) + xij − xi+1,j

= xi+1,j − xij + xij − xi+1,j

= 0.

Further, (2.12) is satisfied because of aIJ +xIJ = 1−xIJ +xIJ = 1. (2.14) follows from (3.7)

and (5.9).

Let (a, x) be a feasible solution to CBP2a. Observe that 0 ≤ aij = aij − aiJ =∑J
j′=j xi+1,j′ −

∑J
j′=j xij′ . The first inequality is by (2.14), first equality is by (2.13), second

equality is by summing (2.11) for j′ from j to J . Therefore, x satisfies (3.7). Now, consider

0 ≤ aI0 = aI0 − aIJ + aIJ = 0−
J−1∑
j′=0

xIj′ + 1− xIJ ,

where the first inequality is by (2.14), second equality is by summing (2.11) for j′ from j to

J − 1 with (2.12). Therefore, x satisfies (5.8). Clearly, xij ≥ 0 by (2.14). Since the objective

depends only on x, we have shown that x is feasible to CBP2b with the same objective value
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as (a, x) in CBP2a. Therefore, we have shown the converse.

5.1.8 Proof of Theorem 10

Proof. Let lij, (i, j) 6= (IJ) be the multiplier for each constraint in (2.11) with corresponding

(i, j) and lIJ for (2.12). Then we can easily get that CBP2d is the dual of CBP2a.

We next show that there exists an optimal solution to CBP2d such that for each (i, j),

lij = max{lij−1, li−1j + vij − cj}, where l0j is understood to be zero. Clearly, in any feasible

solution, we have lij ≥ max{lij−1, li−1j + vij − cj} ∀i; ∀j because otherwise either (2.15)

or (2.16) cannot hold. Assume l∗ is an optimal solution containing some l∗ij values such that

l∗ij > max{l∗ij−1, l
∗
i−1j + vij − cj}. Let ĵ = arg min{j | l∗ij > max{l∗ij−1, l

∗
i−1j + vij − cj}} and

î = arg min{i | l∗
iĵ
> max{l∗

iĵ−1
, l∗
i−1ĵ

+ viĵ − cĵ}}. Clearly, (̂i, ĵ) 6= (I, J) because otherwise

we can get a better solution l∗
′
IJ = max{l∗IJ−1, l

∗
I−1J + vIJ − cJ} < l∗IJ without violating

any of the constraints. If we create a new solution l̂ such that l̂ij = l∗ij ∀(i, j) 6= (̂i, ĵ) and

l̂̂iĵ = max{l̂̂iĵ−1, l̂̂i−1ĵ +vîĵ− cĵ} = max{l∗
îĵ−1

, l∗ˆi−1ĵ
+vîĵ− cĵ}, we argue that l̂ is also feasible.

Changing l∗
îĵ

to l̂̂iĵ only affects four constraints: (1) l̂̂iĵ ≥ l∗
îĵ−1

; (2) l̂̂iĵ ≥ l∗
î−1ĵ

+ vîĵ − cĵ; (3)

l∗
îĵ+1
≥ l̂̂iĵ; and (4) l∗

î+1ĵ
≥ l̂̂iĵ+vî+1ĵ−cĵ . Clearly, the first two inequalities still hold because of

the definition of l̂̂iĵ . The last two inequalities also hold because the left-hand-side values of both

are not changed and the right-hand-side values are reduced. Since the objective value lIJ is not

affected, l̂ is also an optimal solution. By using the same procedure, we can sequentially update

all l∗ij values such that l∗ij > max{l∗ij−1, l
∗
i−1j + vij − cj} to l∗′ij = max{l∗ij−1, l

∗
i−1j + vij − cj}

while maintaining the optimality of the solution. Finally, we can obtain an optimal solution in

which for each (i, j), lij = max{lij−1, li−1j + vij − cj}.

Now we illustrate how to use lij = max{lij−1, li−1j + vij − cj} to quickly find out the

optimal solution. we start with i = 0: l0j = max{l0j−1, 0} = max{max{l0j−2, 0}, 0} = . . . =

0. Next, we have l10 = max{0, l00 + v10 − c0} = 0. If l1j−1 is known, then we can calculate
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l1j = max{l1j−1, l0j+v1j−cj}. Thus, we can calculate l1j ∀j in J+1 step. Sequentially, we can

calculate l2j, . . . , lIj and finally reach lIJ in (I + 1)(J + 1) steps. Therefore, the computational

complexity for CBP2d is O(IJ).

5.1.9 Proof of Corollary 11

Proof. Let c′ and c′′ be two (non-decreasing) cost vectors such that, for any j ≥ 1, c′j − c′j−1 ≤

c′′j − c′′j−1. Let x′ be optimal with c′. For c′′, we construct an optimal allocation, s, where

consumers purchase bundles of weakly decreasing size compared to x′. Assume, x′′ is optimal

with cost c′′ and some consumer purchases a bundle smaller than in x′. Since c0 = 0,

I∑
i=1

J∑
j=1

cjx
′
ij =

I∑
i=1

J∑
j=1

(cj−c0)x′ij =
I∑
i=1

J∑
j=1

x′ij

j∑
j′=1

(cj′−cj′−1) =
I∑
i=1

J∑
j′=1

(cj′−cj′−1)
J∑

j=j′

x′ij.

(5.10)

Now, consider

sij = min

{
J∑

j′=j

x′ij′ ,
J∑

j′=j

x′′ij′

}
−min

{
J∑

j′=j+1

x′ij′ ,
J∑

j′=j+1

x′′ij′

}

and let

tij = max

{
J∑

j′=j

x′ij′ ,
J∑

j′=j

x′′ij′

}
−max

{
J∑

j′=j+1

x′ij′ ,

J∑
j′=j+1

x′′ij′

}
.

Both sij and tij are feasible and sij + tij = x′ij + x′′ij . Then:

I∑
i=1

J∑
j=1

vij(sij + tij)−
I∑
i=1

J∑
j=1

[
(c′j − c′j−1)

J∑
j′=j

tij′ + (c′′j − c′′j−1)
J∑

j′=j

sij′

]

≤
I∑
i=1

J∑
j=1

vij(x
′
ij + x′′ij)−

I∑
i=1

J∑
j=1

[
(c′j − c′j−1)

J∑
j′=j

x′ij′ + (c′′j − c′′j−1)
J∑

j′=j

x′′ij′

]

≤
I∑
i=1

J∑
j=1

vij(sij + tij)−
I∑
i=1

J∑
j=1

[
(c′j − c′j−1)

J∑
j′=j

tij′ + (c′′j − c′′j−1)
J∑

j′=j

sij′

]
,

(5.11)
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where the first inequality is by optimality of x′ with cost c′ and the optimality of x′′ with cost

c′′ and the second inequality follows sij + tij = x′ij + x′′ij and rearrangement inequality be-

cause c′j − c′j−1 ≤ c′′j − c′′j−1,
∑J

j′=j sij′ = min
{∑J

j′=j x
′
ij′ ,
∑J

j′=j x
′′
ij′

}
, and

∑J
j′=j tij′ =

max
{∑J

j′=j x
′
ij′ ,
∑J

j′=j x
′′
ij′

}
. Therefore, equality holds throughout. Since x′ and x′′ are op-

timal with c′ and c′′ respectively, s is a feasible allocation which yields optimal profit to the

vendor when the cost is c′′. Since

j∑
j′=0

sij′ = 1−min

{
J∑

j′=j+1

x′ij′ ,

J∑
j′=j+1

x′′ij′

}
≥ 1−

J∑
j′=j+1

x′ij′ =

j∑
j′=0

x′ij′ ,

it follows that s allocates smaller bundle sizes to all consumers compared to x′. Similarly, for

every optimal allocation x′′ with c′′, there exists an optimal allocation t with c′ where each

consumer buys a bundle of size at least as large as in x′′.

Moreover, if c′j − c′j−1 < c′′j − c′′j−1 and there is a consumer i such that
∑J

j′=j x
′
ij = 0

and
∑J

j′=j x
′′
ij′ = 1, then the second inequality in (5.11) is strict and yields a contradiction.

Therefore, if the marginal cost of selling an additional unit (from j − 1 to j) with c′ is strictly

smaller than that with c′′, then no consumer purchases a bundle size less than j with c′ but at

least j with c′′. If, for all j ≥ 1, c′j − c′j−1 < c′′j − c′′j−1, then with c′ no consumer purchases

a bundle size smaller than with c′′. Or, in every optimal solution with c′ consumers purchase a

bundle size smaller than in any optimal solution with c′′.

5.1.10 Proof of Proposition 12

Proof. Let w be an arbitrary set of WTPs satisfying SCP and v be a set of the corresponding

vij values. Consider w′ = W(i′, I, w), wherein WTPs of consumers indexed i′ through I are
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homogenized. Then, the corresponding v′ij values of w′ can be written as:

v′ij =



vij if i ≤ i′ − 2

(I − i′ + 2)wi′−1j −
∑I

i′′=i′ wi′′j if i = i′ − 1

1
I−i′+1

∑I
i′′=i′ wi′′j if i ≥ i′.

Call the CBP problem with WTPs w as CBP (w) and that with w′ as CBP (w′). Let j(i)

denote the bundle size that Consumer i purchases in an optimal solution of CBP (w). Consider

an allocation j′(i) such that j′(i) = j(i) when i < i′ and j′(i) = J when i ≥ i′. Obviously,

j′(i) is a feasible bundle allocation for CBP (w′). We next show that j′(i) in CBP (w′) leads

to a profit
∑I

i=1 v
′
ij′(i) that is weakly higher than

∑I
i=1 vij(i), the optimal profit of CBP (w).

I∑
i=1

v′ij′(i) =
i′−2∑
i=1

v′ij′(i) + +v′i′−1,j(i′−1) +
I∑
i=i′

v′ij′(i)

=
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

(wiJ − wij(i′−1))

≥
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

(wij(i) − wij(i′−1))

=
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

i∑
i′′=i′

(wij(i′′) − wi,j(i′′−1))

≥
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

i∑
i′′=i′

(wi′′j(i′′) − wi′′j(i′′−1))

=
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

(I − i+ 1)(wij(i) − wi−1j(i))

=
I∑
i=1

vij(i),

wherein the equalities are because of either reorganization or by invoking the definitions; the

first inequality is because wiJ ≥ wij(i) ∀i; and the second inequality is due to SCP.
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5.1.11 Proof of Proposition 13

Proof. From Equation (2.17), wij =
∑I

i′=i vi′j . We only need to fix vIj for all j to define the

WTPs, wij for all i and j. We will show that for large enough vIj , the corresponding WTPs are

non-decreasing in j and satisfy SCP. Observe that:

wij+1 − wij =
1

I − i+ 1

I∑
i′=i

(vi′j+1 − vi′j).

Therefore, w1j+1 − w1j ≥ 0 is equivalent to vIj+1 − vIj ≥ −
∑I−1

i′=1(vi′j+1 − vi′j). We define

v̄j+1 =
∑I−1

i′=1(vi′j+1 − vi′j). Further, in order that w satisfy SCP, we require that (wi+1j+1 −

wi+1j)− (wij+1 − wij) ≥ 0. This simplifies to:

0 ≤ (I−i+1)
I∑

i′=i+1

(vi′j+1−vi′j)−(I−i)
I∑
i′=i

(vi′j+1−vi′j) =
I∑

i′=i+1

(vi′j+1−vi′j)−(I−i)(vij+1−vij).

In other words,

vIj+1 − vIj ≥ (I − i)(vij+1 − vij)−
I−1∑
i′=i+1

(vi′j+1 − vi′j).

We define v′j+1 = maxi

{
(I − i)(vij+1 − vij)−

∑I−1
i′=i+1(vi′j+1 − vi′j)

}
. Then, we may define

vIj =
∑j

j′=1 max{v̄j, v′j} to ensure that WTPs satisfy SCP and are non-decreasing in j.

5.1.12 Why CBPcyd is a valid reformulation of CBPcy with 0 ≤ y ≤ Y

Let vi(yi) − c(yi) = fi(yi) for all i. Assume that li(yi) has a finite upper bound over [0, Y ].

It follows that CBPcy has a finite upper bound for all i. Assume that y′ is feasible to CBPcy.

We show by induction that li(y′i) ≥
∑i

i′=1 fi′(y
′
i′). For i = 1, l1(y′1) ≥ f1(y′1) because of
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Constraints (2.23) and (2.24). Assume li(y′i) ≥
∑i

i′=1 fi′(y
′
i′). Then

li+1(y′i+1) ≥ li(y
′
i+1) + fi+1(y′i+1) ≥ li(y

′
i) + fi+1(y′i+1) ≥

i+1∑
i′=1

fi′(y
′
i′),

where the first inequality is by (2.23), second by (2.25), and the third by induction. Since

lI(y) ≥ lI(y
′
I), the optimal value of CBPcyd is at least that of CBPcy. Assume now that the

optimal value of the former exceeds that of the latter by an ε ≥ 0. Let λki (ȳ) be the kth element of

a sequence that converges monotonically to the optimal value in li(y) = sup{li−1(y′′)+fi(y
′′) |

y′′ ≤ ȳ}. Let λki···i′(ȳ) denote λki ◦ · · · ◦ λki′(ȳ). Then, let yk = (λk1···I(Y ), . . . , λkI (Y )), and

observe that yk is feasible to CBPcy. Therefore, lI(Y )− ε ≥
∑I

i=1 fi(y
k
i−1). Taking k →∞,

lim
k→∞

I∑
i=1

fi(y
k
i ) ≤ lI(Y )− ε.

For any δ > 0 and k, we can find k′(k) nondecreasing in k, such that for all i,

li(y
k
i ) ≤ li−1(y

k′(k)
i−1 ) + fi(y

k′(k)
i−1 ) + δ.

Summing for all i, we obtain

I∑
i=1

li(y
k
i ) ≤

I−1∑
i=1

li(y
k′(k)
i ) +

I∑
i=1

fi(y
k′(k)
i−1 ) + Iδ.

Taking the limit as k →∞,

lI(Y ) ≤ lim
k→∞

I∑
i=1

fi(y
k′(k)
i−1 ) + Iδ ≤ lI(Y )− ε+ Iδ.
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Since δ was chosen arbitrarily, the above implies ε ≤ 0, proving that the optimal value of

CBPcyd matches that of CBPcy.

5.1.13 Proof of Lemma 15

Proof. To show that S ′ = conv(S), we show that vert(S ′) ⊆ S ⊆ S ′, where vert(S ′) are the

vertices of S ′. Then, the result follows because S ′ is bounded, conv(S ′) = conv(vert(S ′)) ⊆

conv(S) ⊆ conv(S ′) = S ′, and conv(S ′) = S ′. We first show that S ⊆ S ′. Let (y′, x′) ∈ S.

Then, y′ satisfies (2.22) and x′ is as defined in (2.26). We show that (y′, x′) ∈ S ′. For that,

we need to show that
∑J

j′=j x
′
ij ≤

∑J
j′=j x

′
i+1j for all j. Let j1 be such that kj1 ≤ y′i ≤ kj1+1.

Because of (2.26), for 0 ≤ j ≤ j1,
∑J

j′=j x
′
i+1j = 1 ≥

∑J
j′=j x

′
ij . For j > j1 + 1,

∑J
j′=j x

′
ij =

0 ≤
∑J

j′=j x
′
i+1j . Therefore, we only need to consider j = j1 + 1. Then,

kj1 + (kj1+1 − kj1)x′ij1+1 =
J∑
j=0

kjx
′
ij ≤

J∑
j=0

kjx
′
i+1j = kj1 +

J∑
j=j1+1

(kj − kj−1)
J∑

j′=j

xi+1j′

≤ kj1 + (kj1+1 − kj1)
J∑

j=j1+1

xi+1j1+1

Since kj1+1 − kj1 > 0, it follows that

J∑
j=j1+1

x′ij = x′ij1+1 ≤
J∑

j=j1+1

xi+1j1+1.

Now, we show that vert(S ′) ⊆ S. Let (y′, x′) ∈ vert(S ′). Obviously, x′ ∈ vert(projx(S
′)).

However, by Proposition 8, the constraint matrix defining projx(S
′) is totally unimodular.

Therefore, x′ is binary-valued. Then, it follows from
∑J

j=0 xij = 1 that xijxij′ = 0 for all
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j 6= j′. Finally,

J∑
j=0

kjxij =
J∑
j=1

j∑
j′=1

(kj′ − kj′−1)xij =
J∑

j′=1

(kj′ − kj′−1)
J∑

j=j′

xij ≤
J∑

j′=1

(kj′ − kj′−1)
J∑

j=j′

xi+1j

=
J∑
j=1

j∑
j′=1

(kj′ − kj′−1)xi+1j =
J∑
j=0

kjxi+1j,

where the inequality follows because kj′ ≥ kj′−1 and
∑J

j=j′ xij ≤
∑J

j=j′ xi+1j .

We now show that projy(S
′) = projy(S) = A. Towards this end, we prove that

projy(S) ⊆ A. Let (y, x) ∈ S. It follows that 0 ≤ yi ≤ Y because 0 = k0

∑J
j=0 xij ≤∑J

j=0 kjxij ≤ kJ
∑J

j=0 xij = Y . Also, yi ≤ yi+1 follows directly from
∑J

j=0 kjxij ≤∑J
j=0 kjxi+1j . Since A ⊆ projy(S) follows directly from (2.26), it follows that projy(S) = A.

Then, projy(S
′) = A follows from

projy(S
′) = projy(conv(S)) = conv(projy(S)) = conv(A) = A,

where the second equality because a linear transformation commutes with convexification, the

third equality because projy(S) = A and the last equality because A is convex. The last

statement in the lemma follows from conv(projx(S)) = projx(conv(S)) = projx(S
′).

5.1.14 Proof of Theorem 18

Proof. We first show that Πk ≤ Πc. Define wij = wki (kj), cj = ck(kj), and vij = wij −

(I − i)(wi+1j − wij). Then, we solve CBP2 to find Πk and the optimal solution xij for all

i, j. The prices pj are assumed to satisfy Proposition 5. Now, for any y′ ∈ [0, Y ], define

p′(y′) = min{p(kj) | kj ≥ y′, j = 0, . . . , J}. Observe that since y ≤ Y = kJ , the minimum

in the formula is attained. Let yi =
∑J

j=0 kjxij . We claim that (y, p′) is feasible to CBPc1 and

has an objective value of Πk. Consider Constraints (3.33). Let kj′−1 < y ≤ kj′ for some j′.
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Then, since (x, p) is feasible to CBP1, it follows that

wi(yi)− p′(yi) =
J∑
j=0

(wij − pj)xij ≥ wij′ − pj′ = wi(kj′)− p′(kj′) ≥ wi(y)− p′(y).

The objective function value of (y, p′) is then

I∑
i=1

(p′(yi)− c(yi)) =
I∑
i=1

J∑
j=0

(pj − cj)xij = Πk.

Since (y, p′) is feasible to CBPc1 and has an objective value of Πk, it follows that the optimal

value Πc to CBPc1 is at least Πk.

Now, we show that Πc ≤ Πk + ε. Let (y′, p′) be the optimal assignment and price for

CBPc1. Now consider CBPc1 where the wi(·) and c(·) functions are replaced with wki (·) and

ck(·) and call this problem Q. Since wki (·) and ck(·) are piecewise-linear with breakpoints in

{k1, . . . , kJ}, it follows from Theorem 16 that the optimal value of Q is Πk. Now, we define

p′′(y) = min{p(y′i) − iδ | y′i ≥ y, i = 0, . . . , I + 1}, where y′0 and y′I+1 are assumed to be 0

and Y respectively and δ will be fixed later. Assume p′′(·) is the price in Q. We show that there

is a feasible solution (y′′, p′′) to Q, where y′′i ∈ {y′1, . . . , y′I} for each i. Instead, let yi be an

allocation to Consumer i such that y′i′−1 < yi < y′i′ . However,

wki (yi)− p′′(yi) ≤ wki (y
′
i′)− p′′(y′i′),

where the inequality follows since yi < y′i′ implies that wki (yi) ≤ wki (y
′
i′) and the definition of

p′′(·) implies that p′′(yi) = p′′(y′i′). Therefore, the consumer may substitute y′i′ for yi without

loss of surplus. Now, observe that the choice set of each consumer is finite, therefore there

exists a bundle size that provides maximum surplus to the consumer. Now, we show that, by
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suitably choosing δ, we can ensure that there exists a feasible solution that satisfies y′′i ≥ y′i

for all i. Assume otherwise and consider a Consumer i who purchases y′′i = y′i′ < y′i. First,

observe that Lipschitz continuity of wi(·) and c(·) guarantees that for any y,

|wi(y)− wki (y)| ≤ max{wki (kj+1)− wi(y), wi(y)− wki (kj)}

= max{wi(kj+1)− wi(y), wi(y)− wi(kj)} ≤ kβ

(5.12)

|c(y)− ck(y)| ≤ max{|c(y)− ck(kj)|, |ck(kj+1)− c(y)|}

= max{|c(y)− c(kj)|, |c(kj+1)− c(y)|} ≤ kβ,

(5.13)

where j is chosen such that kj ≤ y < kj+1. The first inequality follows since wk is non-

decreasing and the first equality because wi(·) (resp. c(·)) match wk(·) (resp. ck(·)) at all

y ∈ {k1, . . . , kJ}. Then, choosing δ = 2kβ it follows that:

wki (y
′
i′)− p′′(y′i′) = wki (y

′
i′)− (p(y′i′)− i′δ) ≤ wi(y

′
i′) + kβ − (p(y′i′)− i′δ)

≤ wi(y
′
i) + kβ − (p(y′i)− i′δ) ≤ wki (y

′
i) + 2kβ − (p(y′i)− i′δ)

≤ wki (y
′
i) + 2kβ − (i− i′)δ − (p(y′i)− iδ) ≤ wki (y

′
i)− p′′(y′i).

Therefore, no consumer purchases a smaller sized bundle and so, for any i′ > i:

p′′(y′i′)−ck(y′i′) ≥ p(y′i′)−c(y′i′)−i′δ−kβ ≥ p(yi)−c(yi)−i′δ−kβ ≥ p(yi)−c(yi)−(2I+1)kβ,

where the first inequality follows from the definition of p′′ and (5.13) and the second inequality

from Proposition 5 and i′ > i, and the third inequality because δ = 2kβ. Therefore,

Πk ≥ Πc − I(2I + 1)kβ = Πc − ε.
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Because J = dY
k
e and CBP2 can be solved in O(IJ) time, CBPc1 can be approximated within

ε in O
(
I2(I+2)βY

ε
+ I
)

time.

5.1.15 Proof of Theorem 19

Proof. According to Proposition 7 in Kannan et al. (2014b), we prove that we can reformulate

the MINLP CBP1 into the following 0-1 IP problem CBP2:

CBP2 : Maxxij

{
I∑
i=1

J∑
j=0

(vij − cj)xij

∣∣∣∣∣ (3.2), (3.4), (3.7)

}
.

We add the following χ variables to CBP2 and reformulate the problem into CBP3:

χ00j = x1j∀j, χijj′ = xijxi+1,j′1 ≤ i < I ∀j ∀j′ ≥ j, and χIjJ = xIj∀j. (5.14)

We show that constraints of CBP3 are implied by CBP2 and (5.14). Constraints (3.10),

(3.12), and (3.15) follow from (5.14) and (3.4). Constraint (3.9) holds since
∑J

j=0 χ00j =∑J
j=0 x1j = 1, where the equalities are due to (5.14) and (3.2) respectively. Constraint (3.11)

holds since
∑J

j=0 χIjJ =
∑J

j=0 xIj = 1, where the equalities are due to (5.14) and (3.2)

respectively. Constraint (3.13) and (3.14) hold because:

xij = xij

J∑
j′=j

xij′ ≤ xij

J∑
j′=j

xi+1j′ =
J∑

j′=j

χijj′ = xij

J∑
j′=j

xi+1j′ ≤ xij

J∑
j′=0

xi+1j′ = xij

xij = xij

j∑
j′=0

xij′ ≤ xij

j∑
j′=0

xi−1j′ =

j∑
j′=0

χi−1j′j = xij

j∑
j′=0

xi−1j′ ≤ xij

J∑
j′=0

xi−1j′ = xij,

imply that equality holds throughout. In both cases, the first equality holds because (3.4) and

(3.2) imply that x2
ij = xij and xijxij′ = 0 if j′ 6= j. The first inequality follows from (3.7)

(and (3.2) in the second case), the second and third equalities from (5.14), the second inequality
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from (3.4) and the last equality from (3.2).

Now, we show that Constraints (3.9)-(3.15) imply constraints of CBP2. We use induc-

tion on i to show (3.2). The base case follows since
∑J

j=0 x1j =
∑J

j=0 x00j = 1. For the

induction step, we assume
∑J

j=0 xij = 1 and show
∑J

j=0 xi+1j = 1. Then,

J∑
j=0

xi+1j =
J∑
j=0

j∑
j′=0

χij′j =
J∑

j′=0

J∑
j=j′

χij′j =
J∑

j′=0

xij′ = 1,

where the first equality follows from (3.14), the third equality by (3.13), and the last equal-

ity by induction. Constraint (3.7) follows because
∑J

j1=j xij1 =
∑J

j1=j

∑j1
j2=0 χi−1j2j1 ≥∑J

j1=j

∑j1
j2=j χi−1j2j1 =

∑J
j2=j

∑J
j1=j2

χi−1j2j1 =
∑J

j2=j xi−1j2 , where the first equality fol-

lows from (3.14), the first inequality since some terms are dropped, and the last equality from

(3.13). Constraint (3.4) follows since xij is non-negative and integer-valued by Constraints

(3.15) and (3.13) and it cannot take a value larger than one by (3.2).

5.1.16 Proof of Proposition 26

Proof. Define fi(z) =
∑J

j′=1 zij′ and f(z) = (f1(z), . . . , fI(z)). For z′ and z′′ feasible to

CBPg,

C(z′) + C(z′′) = C ′(f(z′)) + C ′(f(z′′))

≥ C ′(max{f1(z′), f1(z′′)}, . . . ,max{fI(z′), fI(z′′)})

+ C ′(min{f1(z′), f1(z′′)}, . . . ,min{fI(z′), fI(z′′)})

= C(z′ ∨ z′′) + C(z′ ∧ z′′), (5.15)

since C ′ is submodular.
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5.1.17 Proof of Theorem 27

Proof. It follows from (49.25) in Schrijver (2003) that a supermodular function can be max-

imized over a lattice family in strongly polynomial time if the following two conditions hold.

First, there is an oracle to compute the supermodular function in strongly polynomial time.

This is true by assumption. Second, the lattice family C̆ is described using the smallest set, the

largest set and a pre-order � such that if u � v ⇔ each U ∈ C̆ containing v also contains u.

For us, the smallest element corresponds to the case when all consumers purchase nothing, i.e.,

zij = 0 for all j ≥ 1. The largest element is when all consumers purchase bundle size J , i.e.,

zij = 1 for all j ≤ J . For the pre-order �, observe that if zij = 1, then zi′j′ = 1 for all i′ ≥ i

and j′ ≤ j and for all i′ if j′ = 0. In other words, (i′, j′) � (i, j) if and only if either i′ ≥ i and

j′ ≤ j or j′ = 0. If zij = 1 then zi′j′ = 1 using Constraints (3.29), (3.30), and (3.31). Now,

consider (i′, j′) 6� (i, j). Then, we show that there is a feasible allocation that sets zi′j′ = 0 but

zij = 1. From the definition of the pre-order, we know that j′ > 0 and either i′ < i or j′ > j.

In either case, the sought solution is one where Consumers 1, . . . , i − 1 purchase nothing and

Consumers i, . . . , I purchase Bundle j.

5.1.18 Proof of Corollary 28

Proof. The two results follow from Lemma 2.8.1 and Theorem 2.8.4 in Topkis (1998) respec-

tively.

5.1.19 Proof of Lemma 29

Proof. We prove by induction on r. Consider y0. Since y1 ≤ · · · ≤ yI , it follows that

a(y1) ≤ · · · ≤ a(yI). Now, assume that yr−1 is feasible to CBPgcy. We show that ari ≤ ari+1

for i ≤ I − 1. The inequality holds by induction whenever i 6∈ {π(r), π(r) − 1} because

ari′ = ar−1
i′ for all i′ 6= π(r). For i = π(r) − 1, it follows because arπ(r)−1 = ar−1

π(r)−1 ≤ ar−1
π(r) <
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arπ(r), where the first inequality follows from induction. Now, consider i = π(r). Assume

π−1(i+ 1) < π−1(i) = r. Then, ari+1 = a0
i+1 + 1 ≥ a0

i + 1 = arr, where the inequality follows

by the base case. Now, assume that π−1(i + 1) > π−1(i) = r. Then, a0
i ≤ a0

i+1 because

yi ≤ yi+1. If a0
i < a0

i+1, the result follows since ari+1 = a0
i+1 and ari = a0

i + 1. We show that a0
i

cannot equal a0
i+1. Otherwise, a(yi+1) = a(yi) and yi+1 ≥ yi yield g(yi+1) ≥ g(yi) and thus a

contradiction to π−1(i+ 1) > π−1(i) using the definition of π.

5.1.20 Proof of Theorem 30

Proof. We describe the architecture of the proof. We construct a relaxation of CBPgcy, which

we call CBPgcyR. Then, we relax CBPgcyR to CBPgczR which has the same objective value

as CBPgcz. This shows that the objective value of CBPgcy is no more than that of CBPgcz.

Finally, we show the converse and recover the optimal solution y∗ of CBPgcy from the optimal

solution z∗ of CBPgcz. Let

C ′′(y) =
I∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr). (5.16)

Let Feas(Q) be the feasible region for any problem Q. Consider the following optimization

problem:

CBPgcyR : Maxyi

{
I∑
i=1

vi(yi)− C ′′(y) | (3.34), (3.35)

}
.
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Observe that CBPgcyR is a relaxation of CBPgcy, because C ′′(y) ≤ C ′(y) and, therefore, the

objective function value is overestimated. For any y ∈ Feas(CBPgcy), define zij as follows

zij =



1 if j ≤ a(yi)

g(yi) if j = a(yi) + 1

0 otherwise,

(5.17)

and observe that
∑J

j=1

(
k(j) − k(j − 1)

)
zij = yi. Since wi is piecewise-linear, wi(yi) =

wi(k(a(yi))) + g(yi)
(
wi(k(a(yi)) + 1)−wi(k(a(yi)))

)
=
∑J

j=1

(
wi(k(j))−wi(k(j − 1))

)
zij .

For all j, define wij = wi(k(j)) and, as before, vij = wij − (I − i)(wi+1j − wij), where wI+1j

is assumed to be wIj . Then, vi(yi) =
∑J

j=0 vij(zij − zij+1).

Now, consider CBPgcz, where we replace (3.32) with 0 ≤ zij ≤ 1, call the resulting

feasible regionR, and extendC(z) over all ofR. Observe that, as in the proof of Proposition 26,

C(·) restricted to binary vertices is submodular.

To extendC(z) toR, we construct the convex envelope ofC(z) restricted to Feas(CBPgcz)

over R. For any z ∈ R, let γz(·, ·) : {1, . . . , I} × {1, . . . , J} → {1, . . . , IJ} be a one-to-one

mapping such that γz(i, j) ≥ γz(i
′, j′) whenever zi,j ≤ zi′,j′ . In addition, we require that ties

such as zi,j = zi′,j′ are resolved in the following manner. If i′ > i then γz(i, j) > γz(i
′, j′).

Otherwise, if i′ = i and j′ < j then γz(i, j) > γz(i
′, j′). Observe that this definition guarantees

that γz(i + 1, j) < γz(i, j) and γz(i, j − 1) < γz(i, j). Let z0 be defined such that zi0 = 1 for

all i, and zij = 0 otherwise. For r = 1, . . . , IJ , define zr = z0 +
∑r

s=1 e
γ−1
z (s). Observe that,

for all r, zr is feasible to CBPgcz, because of the definition of γz. Then, using the insight from
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Corollary 2.3 in Tawarmalani et al. (2013), we extend

C̆(z) = C(z0) +
IJ∑
r=1

[
zγ−1

z (r)

(
C(zr)− C(zr−1)

)]
. (5.18)

When z is binary, it is a vertex of R and C̆(z) = C(z). So, C̆(z) is a valid extension for C(z)

and

CBPgczR : Maxzij

I∑
i=1

J∑
j=0

vij(zij − zij+1)− C̆(z)

s.t. (3.29), (3.30), (3.31)

0 ≤ zij ≤ 1 ∀i; ∀j (5.19)

is a relaxation of CBPgcz. We now show that CBPgczR is also a relaxation of CBPgcyR. We

begin by showing that for each y ∈ Feas(CBPgcy), if z is defined as in (5.17), then C̆(z) =

C ′′(y). The result is clear if y ∈ {k(0), . . . , k(J)}I since in this case, C̆(z) = C(z) = C ′(y) =

C ′(y0) = C ′′(y), where the first equality follows since z is a vertex of R, the second equality

because of the definition of C(z), and the third equality because y0 = y. Since g(y0) = 1

and g(yi) = 0, for 1 ≤ i ≤ I , the last equality follows. When, y 6∈ {k(0), . . . , k(J)}I ,

we define zij as in (5.17). Let I ′ ⊆ {1, . . . , I} be the set of consumers for which g(yi) 6∈

{0, 1}, i.e., yi 6∈ {k(0), . . . , k(J)}. It follows from the definition of γ that for any i, i′ ∈ I ′,

γz(i, a(yi) + 1) ≥ γz(i
′, a(yi′) + 1) if and only if (i) g(yi) < g(yi′), or (ii) g(yi) = g(yi′)

and i < i′. However, this implies that for i ∈ I ′, the relative ordering of γz(i, a(yi) + 1) for

1 ≤ i ≤ I is consistent with π−1(i). Let t be the smallest value such that zγ−1(t) 6∈ {0, 1}.

Then, it follows that for i ∈ I ′, γ(i, a(yi) + 1) = π−1(i) + t − 1. Since, for r = 0, . . . , |I ′|,

yr ∈ {k(0), . . . , k(J)}I , it follows from the discussion above that C(zr+t−1) = C ′(yr) for
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r = 0, . . . , |I ′|. Let zγ−1
z (I+1) = 0 and observe that

C̆(z) = C(zt−1) +

t+|I′|−1∑
r=t

zγ−1
z (r)

(
C(zr)− C(zr−1)

)
= (1− zγ−1

z (t))C(zt−1) +

t+|I′|−1∑
r=t

(
zγ−1

z (r) − zγ−1
z (r+1)

)
C(zr)

= (1− g(yπ(1))C
′(y0) +

|I′|∑
r=1

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr)

=

|I′|∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr)

=
I∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr) = C ′′(y),

where the first equality is from (5.18) and that zγ−1
z (r) = 0 for r ≥ t + |I ′|; the second follows

by rearranging terms and because the definition of I ′ implies that zγ−1
z (t+|I′|) = 0; the third is

by realizing that zγ−1
z (r) = g(yπ(r−t+1)) for r = t, . . . , t + |I ′| − 1 and C(zr) = C ′(yr−t+1)

for r = t − 1, . . . , t + |I ′| − 1; the fourth is because g(yπ(0)) = 1 and g(yπ(I+1)) = 0; the

fifth is because the terms in the summation with r > |I ′| are zero; and the final is by (5.16).

Thus, we have shown that, for any y ∈ Feas(CBPgcy), if z is defined as in (5.17), then

C̆(z) = C ′′(y) ≤ C ′(y). Finally, observe that we already showed that piecewise-linearity of

wi(·) implies that vi(yi) =
∑J

j=0 vij(zij − zij+1).

We have thus shown CBPgczR is a relaxation of CBPgcy. Now, we show that there ex-

ists an optimal solution in CBPgczR where each zij is binary. Assume that this is not the case.

Now, take an optimal solution z̄, compute the corresponding γz̄(i, j) mapping and z̄0, . . . , z̄IJ .

We show that z̄0
ij +

∑IJ
r=1

[
z̄γ−1

z̄ (r)

(
z̄rij − z̄r−1

ij

)]
= z̄ij . First observe that all terms in the sum-

mation, except when r = γz̄(i, j), are zero since z̄rij = z̄r−1
ij otherwise. When r = γz̄(i, j),

the term yields z̄ij because z̄rij = 1 and z̄r−1
ij = 0. We have shown binary z0, . . . , zr that are

feasible to CBPgcz such that (z̄, C̆(z̄)) ∈ conv
((
z̄0, C(z̄0)

)
, . . . ,

(
z̄IJ , C(z̄IJ)

))
. Then, let
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F (z) =
∑I

i=1

∑J
j=0 vij(zij − zij+1) − C̆(z) be the objective function of CBPgczR and note

that we have shown that there exist λ0, . . . , λIJ , each non-negative, such that
∑IJ

r=0 λIJ = 1

and (z̄, F (z̄)) =
∑IJ

r=0 λr(z̄
r, F (z̄r)). In particular, λ0 = (1 − z̄γz̄(1)); λr = (z̄γz̄(r) −

z̄γz̄(r+1)) for r = 1, . . . , IJ − 1; and λIJ = z̄γz̄(IJ). Therefore, F (z̄) =
∑IJ

r=0 λrF (z̄r) ≤∑IJ
r=0 λr maxr′ F (z̄r

′
) = maxr′ F (z̄r

′
), i.e., there exists one of z̄0, . . . , z̄IJ , say zr, that achieves

the same objective function value as z̄. Since z̄r is feasible to CBPgcz with the same objective

value as in CBPgczR, it follows that the optimal value of CBPgcz matches that of CBPgczR.

We showed that the optimal value of CBPgcy is no more than that of CBPgcz. We now

show the converse. Consider z′ feasible to CBPgcz and let yi =
∑J

j=1(k(j) − k(j − 1))zij .

By definition of C(·) and piecewise-linearity of wi(·), y has the same objective function value

in CBPgcy as does z in CBPgcz. Further, y is feasible to CBPgcy. Observe that, y satisfies

(3.34) because yi =
∑J

j=1(k(j)− k(j− 1))zij ≤
∑J

j=1(k(j)− k(j− 1))zi+1j = yi+1, because

k(j) > k(j − 1) and zi+1j ≥ zij . Also, y satisfies (3.35) because 0 ≤
∑J

j=1(k(j) − k(j −

1))zij ≤
∑J

j=1(k(j)− k(j − 1)) = k(J)− k(0) = Y .

5.1.21 Proof of Corollary 32

Proof. If C ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr) then the result follows from Theo-

rem 27 and Corollary 31. Observe that g(yπ(r)) ≥ g(yπ(r+1)) and
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
=

1. Therefore, it follows from (3.36) that y ∈ conv(y0, . . . , yI). By Lemma 29, y0, . . . , yI are

feasible to CBPgcy. Then, C ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr), because C ′(·) is

concave.

5.1.22 Proof of Theorem 33

Proof. Assume y′ is the optimal solution to CBPgcy. Let {i1, . . . , ik} be the lowest-type

consumers that purchase a bundle of a certain size. The pricing p then follows from Proposition
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7 in Kannan et al. (2014b):

pj = wi0j(i0) +

r′(j)∑
r=1

(
wirj(ir) − wirj(ir−1)

)
. (5.20)

More formally, for any s such that 0 ≤ s ≤ Y , define r′(s) = arg minr{ir | y′ir ≥ ys},

i.e., the lowest-type consumer who purchases a bundle of larger size. If there is no consumer

that purchases a bundle of size s or larger, we define its price to be wIY + δ for some δ > 0.

Otherwise, we define ps =
∑r′(s)

r=1

(
(wir(y

′
ir)− wir(y

′
ir−1

)
)
.

We denote CBPgcy with WTPs replaced with wk(·) and cost replaced with C ′k(y) as

Problem T. We now construct a feasible solution to T by providing a pricing strategy such that,

for all i, Consumer i still purchases y′i. For this we again utilize (5.20). For bundle size s, we

set the price to pks =
∑r′(s)

r=1

(
(wkir(y

′
ir)− w

k
ir(y

′
ir−1

)
)
. It follows from Proposition 7 in Kannan

et al. (2014b) that Consumer i continues to purchase bundle size y′i in Problem T. For any s

satisfying 0 ≤ s ≤ Y , let sk = max{k(j) | k(j) ≤ s} and s′k = min{k(j) | k(j) ≥ s}. Then,

for any i:

|wki (s)− wi(s)| = |wki (s)− wki (sk) + wi(sk)− wi(s)|

≤ max{wki (s)− wki (sk), wi(s)− wi(sk)}

≤ max{wki (s′k)− wki (sk), wi(s)− wi(sk)}

= wi(s
′
k)− wi(sk)

≤ kβ,

(5.21)

where the first equality follows because wki (sk) = wi(sk); the first inequality because wki (s)−

wki (sk) ≥ 0 and wi(sk)−wi(s) ≤ 0; the second inequality because wki (s
′
k) ≥ wki (s) ≥ wki (sk);

the second equality because wki (s
′
k) = wi(s

′
k), wki (sk) = wi(sk) and wi(s′k) ≥ wi(s) ≥ wi(sk);

92



and the last inequality because of Lipschitz continuity of w. Observe that

ps − pks =

r′(s)∑
r=1

(
wir(y

′
ir)− w

k
ir(y

′
ir)− wir(y

′
ir−1

) + wkir(y
′
ir−1

)
)

≤
r′(s)∑
r=1

(
|wir(y′ir)− w

k
ir(y

′
ir)|+ |wir(y

′
ir−1

)− wkir(y
′
ir−1

)|
)

≤ 2kIβ,

where the last inequality follows from (5.21). Consider a vector y feasible to CBPgcy and

construct y0, . . . yI as described before Lemma 29. Let t1 = arg min{C ′(t) | t ∈ {y0, . . . , yI}}

and t2 = arg max{C ′(t) | t ∈ {y0, . . . , yI}}. Then:

|C ′k(y)− C ′(y)| = |C ′k(y)− C ′k(t1) + C ′i(t
1)− C ′(s)|

≤ |C ′k(y)− C ′k(t1)|+ |C ′(t1)− C ′(y)|

≤ |C ′k(t2)− C ′k(t1)|+ |C ′(t1)− C ′(y)|

≤ |C ′(t2)− C ′(t1)|+ |C ′(t1)− C ′(y)|

≤ 2
√
Ikβ

(5.22)

where the second inequality follows from (3.36) and since C ′k is linear in conv{y0, . . . , yI},

the second equality follows since C ′k(·) matches C ′(·) at each of {y0, . . . , yI}, and the last

inequality follows because ‖t2 − t1‖ ≤
√
Ik and ‖y − t1‖ ≤

√
Ik. Therefore, Πk ≥ Πc −

2kβ(I2 +
√
I). Since k = ε

2β(I2+
√
I)

, Πk ≥ Πc + ε. Since the optimal solution of T occurs at

the breakpoints, it is also feasible to CBPgcy, as long as the price of the intermediate sizes is

set high enough (to that of the next breakpoint). Therefore, Πk ≤ Πc.

Finally, observe that, by Theorem 27, CBPgcz can be solved in time polynomial in I

and J and the oracle time to compute C ′(y). Then, the algorithm is polynomial in I , Y , β, 1
ε

because J = dY
k
e implies that J ≤ 2Y β(I2+

√
I)

ε
+ 1.
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