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ABSTRACT 

 
This paper investigates e-lancing, the emerging online marketplace for IS outsourcing. E-

lancing is a new kind of market mechanism comprised of electronically connected freelancers 
(either individuals or organizations) joined into networks to provide IT services. As the Internet’s 
capacity continues to grow exponentially every year, e-lancers proliferate, enabled by IT and 
subsequent market liquidity. Moreover, this decentralized, individual-oriented electronic market 
mechanism will be more common as traditional, large companies find difficulties in hiring and 
firing employees due to initial sunk costs and legal issues.  

We propose the strategic use of online spot market, a typical e-lancing tool to assign jobs to 
workers, for yield management from the IT service provider’s perspective. Given the fixed 
capacity of a firm’s IT workforce, the nature of IT projects, demand uncertainty, and growing 
competition among IT vendors, IT service firms cannot avoid occasionally holding some excess 
workforce. By utilizing its excess workforce by means of e-lancing, a firm can prevent price 
competition in the conventional channel, reach customers in the online channel, and hence 
increase profits. We reduce our problem to the stochastic knapsack problem and employ Markov 
decision theory in order to obtain the global optimal admission control solution for our stochastic 
knapsack problem over the set of all policies. The model considers an IT service firm which 
receives projects through two channels: a conventional procurement channel and an online spot 
market such as Elance Online (www.elance.com). The proposed model determines optimal 
admission policies to maximize the expected total discounted profit over infinite horizon. We 
illustrate numerical examples to characterize the structure of optimal policy. 

Our model captures the most important characteristic of IT projects where if a project is 
admitted, it seizes a random number of workers simultaneously, then it releases all the workers at 
the same time after occupying for the project duration. In addition, implementing two job classes 
requiring different service rates with different sizes of bulk arrivals into the standard Markov 
decision model is a distinctive contribution, providing a benchmark model which will be useful 
to investigate various demand control problems of IT service providers. The key contribution of 
this study is to examine a new revenue model, verify its feasibility and effectiveness, and provide 
a optimal strategy to successfully implement this revenue model. Given growing competition in 
the IT service industry, the optimal admission control policy presented in this paper will provide 
managerial insights on the agile and flexible project management applicable to offshore and US-
based IT service firms. 
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1. Introduction and Motivation  

The IT service industry has been continuously growing at more than 10 percent per year 

(Gartner Research 2002) since IT outsourcing was acknowledged, decades ago, as a useful 

strategy for lowering costs, earning economies of scale and accessing specialized resources. 

Furthermore, offshore IT outsourcing has exploded, spurred by its exclusive advantages of cost 

savings and large labor pools. But at the same time, customers are squeezing IT vendors for price 

cuts. As a result of these changes in the business environment, substantial competition among 

offshore and US-based vendors is expected. Giant, global IT-service firms such as Accenture and 

EDS are opening their own software development centers in India to compete with local 

companies such as Infosys and Wipro (Kumar and Sinha 2003). The challenge now to IT service 

providers is how to manage their resource in order to survive the competition. 

Since people are the most important resource in a service company unlike in a product 

company, adequate staffing has been a crucial task for an IT service provider (Gartner Research 

2001). Given the fixed capacity of a firm’s workforce, the nature of IT projects, and demand 

uncertainty in the market, IT service firms cannot avoid occasionally holding the excess 

workforce. Many IT service firms want to maintain their workforce capacity at a sufficient level 

in order to respond quickly to high market demand or a large project order. Consequently, a firm 

may hold idle workers when it faces low demand or the termination of a large project. 

Maintaining idle workers, however, incurs double costs to the firm without generating any 

revenue; the wages of the idle employees and the training costs. Myopic remedies to deal with 

this challenge, ad-hoc staffing-up and layoff, involve high initial sunk costs of staffing-up and 

potential legal disputes followed by layoff, disabling the firm’s agility. Furthermore, when IT 

service providers have a large number of idle employees, the situation lends itself to price 

competition among vendors (Kim, Shi and Srinivasan 2004), which would lower their revenues 

in a long run.  

Drawing primarily on Markov decision theory, we develop a model for an IT service 

provider to control excess workforce in the context of yield management. The staffing problem 

of an IT service provider has the characteristics shared in hotel and airline industries where yield 

management has been successfully employed. IT service firms have strict capacity constraints 

and the costs of making any adjustment – hiring, training, or firing new IT professionals - are 
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high just like hotels and airlines (Kim et al, 2004). Moreover, the inventory of IT professionals 

can bee seen perishable just like hotel rooms and airplane seats in that the excess idle workforce 

incurs operational cost including employees’ salary without generating any revenue and the 

availability will disappear unless used now. Observing these similarities between IT service 

industry and hotel/airline industries, we develop an Markov decision model for an IT service 

provider to achieve yield management by effectively reduce excess workers through e-lancing, 

the secondary channel, when the market demand of conventional channel is low. 

The motivation of this research stems from the view in which the advances in information 

technology are affecting firm and market structures, shifting toward more use of decentralized 

markets rather than hierarchies to coordinate economic activity (Malone, Yates and Benjamin, 

1987).  According to their definition, markets coordinate the flow of materials or services 

through supply and demand forces and external transactions between different individuals and 

firms while hierarchies coordinate the flow of materials by controlling and directing it according 

to a predetermined managerial decision. IT has significantly reduced coordination costs of 

electronic markets which were relatively higher than in the hierarchical organizational form. 

Moreover, the electronic brokerage effect increases the number of alternatives, increase the 

quality of the alternative selected and hence decreasing the production cost significantly in the 

electronic market structure (Malone et at 1987). Motivated by these factors favoring 

decentralized markets over hierarchies in the Internet age, this research aims at developing an 

intelligent tool to help IT service providers make agile and flexible staffing decisions taking 

advantage of the electronic sales channel. 

E-lancing is a new market mechanism comprised of electronically connected freelancers 

(either individuals or organizations) joined into networks to provide IT services (Malone and 

Laubacher 1998). The most common type of market mechanism for e-lancing, considered as the 

secondary channel in our model, is the online reverse auction, where the buyers post projects 

such as software development and website design as a form of RFP (Request for Proposal), and 

then IT service firms bid for them. Online auctions enable firms to efficiently outsource small 

projects that, mostly, involve less than six person-months of effort (Snir and Hitt 2003). 

Examples of currently operated Web-based IT service markets include Elance Online 

(www.elance.com), Prosavvy (www.prosavvy.com), RentACoder (www.rentacoder.com) and 

Guru (www.guru.com). Elance Online is the leading Web-based project marketplace that 
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connects small- and medium-sized businesses with a global pool of IT service providers. More 

information about several e-lancing Web sites is given in Table 1. 

 

TABLE 1. Major e-lancing Web sites 

 Elance Online 

(www.elance.com) 

Guru 

(www.guru.com) 

Rent A Coder 

(www.rentacoder.com)

Description The largest global online 

freelancer site. It targets 

the small and medium 

businesses throughout 

various industries. 

The site claims to have 

the largest membership 

with over 451,000 

professionals throughout 

various industries. 

One of the largest 

coding freelance sites 

for software buyers 

and coders. 

Client payment 

method 

Clients can divide the 

project into stages and 

pay based on each stage. 

Clients pay the entire 

amount of the project 

fees into an escrow 

account. 

Clients pay the entire 

amount of the project 

fees into an escrow 

account. 

Fees for clients Free Free Free 

Fees for 

providers  

Providers must pay a 

monthly fee to retain 

membership. The 

membership fees range 

from $30 to $245 

monthly. 

Basic membership 

includes a free 

membership but requires 

a 10% project 

transaction fee. 

Free membership with 

a 15% project 

transaction fee. 

 

The online spot market used as the secondary channel in our model also includes reverse 

auctions embedded in e-sourcing solutions. Various e-sourcing solutions available in the market 

typically have similar functions to those of Web-based marketplaces such as an RFP generator, a 

potential supplier database, a support for various reverse auction types and an interactive bid 

solicitation mechanism (Forrester Research 2004). Major e-sourcing solution vendors in the 

current market are described in Table 2. In addition, the secondary channel in our model may 

include e-procurement suites provided by vendors such as Elance, PeopleSoft, IQNavigator and 

Ariba since they typically include an e-sourcing solution. 
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TABLE 2.  Major vendors of e-sourcing solutions1

Type Description Vendors 

Managed, hosted e-

sourcing service 

Provides consulting 

and hosted application 

FreeMarkets, ATKPS, ICG Commerce, Ariba, 

Ketera, Global eProcure, Perfect Commerce, 

SnyerDeal, Iasta 

Self-service hosted 

e-sourcing 

Provides hosted 

application 

FreeMarkets, ATKPS, Procuri, Ariba, Ketera, 

Frictionless, Emptoris, B2eMarkets, SAP, 

Oracle, and various e-markets 

Licensed software Provides licensed 

product operated 

behind corporate fire 

wall 

Ariba, SAP, Oracle, PeopleSoft, i2, Portum, 

ATKTPS, Frictionless, B2eMarkets, others 

 

In this paper, we investigate how IT service providers can improve productivity by 

integrating the e-lancing channel into their business model. Specifically, we propose strategic use 

of online service marketplace, e-lancing, to manage excess capacity of an IT vendor’s labor pool. 

We argue that if an IT service firm dynamically decides to participate in online reverse auctions, 

a typical e-lancing tool, to receive projects that occupy idle employees, it may not only gain 

additional profits by reaching customers in the online channel, but also avoid price competition 

in the conventional channel.  

 

2 Literature Review 

The goal of yield management is to maximize revenue per unit capacity by employing 

price-discrimination. Many researchers have studied the use of online auction as a secondary 

channel for yield management to dispose of a firm’s excess inventory while the firm sells its 

products through the primary conventional channel at list price (Pinker et al. 2003; Vulcano, van 

Ryzin, & Maglaras 2002). Gallego and van Ryzin (1994) solve the optimal pricing policy as a 

function of the stock level and the length of the horizon. This price-discrimination approach is 

preferred when a perishable inventory has to be sold before a deadline, which is typical in retail 

                                                 
1 Source: Forrester Research, Inc. Jan 5, 2004 
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industry. Our model enables us to investigate how much discount is allowed in the secondary, e-

lancing channel. 

However, while we consider the IT workforce of service providers as perishable 

inventory as discussed in the previous section, the typical IT projects usually require a group of 

IT professionals simultaneously. Consequently, the price of contracts can be high. The literature 

suggests that when they are large contracts, not just individual customers’ orders, offers should 

be accepted or rejected. Therefore the decision variables in our model include the binary variable 

for admission control as well as the bidding price in the secondary channel. There have been 

extensive efforts on such admission controls combining queueing theory with inventory 

management (Brumelle and Walczak 2003; Carr and Duenyas, 2000). In Caldentey and Wein 

(2005), the authors model a single-product manufacturing system for a firm using two selling 

channels: long-term contracts and a spot market of electronic orders. The manufacturer 

simultaneously decides on a busy/idle policy for the machine in addition to an accept/reject 

policy for e-orders. Unlike most prior research on revenue management, the difficulty of 

modeling our problem lies on the fact that an IT service firm produces services, not physical 

goods. Our model captures the more complex characteristics of service firm: the IT workers 

(servers) are rented for a random amount of time and they remain available again in the firm 

(system) to serve the next project (job) after serving the current job. 

Our problem can be reduced to the stochastic knapsack problem (Ross 1995). A 

stochastic knapsack consists of c identical servers and K job classes arriving. Each class is 

characterized by its size, , arrival rate, kb kλ  and mean holding time, kμ/1 . If an arriving class-k 

job is admitted into the knapsack, it holds  servers for a service time which is exponentially 

distributed with mean 

kb

kμ/1  and releases  servers simultaneously after the service time 

generating a reward, . The objective of the problem is to control admission of jobs into the 

knapsack in order to maximize total reward. Admission controls in a stochastic knapsack 

problem have been studied by many researchers with various setups (Ross 1995; Ormeci and 

Burnetas 2004; Papastavrou, Rajagopalan and Kleywegt 1996). Any of these prior models does 

not capture all the requirements of our problem. In order to obtain the global optimal admission 

control solution for the stochastic knapsack problem, we employ Markov decision processes to 

optimize over the set of all policies (Ross 1995; Ross and Tsang 1989).  

kb

kr
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3 Model Development and Assumptions 

Our model considers an IT service firm that receives IT projects through two channels: a 

conventional procurement channel and an online auction spot market. The firm first fulfills the 

orders from the conventional channel and then decides whether to participate in the online 

auction depending on the current workforce. The assumptions made in our model are as follows: 

(1) There is neither staff augmentation nor loss during the period considered in the 

analysis. That is, the total number of IT workers in the firm remains constant.  

(2) The contract price (i.e., the project value) is an increasing function with respect to 

team size and project duration. 

(3) The pool of IT workers is composed of homogeneous developers/programmers 

both in terms of their skills and performance. Although each project team in the real world 

typically consists of a different number of developers with varying skills and experience, we 

restrict our focus to homogeneous workers at this preliminary stage of analysis. However, the 

model can be extended to allow heterogeneous workers. 

(4) The effects of employee training and experience on a worker’s quality 

improvement are ignored. However, we may consider introducing the aspect of employee’s 

quality improvement due to training into the model later. 

(5) The market is segmented according to project sizes. Specifically, the conventional 

channel consists of those projects with larger sizes and slower arrival rates, and projects with 

smaller size and more frequent arrival rates comprise the online channel. 

(6) The projects of each class arrives according to Poisson distribution with rate iλ . 

(7) The project duration of each class follows exponential distribution with mean 

1/ iμ . 

The workforce management problem in the IT service firm is modeled as a dynamic 

admission control problem in a two-class Markovian loss service system with multi-servers 

receiving random batches. The schematic diagram of the two-class channel system is depicted in 

Figure 1. The summary of notations for a general multi-class channel system is given in Table 3.  
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FIGURE 1. A schematic model of the system for the e-lancing revenue management

Loss 

 
 
 
 
 
 
 
     

    IT Service Provider 

Conventional channel   
Preferred clients 

1λ , 1 1( )g j , 1μ  

Online channel 
Spot clients 

2λ , 2 2( )g j , 2μ  

A pool of 
servers 
(IT workers) 

1( ,..., )kx x=x

Queue class1 Admission control 
and pricing

Queue class2 
( )n

ia ix,  , 2r  

Reject 

 
The IT staff pool in the IT vendor is represented as a pool of multi-servers. The incoming 

projects are modeled as two customer classes. The first class of projects requires an immediate 

and high-priority service since there is a significant penalty such as 1μ  < 2μ  if the demand in the 

conventional channel is not satisfied with priority. The second class of projects is served in a 

low-priority fashion, where the IT service firm is allowed to control the arrival of the orders by 

means of auction participation control. The arrival of each project requires a number of IT 

workers, , simultaneously with probability ij ( )i ig j , which implies a bulk arrival. If the project is 

admitted,  workers are released at the same time after a project duration with mean 1/ij iμ .  

 

TABLE 3. Summary of Notations 

c Total number of workers (IT Professionals) in the IT service firm. 

K Total number of channels. (K=2) 

iλ  Expected class-i project arrival rate, 

iλ 1 1 1 2 2 2( ) ( )g j g jλ λ= + =
1

( )K
i ii

g jλ
= i∑  

1/ iμ  Expected class-i project duration  

ij  Team size (project load): The number of workers required within one project 

of class-i. 

( )i ig j  Probability distribution function of team size. =P[team size=( )i ig j ij ] 

( )na ix,  Action parameter for class-i projects when the state is ( )x, j at the nth 
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decision epochs. 1 for admission and 0 for rejection. 

ix  Number of busy workers working on class-i projects 

1( ,..., )Kx x=x  Vector of number of busy workers 

( )ix,  

= ( 1,..., ,Kx x  ) i

State parameter which indicates that ix  class-i jobs are observed in the 

system when a class i has arrived. 

(nV ix, )   The maximal total expected reward for the system starting in state ( )x, j  

over n decision epochs in the horizon. 

δ  Discount factor 

ir  Class-i project price per man month 

2( , )P r q  Probability of winning the auction given the IT service provider’s quality 

and bidding price . q 2r

 

We define state ( )ix, = ( 1,..., ,Kx x i ), which indicates that ix workers working on class-i 

projects are observed in the system when a project of class i has arrived. The state space is: 

1 1
1

{( ,..., , ) | ,..., 0,1,..., ; ; 0,1,.., }
K

K k i
i

S x x i x x c x c i K
=

= = ≤∑ = . 

The system is in state ( 0)x, if there are 1( ,..., )kx x=x busy workers in the system and no 

arrivals of project. In state ( , the only action is to leave the system alone and hence action 

a=0 is the only feasible decision.  In state (

0)x,

0)i ≠x, observed only at arrival epochs, the decision 

maker may admit or reject the incoming project, so that 1( ,..., , 0) {0,1}Ka x x i ≠ ∈ , where action 0 

corresponds to rejecting and 1 to admitting the arriving project. Moreover, state (  refers 

to the instantaneous states at the arrival epochs. As soon as the admission and rejection decisions 

are made upon an arrival, the system moves immediately to another state 

0)i ≠x,

1( ,..., i ix x a j+  

 according to the decision made. ,.., ,0 )Kx

Note that the original problem is a continuous-time Markov decision process where the 

times between decision epochs are exponentially distributed with a state-dependent rate. We use 

the well-known uniformization technique which allows us to obtain the equivalent process with 

uniform sojourn time distribution in every state (see Lippman 1975). In the uniformized system, 

the system state is observed at random times which are exponentially distributed with the state-
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independent, constant transition rate, which is called the uniformization constant. Therefore we 

can use the algorithms for discrete-time Markov decision process after uniformization. For 

uniformization, we consider the service completion epochs as fictitious decision epochs in 

addition to the real decision epochs which are the arrival epochs of projects. Note that 

uniformization adds more decision points at service completion and fictitious service completion 

points while the actual meaningful decision needs to be made only at the arrival points. Although 

it increases the number of states and hence the number of additions and multiplications, it leads 

to sparser transition matrices and thus accelerated algorithms (Ross and Tsang 1989; Tijms 1986 

pp 213-214, Puterman 1994 Chapter 11). Therefore it is recommended applying uniformization 

when analyzing continuous-time Markov decision processes. 

 

 

 

1 1 2( , , 0 )x j x−  

1 2 2( , ,0)x x j−  1 2( , , 2)x x  

1 2( , ,1)x x  

1 2 2( , ,0)x x a j+  

1 1 2( , ,0 )x a j x+  

{ }1 1 1 1( )x g jμ  

{ }1 2 1 1 2 2( )c x xμ μ μ μ+ − −  
2 2 2{ ( )}g jλ  

{ }2 2 2 2( )x g jμ  

1 2( , ,1) {0,1}a x x ∈  

1 2( , , 2) {0,1}a x x ∈  

{ }1 1 1( )g jλ  

1 2( , ,0 )x x  

FIGURE 2. Symbolic representation of the state transition structure: The numbers in brackets 
represent the transition probability after uniformization and normalization. The dotted circles 
represent instantaneous states. Each ending node recursively continues its transition as in state 

1 2( , ,0 )x x in the center. 

1 2( , ,0) 0a x x =  
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For our specific problem, we consider a 2-channel system (K=2). We define the 

uniformization constant to be 1 2 1 2(c )λ λ μ μ+ + + , the maximum possible rate out of any state. 

We normalize it by assuming 1 2 1 2(c )λ λ μ μ+ + + =1. At each transition epoch, we have one of 

the following transitions with the corresponding probability: an arrival of projects with 

probability , a service completion with probability 1 1 1 2 2 2( ) ( )g j g jλ λ+∑ ∑ 1 1 1 1( )x g jμ ∑  + 

2 2 2 2( )x g jμ ∑ , and a fictitious service completion due to uniformization with probability 

1 2 1 1 2( )c x 2xμ μ μ+ − − μ . Figure 2 illustrates the possible transitions and the transition 

probabilities.  

Based on the Bellman equation, the maximal total expected reward for the system starting 

in state (  over n decision epochs in the horizon for a 2-class system (K=2) yields the 

following recursive relation: 

0)x,

1 2
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1 2

2
2

1 2

1 2

( )
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( )
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1 1
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=
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, ,

( ( ) ) ( , ,0) } / ( 1)n

x j

c x x V x xμ μ μ μ δ−

−

+ + − − +

0)

 

 
2 2

1 1
0 n

i i
i i

x a j c
= =

≤ + ≤∑ ∑  

The IT service firm’s problem is to decide whether to participate in an online auction and 

determine a bid price. The goal is to dynamically control the auction participation rate and hence 

the number of idle workers over an infinite horizon. The first two terms represent the admission 

controls for incoming class-i projects. The manager needs to decide whether to admit ( =1) or 

reject ( =0) the incoming project to maximize the profit. Then, the corresponding state 

becomes  for the incoming class-1 projects and  for the 

incoming class-2 projects regardless of the decision. When the incoming project is admitted, the 

reward 

na

na

1 1 2( ,x a j x+ ,0) 1 2 2( , ,0)x x a j+

/n
i i i ia j r μ is accumulated. The firm’s profit from the online spot channel (class-2) depends 

on the probability of winning the auction. The probability is a function of the quality of the firm, 
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the bid price, the number of bidders and other parameters (Snir and Hitt 2003). The third and 

fourth terms represent the service completions of class-i projects. The fifth term is due to the 

uniformization. Finally, 1/(δ +1) is multiplied for δ -discounting effect (Tijms 1986; Puterman 

1994). The optimal policy is obtained by using the value-iteration algorithm over infinite horizon 

(See Tijms 1986; Puterman 1994) and the results are illustrated in the next section.  

 

4. Numerical Computation 

Several numerical examples have been solved by using value-iteration algorithm to 

investigate the structure of the optimal policy. The primary result is that the optimal policy is not 

of the threshold type, where the secondary market project (class 2) is admitted if and only if the 

number of idle workers in the firm is less than a fixed threshold. Rather, the optimal policy is of 

a more complex form as seen in Figure 3, 4, and 5. The complexity of the optimal policy implies 

that manual, ad-hoc decisions on IT professional staffing might cause excess idle workers and 

loss in revenue and therefore the presented model is useful as a decision support tool to provide 

the optimal policy. 

The optimal policy appears to depend on the arrival rate ratio, the project duration ratio, 

the reward ratio, and the bulk sizes in two channels. Although our examples assume the uniform 

distribution of bulk sizes, other distributions could be used. For simplicity, we set =1 and 

leave the further examination of the effect of the online auction parameters as future research.  

2( , )P r q

 

4.1. The effect of arrival rate 

Keeping other parameters constant, the experiments were performed to examine the 

effect of arrival rate of projects. As the relative arrival rate of class 1 increases, the system rejects 

more projects of class 2. In Figure 3, when the ratio of the class-1 arrival rate to the class-2 rate 

is 4 (the upper left plot), the optimal policy shows square symbols in majority of states, 

indicating that the optimal policy accepts class 1 but rejecting class 2 in most of states with a few 

class-2 admissions. As the ratio decreases to 1 (the lower right plot), more circles and diamonds 

are observed, indicating that the optimal policy accepts both classes in many states and accepts 

class 2 but rejects class 1 in some states, respectively.  

The effect of the relative arrival rates on the behavior of the optimal policy can be 

interpreted as the tradeoff between the risks of having idle workers and the expected future 
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reward. When the demand in the primary channel is low (the arrival rate of class 1 is slow), there 

is higher risk of having excess idle workers in the future, and therefore the optimal policy admits 

more class 2 projects. For example, when the arrival ratio is 2, the optimal policy blocks class 2 

in state (10, 10) in order to ensure enough number of workers for a future arriving class-1 project 

because the system is willing to wait for the high-profit margin project at the cost of taking risk 

of having future idle workers. On the other hand, when the ratio is 1, the optimal policy admits 

class 2 in the same state (10,10) to mitigate the risk of having idle workers in the future after 

realizing the low demand of class 1.  
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4.2. The effect of project duration 

The effect of project duration (1/ iμ ) is illustrated in Figure 4. Note that the project 

duration is related to the magnitude of the reward as well as the rate of busy workers being 

released free in the next epoch. As the relative project duration of class 1 is longer (the upper left 

plot in Figure 4), the optimal policy blocks incoming class-2 projects in more states. It is because 

the longer project duration of class-1 project makes the class-1 projects more attractive by 

generating greater revenue.  
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FIGURE 4. The effect of project duration 
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4.3. The effect of reward 

The magnitude of reward of each class is directly related to the attractiveness of the class. 

It is evident in Figure 5 that as the relative reward of class 2 increases, the optimal policy rejects 

class-2 projects in more states. In Figure 5, the upper left plot is when the relative reward of class 

2 is the highest and the lower right plot is the lowest relative reward of class 2. An interesting 

point of this analysis is that the decision maker can obtain information about how deep discount 

to offer to clients in online channel compared to the primary channel in order to maximize the 

utilization of its workers depending on various other parameters in two channels. 
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c=24, 1 2 1 2 2 1 22, 1, 0.1, 0.1, 5, ~ (5,7) , ~ (1,1)r j U j Uλ λ μ μ= = = = =  

 

4.4 The effect of team size 

The experiments to study the effect of team sizes in each class have been conducted. The 

interpretation of the results is currently in progress. Keeping other parameters constant, the 

comparison of revenues with different team sizes in both classes will be conducted. 

 

5. Concluding Remarks and Contribution 

Historically, the way people do business has been affected by the coordination 

technology available. Improved network technology, i.e., coordination technology, has 

introduced new commercial opportunities to e-lancers by providing increased efficiency through 

reduced transaction costs. TThis decentralized, individual-oriented electronic market mechanism 

will be essential for a strategic sourcing to design agile organizations by deploying resources 

quickly and efficiently in response to diverse market changes. The key contribution of this study 

is to examine a new revenue model, verify its feasibility and effectiveness, and provide a 

dynamic strategy to successfully implement this revenue model.

One theoretical contribution is to expand the knowledge of yield management literature, 

concentrated mainly on physical goods, into the IT service industry. From a methodological 

perspective, our model captures the most important characteristic of IT projects where if a 

project is admitted, it seizes a random number of workers simultaneously, then it releases all the 

workers at the same time after occupying for the project duration. In addition, implementing two 

job classes requiring different service rates with random batch arrivals into the standard Markov 

decision model is a distinctive contribution, providing a benchmark model which will be useful 

to investigate various demand control problems of IT service providers. On a practical level, 

given growing competition in the IT service industry, the analysis of the optimal auction 

participation control policy will provide managerial insights applicable to the management of 

excess manpower for offshore and US-based IT service firms such as IBM, Accenture, and EDS.  

Certain assumptions, of course, would need to be relaxed to accommodate real world 

conditions more precisely. Nevertheless, we believe that the model captures the essential factors 

to analyze the value of the emerging e-lancing market. It would be interesting to incorporate the 

notion of risk into the model. The model can take the project management risk such as scope-
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creeping and scheduling overrun into account. This paper considers only one side of e-lancing 

application where the IT service provider serves as an e-lancer in order to disposes of its 

available capacity when the market demand is low. Another interesting research topic that we 

wish to investigate in future is the flexible staffing model with which an IT service provider 

contracts with individual e-lancers in e-lancing markets for flexible staffing management when 

market demand is high. 
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