Econ 635 Fall 2009: Problem Set 1

Instructor: Kanda Naknoi

October 28, 2009
Due date: November 11, 2009

Instruction: Answer 2 out of 3 questions below.

1. (20 points: Filtering techniques) Download the Dataset 1 from the course website. It contains quarterly series from the national income accounts of Australia and the U.S. from 1959:3 to 2008:4, and also their nominal exchange rate. (See the "Readme" sheet for the description of data.) Note that you must turn in your m-files with your answers.

(a) (5 points) Filter the trade-balance-to-GDP ratio, and the logarithm of output, consumption, inflation and real exchange rate (RER) series, with the Baxter-King (BK) filter, to keep the periodic components lasting from 6 to 32 quarters. Set the lead/lag number to 12. Which variable is the most volatile? Which variable is the most persistent? Which variables are procyclical? Which variables are countercyclical? Which variable has the highest cross-country correlation?

(b) (5 points) Use the nominal exchange rate series to split the sample into a fixed exchange rate period and a flexible exchange rate period. Redo the exercise in Part (a) for each sub-period. How does exchange rate system influence the business cycles properties of these variables?

(c) (5 points) Experiment the BK filter with the logarithm of RER with the following lead/lag numbers: 10, 11, 13 and 14. Discuss how they change the business cycle properties of RER, comparing to Part (a).

(d) (5 points) Filter the logarithm of RER with the 1st-difference filter and the HP filter with $\lambda = 1600$. Compare the results with the properties of RER in Part (a).

2. (20 points: Current account in a two-period model) Consider a two-period small-open economy model taking the world interest rate as given. There is a representative consumer who lives for 2 periods. The consumer faces the world real interest
rate r. Assume the following period utility function.

$$u(C_t) = -\gamma \exp(-C_t/\gamma)$$

$\gamma > 0$ The representative individual maximizes $U(C_1) + \beta U(C_2)$. The output of consumption good Y_t is produced from the capital stock K_t with the production function $Y_t = A_t K_t^\alpha$. The initial capital stock is given by K_1. The capital accumulation process is as:

$$K_2 = K_1 + I_1.$$

A unit of the capital good is produced from n units of the consumption good. The reverse transformation from a unit of capital good to n units of the consumption good is also possible. For simplicity, assume that $\beta = 1/1 + r$.

(a) (5 points) Define the consumer’s utility maximization problem. Then derive the optimal choice of the investment in the 1st period.

(b) (5 points) Suppose the efficiency in the capital-good sector increases in the 1st period. How does this change affect current account? Explain analytically and diagrammatically.

(c) (5 points) Suppose the efficiency in the capital-good sector is anticipated to rise in the 2nd period. How does this change affect current account? Explain analytically and diagrammatically.

(d) (5 points) Suppose the efficiency in the capital-good sector increases permanently (i.e. in both periods). How does this change affect current account? Explain analytically and diagrammatically.

3. (20 points: Current account in a multi-period model) Assume perfect foresight and consider a small-open economy in which $\beta = 1/1 + r$ and government consumption is zero. The period utility function is given by:

$$U(C_t) = \log(C_t).$$

The investment I_t is subject to the installation cost given by:

$$\Phi(I_t, K_t) = \frac{\chi I_t^2}{2K_t}.$$

The production technology is given by:

$$F(K_t) = A_t K_t^\alpha.$$

The dynamics of capital accumulation is subject to a depreciation rate δ, $K_{t+1} = (1 - \delta)K_t + I_t$. Assume that $A_t = 1$ in the long run.
(a) (5 points) Derive the shadow price of capital, or Tobin’s q, in the long run. How does it depend on the adjustment cost parameter χ?

(b) (5 points) Derive the dynamics of capital stock and Tobin’s q.

(c) (5 points) Linearize the dynamic equations in Part (b) around the steady state, and illustrate the dynamics using the 2-dimension plane (K_t, q_t).

(d) (5 points) Explain the effect of an unexpected permanent increase in productivity on the correlation of saving and investment.