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Abstract

We introduce a new Stata command for the Maximum Likelihood estimation of
models with unobserved heterogeneity including a Roy Model. Our command esti-
mates models with up to four latent factors. It allows the unobeserved heterogene-
ity to follow general distributions. In that regard, it differs from the SEM module
in Stata as our command does not rely on the linearity of the structural equations
and distributional assumptions for identification of the unobserved heterogeneity.
It uses the estimated distributions to numerically integrate over the unobserved
factors in the outcome equations using a mixture of normals in a Gauss-Hermite
quadrature procedure. Our command delivers consistent estimates including the
unobserved factor loadings in a wide array of model structures.
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1 Introduction

Unobserved heterogeneity has become a particularly relevant topic in modern applied
microeconomics (Keane and Wolpin, 1997; Cameron and Heckman, 1998, 2001; Carneiro
et al., 2003; Heckman et al., 2006; Urzua, 2008; Sarzosa and Urzua, 2014). However,
its adequate analysis requires the use of structural models that are often tailored to the
needs of each particular research project. This reflects the fact that the research com-
munity lacks the tools needed for the systematic inclusion of unobserved heterogeneity
in practical analyses. At the same time, the advances in computational capability has
facilitated the estimation of structural models to a point where is now conceivable to

run some of these models in standard available computers.

In this article, we discuss the implementation of factor models for the estimation of
structural equations in the presence of unobserved heterogeneity, and a new Stata
command that estimates them. The routines we introduce allow the calculation of
consistent estimates including the loadings of the unobserved factors in a number of
structures. The family of structural models we address is related the structures used
in Carneiro et al. (2003); Heckman et al. (2006) and first introduced by Joreskog and
Goldberger (1972), Cameron and Heckman (1998) and Cameron and Heckman (2001).
The most salient feature of these models is the presence of a factor structure that
provides a parsimonious specification to identify unobserved heterogeneity and its effects
on the outcomes of interest. Unlike the SEM module in Stata, our command does not
rely on the linearity of the structural equations and distributional assumptions for
identification. Instead, the distributions of the unobserved factors are identified non-

parametrically relying on the contributions of Kotlarski (1967).

As it will be shown below, this type of structural models have a wide range of appli-

cations. Recently, the treatment effect literature has embraced this kind of models not



only because they provide a way for estimating treatment effects depending on the level
of unobservables, but also because controlling for unobserved heterogeneity allows the
simulation of counterfactuals. This procedures can also be used to estimate the param-
eters of a measurement system that contains unobserved attributes. In particular, this
setting could relate to the skills literature, where cognitive and non-cognitive skills are
unobservable characteristics of individuals that influence their decisions and outcomes
later in life (see Heckman et al., 2011; Prada and Urzua, 2013; Sarzosa and Urzua,

2014).

The remainder of the article is organized as follows. In section 2, we review the factor
model structure and discuss the mechanisms that allows us to identify key parameters.
The implementation of our estimation routines, including thy syntax of the command
is discussed in section 3. Then, in section 4, we provide some examples using both

simulated data and the NLSY79. Finally in section 5, we conclude.

2 Factor Model Estimation

The type of structural models that our command can handle can be described as a
set of measurement systems that are linked by a factor structure. This is the type
of models considered by Hansen et al. (2004), Heckman et al. (2006), Heckman and
Navarro (2007), Heckman et al. (2006) and Sarzosa and Urzua (2014). In a general

setup, suppose we face the following linear system:

Y =Xy 8 +UY

where Y is a M x 1 vector of outcome variables, Xy is a matrix with all observable

controls, and UY is a vector that contains the unobservables for each one of the M



outcome equations with a factor structure of the form UY =AY® +eY. Hence, we can

expand the linear system to

Y =Xy Y +AYO +e¥ (1)

where © is a ¢ x 1 vector that contains the ¢ dimensions of unobserved heterogeneity
(i.e., ¢ latent factors), AY is a M x ¢ matrix that contain the factor loadings for each type
of unobserved heterogeneity, and eY is a vector of error terms with distributions feum (*)
for every m = 1,..., M. We assume that e¥ 1 (©,Xy), and also that ¥ L e¥% for
1,7 =1,..., M. Furthermore, we assume the the vector ® has associated a distribution
fo(-). Hence, the econometrician does not observe the actual value of ® for each

observation. Instead, he knows/estimates the distributions they are drawn from.

The measurement system (2) can be used to identify vectors a¥* and a¥'B, albeit
under very stringent constraints and assumptions Aakvik et al. (2000). As indicated
by Carneiro et al. (2003), the estimations that come from the factor structure will gain
interpretability and will require less restrictions for its identification if a measurement
system—also linked by the same factor structure—is adjoined to the system (1). This
system can be used to identify the distributional parameters of the unobserved factors.

This adjoined measurement system would have the following form:

T=Xr8" +ATO +e" (2)

where T is a L x 1 vector of measurements (e.g., test scores), X is a matrix with
all observable controls for each measurement and AY is a L x ¢ matrix that holds the
loadings of the ¢ unobserved factors. Again, we assume that (@, X7) L e, that all

the elements of the L x 1 vector eT are mutually independent and have associated



distributions f. (+) for every h=1,..., L.}

2.1 Identification of the Adjunct Measurement System

The command can handle up to four factors. However, for presentation purposes we
will describe the estimation process using a two-factor model.? In the two-factor case

equation (1) becomes
Y = XYBY + aY,AeA + aY,BeB + eY (3)
and equation (2) becomes

T = X087 + aT404 + aTBeP + &7 (4)

To explain how the parameters of the adjunct measurement system (4) are identified,

let us focus on the matrix COV (T |Xr) whose elements in the diagonal are of the form:
COV (T, T; |Xr) = (™) 024 + "4 Bogags + (7F) 625 + 0%, (5)
and the off-diagonal elements are of the form:

COV (T;, T; | X7) = a0, + (aTi’AaTj’B + ozTi’Bosz’A) ogagn + i PaliBal,
(6)
As it is, the model is underidentified (Carneiro et al., 2003). Therefore, identification

requires some assumptions. First, we need 84 L 67, so 0gags = 0 in (5) and (6).> The

'For the Maximum Likelihood procedure we describe below, we assume f.» (-) are normal distribu-
tions. This is a relatively mild assumption as these come from the idiosyncratic variation that remains
after controlling for observed controls und unobserved heterogeneity.

2The extension to three and four factors is straightforward.

3Using higher moments of the distributions Heckman and Navarro (2007) show that identification



second assumption relates to the minimum number of measurements we need to have
per factor. Notice that the diagonal elements of COV (T |Xs) have the variances of
the idiosyncratic errors, while the ones the off-diagonal do not. Hence, once we identify
the rest of the model parameters, the diagonals will identify ogTh for h = 1,..., L.
Then, following Carneiro et al. (2003) we can use the L(L —1/2 off-diagonal elements to
identify the variances of the factors and their associated factor loadings. If we let k be
the number of factors we are using in the model—in the present example k£ = 2, then

we have k % L loadings. We then need that

L(L—1) L(L—1)
G A T N
y T ST

In our example where & = 2, this restriction tells us that L > 6. That is, we need
at least 6 test scores to identify the parameters of the measurement system with two

factors.

The next step for identification is to acknowledge that latent factors have no metric or
scale of their own. Hence, we need to normalize to unity one loading per factor, and the
estimation of all the rest of the loadings should be interpreted as relative to those used
as nummeraire.” To incorporate this into our notation, let us expand (4) into k& blocks
of size m,, such that ) _m, = L. That way, with out loss of generality, we set equal to

one the first loading in the first equation in each block. Therefore, in our example we

can be achieved even if the factor independence assumption is relaxed. Also, Sarzosa (2015) shows that
models with correlated factors can be identified if additional restrictions are impossed on the factor
loadings structure.

4This normalizations reduce by k the number of parameters to estimate. Therefore, the number of
measurements needed L is given by % > Lk+k—k, which simplifies to L > 2k + 1. Therefore, the
presence of two factors in (3) implies that there should be at least five measures in (4). Throughout
the routines we present in this paper, we will assume that we have at least 3k measurements.



get two blocks a and b. That is, we write (4) as

T — XTaﬂTa + OéT"‘,AeA + aTa,BeB + eTa
T — XTbﬁTb + aTb,AQA + aTb,BHB + eTb

with a4 = 1 and o”'"® = 1. where T7 indicates the first test in block x and T)"

indicates all tests different from the first one in block x. Then the off-diagonal elements

of COV (T |Xr) matrix follow one of the following cases:

COV (T, T [Xz) = a0 A02, + o™ Pa™ Bo2, 0
COV (T2, T Xz ) = o™ 40402, + BB o2,

CovV (T¢, TV | Xy) = oIhA 024 + T Bo2, )
COV (T¢, T! [Xr) = o™’ 403, + o™ P oy, (9)
COV (T, Ty [Xr) = o402, + o' BT o2, (10)
COV (T, T} |Xr) = o' Aalofs + o' PaliPag, (11)

for k = {a,b} and ¢ # j. These elements show that we are not able to identify o, and
o025 and the loadings without further restrictions. Carneiro et al. (2003) suggest that
the first restrictions should be a’""# = 0, a’2"% = 0 and a’3°® = 0. That is, the first

three tests in the first block can only be affected by the first factor. Then

COV (T, T¢ | Xp) = o202,
COV (T¢, T8 | Xp) = ™02,

COV (T3, T3 |Xr) = o' 4™ 407,



Then,

COV(T3, T Xr) _ qga COV(I3, T3 Xr) _ qpa COV(TH,TF[Xr) x4

CoV (17,13 [ Xr) FCOV (T, T3 | Xr) COV (1Y, T3 | Xr)

and hence we identify o3, from

OOV (13,13 |X7) ,

COV (T1a7T?(>l ‘XT) - COV (Tla TQa ’XT)O—QA

Identification of the loadings and variances associated with the subsequent factors re-
quire less restrictions. Note that under the assumption of ot = 0, (7) and (8)

become
COV (T8, T! |Xz) = T 462 and  COV (T2, TP |Xr) = o102,

respectively. Given that we already know o7,, we are able to identify all the loadings
associated with the first factor in all the subsequent blocks. This allows us to use (9),
(10) and (11) when s = b to identify 02 and a”"F as we already know the first part

of the right hand side of those expressions.

Finally, having identified all the parameters from the off-diagonal elements of the
COV (T |X7) matrix, we are able to identify the parameters in the diagonal. From
(5) and the restrictions we have imposed we get that the typical diagonal element of
COV (T |Xr) is

COV (T, T, |Xr) = (o) 03 + o7,

for K = {A, B}. Given that we have already identified the first part of the right hand

side of this equation, we can use the diagonal elements to identify azTi.

Now that we have identified all the loadings, factor variances and measurement residual



variances, together with the fact that the means of #4, 6% and eT

are finite—in fact,
equal to zero because we allow the measurement system (4) to have intercepts—we can

invoke the Kotlarski Theorem to use the manifest variables T to non-parametrically

identify the distributions of fya (-) and fys () (Kotlarski, 1967).°

2.2 Loadings Structures in the Measurement System

We have shown that identification requires some restrictions in the loadings structure.
The more general structure requires one normalization per factor and the first three
measurements of the first block to be affected only by the first factor. In our example
of two factors and using three measurements per block, the loadings structure can be

represented as

oA o TuB oA
OéT2 VA OéT2 ,B aTQ VA 0
- al3A o138 1 0
AT = - (12)
oTtA o TuB oA o TuB
oT5A  oT5.B oT5A  oT5.B
oTeA  oTe.B o TeA 1

Provided that the loadings structure fulfills the required restrictions, the choice of struc-
ture depends entirely on the data available. The triangular structure presented in (12)
allows for a block of measures that depend on both factors. For instance, grades and
education achievement scores depend not only on a cognitive factor, but also on a

non-cognitive one.

5The basic idea of the Kotlarski Theorem is that if there are three independent random variables
er,, er, and 6 and define 71 = 0 + ep, and Tz = 0 + eq,, the joint distribution of (71 73) determines
the distributions of er,, er, and 6, up to one normalization. Note that, given that we have already
identified all the loadings, we can write (4) in terms of T, = 6 + e by dividing both sides by the
loading. See more details in Carneiro et al. (2003).



If data permits the researcher can use a more restrictive loadings structure in which

only one factor affects each block of measurements. It will take the following form:

OéTl ,A OéTl ,B OéTl ,A 0
O(TZ VA O(TZ ,B aT2 VA 0
T alsA o138 1 0
AT — — (13)
OéT4 VA OéT4 ,B 0 OéT4 ,B
O(T5 VA O(T5 ,B 0 CYT5 ,B
aleA  oT6,B 0 1

This type of loadings structure will speed the estimation process as it requires the

procedure to estimate less parameters.

2.3 Estimation

We estimate the model (4) using maximum likelihood estimation (MLE). The likelihood

is
N

L= H// { foo Xy, 11, ¢4, CB) X o oo X for (X, T, ¢4, CP) | dEpa (CA) dFys (CB)
i—1

where we integrate over the distributions of the factors due to their unobservable na-
ture, obtaining BT oTA oTB Fya (+) and Fys (-). All the integrals are calculated nu-
merically using a Gauss-Hermite quadrature within a mixture of normals (Judd, 1998).
This guarantees the flexibility required to appropriately recreate the unobserved dis-
tributions in the estimation. Our routine does not impose normality on Fya (-) and
Fys (). Instead, it assumes they are distributed according to mixtures of two normal

distributions. Therefore, we estimate the distributional parameters of the normals and

10



the mixing probability. This way, we are able to identify a very wide range of possible

functional forms for Fya (-) and Fys ().

Having identified the distributional parameters of Fya (-) and Fys (+) from (4), we are

able to move on to estimate model (3). The likelihood function in this case is

N
o H// { Forr (Xyp Y1,C4CP) o fane (X, Yar, €4, CP) | dFpa (C7) dFgs (¢7)

This MLE will yield 3¥, ¥4 and o¥*B.6

Note that the two steps presented above can be joined and calculated in one likelihood

of the form:

eVl Xl,Y, A (¢B .. eYM XM7Y , A, B
e H// [ i Y1, ¢4 CB) X X fonr (Xyy,, Yo, €4, CF) dFyps (CY) dFys (¢P)

Xfel XTlaTlaCA CB) X fer (XTL7TL7CAaCB)

However, the two-step procedure is less computationally burdensome, especially if we

are estimating a model with two factors.”

2.4 The Treatment Effect Setting, a Roy Model

In this subsection, we go over the especial case of model (3) where there is a binary
treatment (e.g., to go to college) and a later outcome (e.g., wages earned at age 30).

This is one of the settings where the factor structure has received more attention (Heck-

Tn this two-step procedure, we use a Limited Information Maximum Likelihood and correct the
variance-covariance matrix of the second stage incorporating the estimated variance-covariance matrix
and gradient of the first stage (Greene, 2000).

"For the one factor case, equations (3) and (4) become Y = Xy 3Y +a¥0 +eY and T = X767 +
aTh 4 eT, respectively. And the likelihood function would be

6/1 XYNYLC) - X feyM (XYMaYMag)
L= H//[ X fer XT17T17C) coox for (X, T1, C) dFy (¢)

11



man et al., 2006; Urzua, 2008; Heckman et al., 2011; Prada and Urzua, 2013). The great
advantage the factor structure has in this setting is that potential outcomes are sep-
arable in observables and unobservables. That is, conditional on 6 and Xy, potential
outcomes are independent because any selection on unobservables is already accounted
for.® This allows researchers to simulate observationally identical counterfactuals per-
mitting the calculation of treatment parameters like ATE, ATT and ATUT for every

level of the unobserved heterogeneity.

Consider a model of potential outcomes inspired by the Roy model (Roy, 1951). Indi-
viduals must choose between two sectors, for example, treated and not treated, or high

school and college. The choice is based on the following decision model:
D =1[XpB"™ + a9 + o' PgP + eP > 0]

where 1 [A] denotes an indicator function that takes a value of 1 if A is true. Then, D is
the binary treatment variable and Xp represents a set of exogenous observable variables.
Depending on the selected sector (i.e., D = 1 or D = 0), individuals will experience
different outcomes. We denote these potential outcomes by Y] and Yy, respectively. Y;
can represent, for instance, the wages earned at age 30 by a college graduate, while Y
represents the wage earned at age 30 by a person that did not go to college. Therefore,
in a treatment effect setting, the system of equations (3) will represent both potential

outcomes and the choice equation. That is, Y = [Y1, Y, D]/. In this case the system

8Recall that e¥: | e¥i fori,j=1,...,M and i # j

12



would be:

p

XYBYl + aY1,A9A + OéYl’BQB + €Y1
Y, =
0
\
(
Xy fY0 + 0494 4 o0 BB 4 Yo
Y, =
0

\

itD=1
itD=0
itD=0
itD=1

D=1 [XDﬁyD + a¥r4ph + a¥p:ByB + el > 0]

The second step likelihood function is given by:

v 11 (X Yo, ¢4, ¢8) P 0 (Xy Ya, ¢4 ¢P) P
=11/ /
=1

x fP (Xp,Yp, (4, ¢P)

(14)

(15)

(16)

dFpa (¢*) dFys (¢P)

In consequence, we obtain different parameter values for each potential outcomes. That

is, the measures of the effects of observable and unobservable features on the outcome

differ depending on D.

2.5 Probit and Normal Regressions with Unobserved Hetero-

geneity

An especial case related to the one presented above is one in which the the vector

of outcomes is comprised only by the choice or treatment decision. That is, vector

Y = D, meaning that no potential outcome equations enter the second step. The

13



outcome equation to be estimated is (17). The complete likelihood would be:

D X ,Y, A’ B
r— H// 17 (Xp, ¥, ¢4, C7) dFys (¢*) dFys (¢P)
X fer Xy, T1, ¢4, CB) x oo X for (X, T2, ¢4, CP)
(17)

This structure should be interpreted as a probit of D on X that allows for the presence

of unobserved heterogeneity.

In a similar way, we can arrive to a particular case where there is no choice or treatment
equation and there is only one outcome Y. Then, the outcomes vector Y =Y, and the

outcome equation of interest will be:
Y = Xyﬁy + a0 + oV BeB 4 &Y

In this case, the complete likelihood would be:

L= H// Jor (X 1) dFya (") dFys (¢7)
Xfel XTNTlacA CB) e X feL (XTLaTLaCAagB)
(18)

This structure should be interpreted like a normal regression of ¥ on Xy that allows

for the unobserved heterogeneity.

3 Implementation

3.1 The syntax of heterofactor
The syntax of the command is as follows:

heterofactor depvar varlist X [if] [in}, scores (varlist_T) indvarsc(varlist_Q)

14



[ treatind (varname_D) instrum(varlist_Z) factors(#) nodes(#) initialreg
expl (varlist) exp2(varlist) exp3(varlist) exp4(varlist) triangular

fdistonly scndstponly twostep nohats nochoice choiceonly

sigmamixt11(#) sigmamixt12(#) mixtprobl(#) mumixtil(#)

sigmamixt21(#) sigmamixt22(#) mixtprob2(#) mumixt2(#)

sigmamixt31(#) sigmamixt32(#) mixtprob3(#) mumixt3(#)

sigmamixt41(#) sigmamixt42(#) mixtprob4 (#) mumixt4(#)

st2(#) st3(#) st6(#) std(#) st5(#) st9(#) st12(#)

resvar2(varname) resvar3(varname) resvar6(varname) resvard(varname)
resvar5 (varname) resvar9(varname) resvarl2(varname) numfitests(#)
numf2tests(#) firstloads(matname) firstgrad(matname) firstvarmat(matname)

level(#) log mle_options ]

heterofactor is implemented for Stata 11 by using the d0 estimator of ml. All like-
lihood routines are coded in Mata. These commands share the same features of most
of the Stata estimation commands that use maximum likelihood, including access to
the last estimation results and the options for the maximization process (see [R] max-
imize). Weights are not allowed. A description of the options that are specific to

heterofactor is provided below.

Options

Main

scores(varlist T specifies the variables that contains the scores of the measure-

ment system. That is, vector T in (4). There needs to be at least three

15



variables specified in wvarlist T per factor. Users may specify more than
three variables per factor for models with one and two factors. If the model
has three or four factors the user needs to specify three variables for the
third and fourth factors. The order of varlist T matters. Users must list
them in blocks, where each block should be affected by the same factor or
factors. Identification requires one loading normalization per factor. In con-
sequence, the loadings of the last test score in each block will be normalized.
For instance, if the model chosen has four factors, and wvarlist T contains
exactly three variables per factor, the loadings of the third, sixth, ninth and
twelfth variable will be normalized to one. This arrangement is somewhat
different if option triangular is specified. In that case, the factor structure
is the one presented in (12). That is, if f is the number of factors, the
first f — 1 sets of three measures provided in wvarlist T should only depend
on one factor each, while last set of three measures will be affected by all

factors.

indvarsc(varlist  ()) specify the observed variables that affect all test scores re-
gressions. That is, Xr in (4). Note that varlist @) can be the same as
varlist_ X. However, the user needs to specify both. There is no limit for
the number of variables that can be specified in varlist Q. If the user wants
to specify different controls for each set of three measures, options exp1 (),

exp2(), exp3() and exp4 () should be used.

treatind(varname D) specifies the choice variable when there is a choice equa-
tion in the model. varname D represents variable D in (16). varname D

indicates the assignment to treatment and it needs to be a binary variable.

instrum(varlist Z) specifies the observed variables that affect the binary choice

16



equation (i.e., Xp in (16)).
Model

expl(varlist) , exp2(uvarlist) , exp3(varlist) and exp4(wvarlist) includes more con-
trols to each set of three test equations in addition to those specified in
varlist_ () which are common to all. This way, the user can add regressors
that are believed to affect only one set of three scores and not the other

ones.

factors(#) specify the number of factors used in the model. # can be any integer

between 1 and 4. The default is 1.

fdistonly indicates Stata to only estimate the first step. That is, to estimate
only measurement system (4), and obtain the parameters that describe the
factors’ distribution Fj (-) and the factor loadings. No outcome equation
will be estimated. However, depvar and varlist X should be provided even

if they are not going to be used in the calculation.

scndstponly indicates Stata to only estimate the outcome equations. That is, to
estimate the system provided by (3). No factor distribution identification
take place. If scndstponly is specified, all the parameters that describe the
factors’ distributions Fy (+), the residuals of varlist T, their variances and
loadings should be provided by the user through additional options. This
option is useful if the user did the first step before and now she only needs

to estimate a new set of outcome equations based on the same factors.

choiceonly specifies that the model to be estimated in the second-step only
comprises a choice equation. The likelihood to be estimated is (17). No other
outcomes are estimated. Not even the potential outcomes equations (14) and

(15). The estimation using this option should be interpreted as running a

17



probit estimation allowing for the presence of unobserved heterogeneity.

nochoice specifies that the outcome equations in the model do not include the
binary treatment one. It indicates Stata that the model is not of the treat-
ment effect nature described in subsection 2.4. The likelihood is described in
(18) and has a unique outcome equation Y = Xy Y + Y404+ o898 4 €V
This should be interpreted as a linear regression allowing for the presence of

unobserved heterogeneity.

triangular indicates Stata that the measurement system in the first step has
a triangular loading structure like in (12). If triangular is specified, the
structure assumed for the measurement system is one that has one block of
scores that depend on all factors, and the rest of the block of scores depend
only on one factor each. This option is only valid for the two-factor case. It
should be noted that this option increases the computational time needed
for calculation. If triangular is not specified the loading structure assumed

is the one presented in (13).

numfltests(#) and numf2tests(#) specifies the number of tests used in each
block of wvarlist T. Specify only if the number is different from three. For
instance, if the user lists seven variables in varlist T, numfltests(4) and
numf2tests(3) are specified to indicate that the first four variables are the

first block and the last three variables are the second block.
Estimation

nodes(#) defines the number of points used in the Gauss-Hermite quadrature for
integration. The number defined can be either 4 or 10. While 10 nodes

provides more accuracy, integrating using 4 nodes is faster.

twostep divides the estimation process in two parts. First the factor identification

18



part (4) and then the outcome equations part (3). This option is only
available for the one-factor case. If factor(1) option is specified, the default

is no twostep.

initialreg makes the program calculate initial values using OLS regressions
of each equation separately. These initial values are different to the ones

provided by Stata in the absence of the initialreg option.

nohats estimated factor values 6 are not saved in data. This option speeds the

command execution, especially in big data sets.

Sometimes, the user needs to estimate several models that are based on the same factor
structure. In that case, the user needs to run the first step only once and save time by
running all the required models using only the second step. For that, the user needs to
specifying scndstponly and parameters that describe the distributions, the residuals,
the var-cov matrix, and the gradient of the first stage. The distributions Fjp (-) of
the factors are obtained using a mixture of two normals. Therefore, to fully describe
each factor’s distribution we need the standard deviation and the mean of each of the

normals, and the weight (probability) with which the two normals are combined.

If scondstponly is specified, the user needs to provide the parameters that describe

the distributions. They should be provided using:

sigmamixt11(#), sigmamixt12(#), sigmamixt21(#), sigmamixt22(#), sigmamixt31(#),
sigmamixt32(#), sigmamixt41(#) and sigmamixt42(# ) specify the stan-
dard deviations of the two distributions used in the mixture of normals that
describe the distribution of the first, specify the standard deviations of the
two distributions used in the mixture of the first, second, third and fourth
factors respectively. Note that given the transformations done in the code to

ensure the parameters remain in the valid range, the user needs to provide

19



the natural logarithm of the actual standard deviations. That is, if the stan-
dard deviation of the first normal of the first mixture is o1; = 1, the option
to be provided should be sigmamixt11(0). Note that the values displayed
int he output in the first stage are untransformed, and are the ones that

need to be provided as they are to these options.

mumixtl(#), mumixt2(#), mumixt3(#) and mumixt4(#) specifies the mean of the
first part of the mixture of each factor. The factor is centered at zero,
therefore the mean of the second part of the mixture can be obtained from
the equation oy + (1 — ) ug = 0, where g is probability used to combine
the mixtures, provided by exp(mixtprobl(#))/(1 + exp(mixtprobl(#))) in
the case of factor 1, exp(mixtprob2(#))/(1 + exp(mixtprob2(#))), in the

case of factor 2, and so on.

mixtprobl(#), mixtprob2(#), mixtprob3(#) and mixtprob4(#) specifies the
probability used to combine the two normal distributions into the mixture
of normals for the distribution each factor. As in the case of the standard
deviations, the value in mixtprob1l is a transformed one: the logit transfor-

mation of the actual mixing probability.

When scndstponly is specified, the user also needs to specify some of the variables
where the estimated residuals of varlist T are stored and their variances. This is done

using:

resvar2(varname), resvar3(varname), resvard(varname), resvarb(varname),
resvar6(varname), resvar9(varname) and resvar12(varname) are options
that should be used only when the scndstponly option has been specified.
They contain the residuals of the second to last and last variable of the

first block (resvar2(varname), resvar3(varname)), the third to last, the
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second to last and last variable of the second block (resvar4(varname),
resvar5(varname), resvar6(varname)), the last variable of the third block
(resvar9(varname)), and the last variable of the fourth block (resvarl2(varname)).
These residuals are given by the first step procedure under the names of
res4, __resd, __resb, __res9 and __resl12. The user

__res2 res3

) —— ) —— ) —— ) —— ) ——

can also provide them by constructing res = T — X737 where X are the
observable controls used in the first stage and 7 is the vector of coefficients

estimated in the first stage.

st2(#), st3(#), st4(#), stb(#), stb6(#), st9(#) and stl2(#) are options

that should be used only when the scndstponly option has been speci-
fied. These options allow the user to provide the standard deviations of the
residuals specified in resvar#. These variances are given by the first step
procedure. They should also be provided using the logarithmic transforma-

tion (i.e., as the were reported in the first stage).

When scndstponly is specified, the user also needs to specify some of the matrices
reported in the first stage in order to correct the standard errors of the second stage

for the fact that there was a previous step in the estimation. This is done using:

firstloads(namelist) provides the name of the matrix where the loadings of the

first stage are stored.

firstgrad(matname) provides the name of the matrix where the gradient of the

first stage is stored.

firstvarmat(matname) provides the name under which the var-cov matrix of the

first stage is stored.

21



3.2

1.

Further Remarks

heterofactor typically requires relatively large samples, especially if it is used
in more-than-one-factor setting. The user should note that the structural model
is not only estimating several parameters (i.e., BY a¥A o¥B BT oTA oTB ) but

also the distributions of unobservable attributes Fy ().

. heterofactor is computationally demanding because of the non-parametric way

the unobserved factors’ distributions are estimated. The use of numerical integra-
tion in a complex likelihood function, together with the numerical calculation of
the gradient and Hessian during the optimization processes put pressure on the
computational resources available. Consequently, the estimation time increases
with sample size, the number of observable controls, and the number of nodes used
in the Gauss-Hermite quadrature for the numerical integration. For instance, es-
timating the one-factor example presented in Section 4.1.1 took a MacBook Pro
with 3.1GHz Intel Core i7 and 16GB memory 302.51 seconds. The same machine

took 2155.38 seconds estimating the two-factor model presented in Section 4.1.2.

. There are trade-offs between estimation time and precision, smoothness and con-

cavity of the likelihood function. Larger samples and more nodes increase pre-
cision but increase estimation time. Analogously, the use of more observable
controls increases smoothness and concavity in the likelihood function. That is
the case, because the factors are being estimated from the residuals left after the
observed variables have been controlled for. Therefore, a “cleaner” residual leads
to an easier estimation of the factors and therefore a smoother likelihood to max-
imize. However, more observable controls imply higher dimensions of the Hessian

of the likelihood.

22



4. As explained in subsection (3.1), the estimated standard deviations and mixing

probabilities are in transformed terms. This is done to avoid the optimization

routine taking on unfeasible values. In particular, standard deviations should

be always positive and the mixing probabilities should always be in the (0, 1)

interval. Therefore the standard deviations are transformed using the exponential

function and the mixing probabilities are transformed using a logit function. In

consequence, if s is the number provided by the estimation results for the standard

deviations, then the actual standard deviation value is ¢ = exp (s). If the number

provided by the estimation results for the mixing probability is p, then the actual

mixing probability value is ¢ = exp (p) / (1 + exp (p)).

5. Some practical recommendations for heterofactor users are the following:

(a)

When doing the first exploratory analyses, the user should try with few
integration nodes. This will decrease estimation time, but will give a very

well informed indication on how the estimations will look like.

Given that the likelihood function is complex, convergence can be difficult.
Remember, more control variables (sensible and informative) facilitate con-
vergence. When convergence has been elusive, the user is encouraged to use
all the available tools in ML estimation to improve the chances of conver-
gence (see |R| maximize). For instance, Stata’s ML option difficult can
be very convenient. heterofactor, also provides the initialreg option,
which provides a set of initial values different to the ones provided by Stata.
As in any complicated likelihood, convergence might depend on the initial
values. Therefore trying with different sets of initial values in encouraged

when convergence has proven difficult.

6. heterofactor requires the matdelrc command that can be downloaded from the
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web by typing -findit matdelrc- in the command window.

7. The heterofactor routines are written in mata. Therefore, the are compiled and
kept in a library called lheterofactor.mlib (see [M-3| mata mlib). Make sure that
you place the library in a folder where Stata looks for it. However, that is not
enough. Before you call the library for the very first time, you need to type -mata
mlib index- in the mata prompt. See [M-3| mata mlib for details and further

explanation.

8. heterofactor creates the following variables every time it runs the first stage:

(a) __res#. Those are the estimated residuals for each variable in varlist T (i.e.,

res = T — X7 47), where # is given according to the order in varlist_T.

(b) mixt#. A random draw of the estimated distributions of #. They provide a
way to explore the shape of the distributions using. # represents the factor

number.

3.3 Post Estimation Stored Results

heterofactor saves numerous results in ereturn. The ones produced during the first
stage are crucial because they are the ones that are going to be used in a future second
stage estimation if needed. For instance, in the case of a two-factor model the main

stored results after the first stage are the following:

scalars:

e(\)
e(sf11)
e(sf12)
e(mull)

e(pl)
e(sf21)
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e(p2)
e(mu21)

e(sf22)

matrices:
e(b)
e(V)
e(gll)
e(V11)
e(sT2)
e(aT2)
e(sT1)
e(aT1)
e(coeff_T6)
e(coeff_T5)
e(coeff_T4)
e(coeff_T3)
e(coeff_T2)
e(coeff_T1)
e(ilog)

e(gradient)

functions:

e(sample)

Where e(sf11), e(sf12), e(mull), e(pl), e(sf21), e(p2), e(mu21l) and e(sf22)
provide the distributional parameters of the two factors. e(gll) and e(V11) provide
the gradient and the var-cov of the parameters in the first stage. e(aT1) and e(aT2)
are matrices that collect the loadings associated to each block in wvarlist T. e(sT1)
and e(sT2) are matrices that collect the variances of the estimated residuals for each
block in varlist_T. Finally, e (coeff_T#) are vectors that collect the coefficients of the

observable controls for each variable in varlist_ T (i.e., 87).

The main results stored after a second stage are the following:

scalars:

e(N)

25



e(avl)
e(av2)
e(sYO0)
e(a01)
e(a02)
e(al2)
e(a1l1)

e(sY1)

matrices:
e(b)
e (V)
e(coeff_Y1)
e(coeff_YO)
e(coeff_D)
e(ilog)

e(gradient)

functions:
e(sample)
Where e(avl) and e(av2) are scalars that collect the loadings of each factor in the
choice equation, e(a01), e(a02), e(al2) and e(all) are the scalars that store the
loadings of each factor for the outcome equations when D = 0 and D = 1 respectively.
In the same way, e(sY0) and e(sY1) are scalars storing the variance of the residual of
the outcome equations. Finally, matrices e (coeff_Y1), e(coeff_Y0) and e(coeff_D)
collect the coefficients of the observable controls for the outcome equations when D = 0

and D = 1 and the choice equation respectively (i.e.., Y0, ¥ and 37).

heterofactor estimates multiple equations and it is not compatible with the predict
postestimation command. Instead, it provides the users with vectors stored in e(.) to
create the predicted values of the desired equations (see [P| matrix score for details

on how vectors can be used to create variables with predicted values).
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4 Examples

In this section we present illustrations of the heterofactor command using both sim-
ulated and real data (i.e., the NLSY79). We use simulated data in order to have a

benchmark for the precision of the estimates in different structures.

4.1 Examples with simulated data

We will present three examples using simulated data, all of them using the treatment
effect structure. First, a one-factor model. Then, a two-factor model assuming a load-
ings structure as in (13). Finally, we present a two-factor model assuming a triangular

loadings structure as in (12).

In order to show how to empirically recover the parameters from this model, consider

the following parameterization:
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04 ~ 0.3N (0,1) 4 0.7V (—0.428,0.387)
0F ~ 0.5N (0,1) + 0.5N (—0.5,0.5)
(er,eyv, X, Z,Q) ~ N (0,1)

Ty =01401Q +1.1604 4+ ¢

Ty =0.540.1Q + 1.46" + e,

Ty =04 +0.3Q + 6 + e,

Ty =0.3+0.11Q +30% + ¢4

Ts = 0.4+ 0.21Q + 1.60% + e

T =0.1+0.31Q + 6% + ¢4

T: = 0.3+ 0.11Q + 3.16" + 30° + ¢;

Ts =0.4+0.21Q + 1.20" 4+ 1.60° + 5

Ty = 0.140.31Q + 26” + 65 + ¢,

{1 0572 +64+ep >0

0 otherwise
V) = 242X 4207 + eyn
Yo =15+ X + 0% +eyo

_J1 i 05Z 404465 +ep, >0
2T 0 otherwise

Vo1 =2+42X 4204 +260° + ey,
Yoo =154+ X +0%+6" +eyp

We create our data using the following Stata code:

. set seed 12345

. set obs 5000

obs was 0, now 5000

. gen ul=uniform()

. gen u2=uniform()

. gen f1 = rnormal () *sqrt(1)+1 if u1<0.3

(3486 missing values generated)

. replace f1 = rnormal()*0.622269-0.42857143 if ul>=0.3
(3486 real changes made)

. gen f2 = invnorm(uniform())*sqrt(1) + 0.5 if u2<0.5
(2536 missing values generated)

. replace f2 = invnorm(uniform())*0.70710678 -0.5 if u2>=0.5
(2536 real changes made)

. gen X=rnormal()
. gen Q=rnormal()
. gen Z=rnormal()
. gen uv=rnormal()
. gen ul=rnormal()
. gen uO=rnormal()
. forvalues i=1/12
2. gen e i =rnormal()
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. gen t1l =0.1 +0.1 *Q +1.1*xfl+el
. gen t2 =0.5 +0.1 *Q +1.4xfl+e2
. gen t3 =0.4 +0.3 *Q + fi+e3
. gen t4 =0.3 +0.11*%Q +3 *£f2 +e7
. gen tb =0.4 +0.21%Q +1.6%f2 +e8
. gen t6 =0.1 +0.31*%Q + f2 +e9
. gen t7 =0.3 +0.11*%Q +3.1*xf1 +3 *f2 +e7
. gen t8 =0.4 +0.21%Q +1.2*%f1 +1.6%f2 +e8
. gen t9 =0.1 +0.31*%Q +2 *f1 + £2 +e9

. gen D=(0.5%Z + f1 + uv>0)

. gen Y1 =2  +2xX + 2xf1 + ul

. gen YO = 1.5 + X+ f1+ u0
. gen Y =D*Y1 + (1-D)*YO

. gen D2=(0.5%Z + f1 + £2 + uv>0)

. gen Y21 = 2 +2xX + 2xf1 + 2%f2 + ul
. gen Y20 = 1.6 + X+ f1 + f2 + u0
. gen Y2 = D2xY21 + (1-D2)*Y20

4.1.1 One Factor

Here we present a simple case where the system is described by only one factor, as in
footnote 7. The command used is:

heterofactor Y X, treatind(D1) instrum(Z) scores(tl t2 t3) indvarsc(Q) difficult
initialreg
Resulting in

. heterofactor Y1 X, treat(D1) instrum(Z) scores(tl t2 t3) indvarsc(Q) factors(l) difficult initialreg

Estimating Initial Values Vector
Running Factor Model

Iteration 0: log likelihood -40882.22 (not concave)
Iteration 1: log likelihood = -38557.065 (not concave)

Iteration 6: log likelihood

= -35931.868
Iteration 7: log likelihood = -35931.69
Iteration 8: log likelihood = -35931.69
Number of obs = 5,000
Wald chi2(1) = 451.15
Log likelihood = -35931.69 Prob > chi2 = 0.0000
| Coef . Std. Err. z P>|z| [95% Conf. Intervall
_____________ o
D1 |
Z | .5068783 .0238641 21.24 0.000 .4601055 .5536512
_cons | -.0237893 .0251811 -0.94 0.345 -.0731434 .0255648
_____________ o
Y11 |
xw | 1.975667 .0276118 71.55  0.000 1.921549 2.029785
_cons | 1.997345 .042107 47.44  0.000 1.914817 2.079873
_____________ o
Y10 |
xw | 1.015075 .020827 48.74 0.000 .9742545 1.055895
_cons | 1.468498 .0315469 46.55 0.000 1.406667 1.530329
_____________ o
t1 |



.0998038
.0861379

.01589

.0206553

.0686601
.0456543

.1309476
.1266216

.0997367
.5030196

.0170335
.0242277

.0663516
.4555342

.1331219
.5505049

.302106
.4174916

.0157761
.0196586

.2711855
.3789615

.3330266
.4560217

2.122694
1.043721
1.019103
1.129494
1.482229
.0351039
.0098692
-.0006658
-.0093154
.0210075
.0030812
-.4976842
-.666261
.8015842

.0449329
.0433614
.0409113
.0242495
.0290633
.0258972
.0170994
.0120529
.0145453
.0114337

.033485

.0340155
.1045168
.0598374

2.034627
.9587339
.9389189
1.081966
1.425266
-.0156537
-.023645
-.0242892
-.0378236
-.001402
-.0625482
-.5643534
-.8711102
.684305

2.210761
1.128708
1.099288
1.177022
1.539192
.0858614
.0433833
.0229575
.0191928
.0434171
.0687106
-.431015
-.4614118
.9188635

Done Estimating Factor Model

. di exp(_b[sigfi:_cons])

.90781715

. di exp(_b[sigf2:_cons])

.62749649

. di invlogit(_b[pl:_cons])

.24802025

kdensity mixt, addplot(kdensity f1) scheme(sj) ///
legend(order(2 1) lab(l "Estimated Factor")

4.1.2 Two Factors

30

In this output, /a1l and /a0 indicate the factor loadings for the equation of ¥; and Y
respectively. In the same way, /av indicates the estimand of the factor loading in the
choice equation, while /aT1 and /aT2 are the factor loadings for measures 77 and Ts.
Note that the reported standard deviations (i.e., /sigf1 and /sigf2) and the mixture
combining probability (i.e., /p1) are transformed. To retrieve the actual values we need
to transform them back:

The command provides a random draw from the estimated factor distribution under the
name mixt. That is, the program creates a variable for the user to plot the distribution
that results from the estimated mixture of normals. Here, we use this variable to show
the accuracy of the estimation by comparing it with the true distribution of §4.

lab(2 "True Factor")) xtitle("")

Now we move on to the two-factor case assuming the loading structure presented in (13).
Therefore, we will use measures T to Tgz. The output will be divided in three parts:
one for the estimation of each factor’s distribution, and one for the estimation of the
outcomes and choice equations. We estimate the model using the following command:



Figure 1: Actual and Estimated Factor 1

Kernel density estimate

-4 -2 0 2 4

————— True Factor
Estimated Factor

kernel = epanechnikov, bandwidth = 0.1466

heterofactor Y2 X, treat(D2) instrum(Z) scores(tl t2 t3 t4 t5 t6) indvarsc(Q)

factors(2) initialreg difficult nohats

heterofactor Y2 X, treat(D2) instrum(Z) scores(tl t2 t3 t4 t5 t6) indvarsc(Q) factors(2)
initialreg difficult nohats

Estimating Initial Values Vector
Running Factor Model

Twostep option specified
Step: 1

Factor: 1

Iteration O0: log likelihood = -27963.837 (not concave)
Iteration 1: log likelihood = -26648.695 (not concave)

Iteration 9: log likelihood = -25333.818
Iteration 10: 1log likelihood = -25333.818

Number of obs = 5,000

Wald chi2(1) = 31.72

Log likelihood = -25333.818 Prob > chi2 = 0.0000

| Coef. Std. Err. z P>zl [95% Conf. Intervall

_____________ U
t1 |

Q| .1106338 .0196421 5.63 0.000 .072136 .1491316

_cons | .0934989 .0209643 4.46  0.000 .0524096 .1345882

_____________ A o
t2 |

Q| .1140862 .0227646 5.01 0.000 .0694685 .1587039

_cons | .512667 .0246802 20.77 0.000 .4642947 .5610394

_____________ o
t3 |

Q .3116778 .0188027 16.58 0.000 .2748252 .3485303

_cons | .4240101 .0199136 21.29 0.000 .3849802 .46304

_____________ S

/aT11 | 1.131651 .0266184 42.51 0.000 1.079479 1.183822

/aT21 | 1.500883 .0346451 43.32 0.000 1.43298 1.568786

/sigT1 | .0054918 .0143887 0.38 0.703 -.0227096 .0336931



/sigT2
/sigT3
/sigf1l
/sigf12

.0205502
.0523174
.131718
-.4001409
-.4858966
1.44179

Factor: 2

Iteration O:
Iteration 1:

Iteration 9:
Iteration 10:

Log likelihood

5,000
11.22
0.0008

/sigf21
/sigf22
/p2
/mu?2

.237533
.3118777

.2825401
.4101952

.3464181
.1257916

2.97854
1.617392
.1343799
.0119946
.0278601
-.1087575
-.2535018
-.3743883

1.008938

Second Stage:

Iteration O:
Iteration 1:

Iteration 5:
Iteration 6:

Log likelihood

5,000
354.40
0.0000

|
_____________ +
D2 |
Z |

_cons |
_____________ +
Y21 |
X |

_cons |
_____________ +
Y20 |

.5599605
.0419836

-.0210072 .0212032 -0.
.0273248 .0127516
-.0382022 .0866956 -0.
-.4788531 .04016 -11
-1.000756 .2626884 -3.
1.043295 .2033173
log likelihood = -32280.37
log likelihood = -30724.776
log likelihood = -27822.353
log likelihood = -27822.351
= -27822.351
Coef. Std. Err
.1498471 .0447385
.2250401 . 0443057
.2303199 .0266435
.3583129 .026471 13.
.3066849 .0202724 15.
.0861055 .0202484 4.
2.887153 .0466271 61
1.564409 .0270325 57.
.0762297 .029669
-.0180211 .0153144 -1
.0060149 .0111457
-.1622406 .0272878 -5
-.3072059 .0274006 -11
-.625175 .1279547 -4.
.8941899 .0585462 15.
Estimation
log likelihood = -56305.239
log likelihood = -55062.643
log likelihood = -53286.876
log likelihood = -53286.876
= -53286.876
Coef Std. Err
.5071589 .0269401 18.
-.0062522 .0246106 -0.
1.968805 .0306787 64.
2.009102 .0417183 48

99 0.322 -.0625647
14 0.032 .0023321
44 0.659 -.2081224
.92 0.000 -.5575653
81 0.000 -1.515616
13 0.000 .6448008
(not concave)
(not concave)
Number of obs =
Wald chi2(1) =
Prob > chi2 =
z P>|z]| [95% Conf.
35 0.001 .0621612
08 0.000 .1382024
64 0.000 .1780997
54 0.000 .3064307
13 0.000 .2669518
25 0.000 .0464193
.92 0.000 2.795765
87 0.000 1.511426
57 0.010 .0180796
18 0.239 -.0480368
54 0.589 -.0158304
.95 0.000 -.2157236
.21 0.000 -.36091
89 0.000 -.8759617
27 0.000 . 7794415
(not concave)
(not concave)
Number of obs
Wald chi2(1) =
Prob > chi2 =
z P>|z| [95% Conf.
83 0.000 .4543573
25 0.799 -.054488
17 0.000 1.908676
16 0.000 1.927335

2.028934
2.090868
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Figure 2: Actual and Estimated Factor 2 Using Structure (13)

Kernel density estimate

=
Doy
a
o 4
T T T T T
-4 -2 0 2 4
Estimated Factor
————— True Factor
kernel = epanechnikov, bandwidth = 0.1649
X | 1.017017 .0221343 45.95 0.000 .9736349 1.0604
_cons | 1.457208 .0335403 43.45 0.000 1.39147 1.522946
_____________ A
/a1l | 2.084713 .0370919 56.20 0.000 2.012014 2.157412
/a12 | 1.910914 .0361597 52.85 0.000 1.840042 1.981786
/a01 | 1.066335 .0420311 25.37 0.000 .9839559 1.148715
/a02 | L9777517 .0296384 32.99 0.000 .9196615 1.035842
/avl | 1.034998 . 0443362 23.34 0.000 .9481003 1.121895
/av2 | .9655901 .0363247 26.58 0.000 .8943949 1.036785
/aT21 | 1.484669 .0199244 74.51 0.000 1.445618 1.52372
/aT42 | 2.884038 .0252152 114.38 0.000 2.834617 2.933459
/aT62 | 1.56073 .0176811 88.27 0.000 1.526076 1.595384
/sigl | .0673842 .0321999 2.09 0.036 .0042735 .1304948
/sig0 | .001 .0196342 0.05 0.959 -.0374824 .0394823

When the model to estimate has 2 factors, the output includes an extra digit to identify
the factor it is referring to. For instance, in the second-stage estimation, /a1l indicates
the loading of the first factor in the equation for ¥; and /a12 indicates the loading of
the second factor in the same equation. That is a4 and o*Z. In the same way,
/a01 indicates o*®4 and /a02 indicates a*®®. In order to show the accuracy of our
estimates of Fyz ((), we plot it together with the real one in Figure 2.

kdensity mixt2, addplot(kdensity £2) scheme(sj) ///
legend(lab(l "Estimated Factor") 1lab(2 "True Factor")) xtitle("")

4.1.3 Two Factors - Triangular Loadings Structure

Now, we run a model that assumes that the measurement system (4) has a triangular
loading structure as in (12). Note that the estimation of the system that is affected by
the first factor is exactly the same as in subsection 4.1.2. Therefore, we omit that part
of the output.

heterofactor Y2 X, treat(D2) instrum(Z) scores(tl t2 t3 t7 t8 t9) indvarsc(Q)

factors(2) triangular difficult nohats
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heterofactor Y2 X, treat(D2) instrum(Z) scores(tl t2 t3 t7 t8 t9) indvarsc(Q) factors(2)
triangular initialreg difficult nohats

Estimating Initial Values Vector
Running Factor Model

Twostep option specified
Step: 1

Factor: 1
[Output Omitted]
Factor: 2

Iteration O: log likelihood = -62751.068 (not concave)
Iteration 1: log likelihood = -60586.731 (not concave)

Iteration 13: log likelihood = -53991.903
Iteration 14: 1log likelihood = -53991.789
Iteration 15: 1log likelihood = -53991.789

Number of obs = 5,000

Wald chi2(1) = 16.62

Log likelihood = -53991.789 Prob > chi2 = 0.0000

| Coef. Std. Err. z P>zl [95% Conf. Intervall

_____________ S
t7 |

Q| .1775851 .0435664 4.08 0.000 .0921966 .2629736

_cons | .2291283 .0483811 4.74 0.000 .134303 .3239536

_____________ A o o e
t8 |

Q| .2378664 .0253233 9.39 0.000 .1882337 .2874991

_cons | .3582543 .0275752 12.99 0.000 .3042079 .4123007

_____________ o
t9 |

Q| .329379 .0221729 14.86 0.000 .2859209 .3728371

_cons | .0928807 .0236972 3.92 0.000 .0464349 .1393264

_____________ A o o e

/aT41 | 3.239198 .0510511 63.45 0.000 3.139139 3.339256

/aTs1 | 1.229221 .0290314 42.34 0.000 1.17232 1.286121

/aT61 | 2.060524 .0270328 76.22  0.000 2.007541 2.113508

/aT42 | 2.909617 .0534597 54.43 0.000 2.804838 3.014396

/aTs2 | 1.552329 .0324726 47.80 0.000 1.488684 1.615974

/aTi1 | 1.118679 .0179589 62.29 0.000 1.08348 1.153878

/aT21 | 1.481497 .0191889 77.21 0.000 1.443887 1.519107

/sigT4 | -.0069295 .0359718 -0.19  0.847 -.0774329 .0635739

/sigTh | .0012072 .0156359 0.08 0.938 -.0294387 .0318531

/sigT6 | .0145307 .0132415 1.10 0.272 -.0114222 .0404837

/sigf21 | -.1259575 .0345348 -3.65 0.000 -.1936446 -.0582704

/sigf22 | -.3364971 .0361957 -9.30 0.000 -.4074393 -.2655549

/p2 | -.3397048 .1032454 -3.29 0.001 -.5420622 -.1373475

/mu2 | . 7849042 .0503796 15.58 0.000 .6861619 .8836465

Second Stage: Estimation

Iteration 0: log likelihood = -57322.997 (mot concave)
Iteration 1: log likelihood = -55183.622 (mot concave)

Iteration 5: log likelihood = -53153.727
Iteration 6: log likelihood = -53153.727

Number of obs = 5,000
Wald chi2(1) = 379.62
Log likelihood = -53153.727 Prob > chi2 = 0.0000
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Figure 3: Actual and Estimated Factor 2 Using Triangular Structure (12)
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kernel = epanechnikov, bandwidth = 0.1604
| Coef. Std. Err. z P>zl [95% Conf. Intervall
_____________ o o
D2 |
Z | .4985125 .025586 19.48 0.000 . 4483649 .5486602
_cons | -.0167719 .0231616 -0.72 0.469 -.0621677 .028624
_____________ o
Y21 |
X | 1.993162 .0229973 86.67 0.000 1.948088 2.038236
_cons | 1.97525 .029863 66.14 0.000 1.91672 2.033781
_____________ o
Y20 |
X | 1.023553 .0200909 50.95 0.000 .984175 1.06293
_cons | 1.456468 .0269527 54.04 0.000 1.403642 1.509294
_____________ e e
/all | 2.068437 .0380411 54.37 0.000 1.993878 2.142996
/al12 | 1.91965 .0301661 63.64 0.000 1.860526 1.978775
/a01 | 1.050172 .035932 29.23 0.000 .9797465 1.120597
/a02 | .99563106 .0291753 34.11 0.000 .9381281 1.052493
/avl | 1.002611 .0376846 26.61 0.000 .928751 1.076472
/av2 | .9590321 .0351233 27.30 0.000 .8901916 1.027873
/aT21 | 1.480445 .019431 76.19 0.000 1.442361 1.51853
/aT41 | 3.22221 .0483981 66.58 0.000 3.127352 3.317069
/aT42 | 2.893978 .0283124 102.22 0.000 2.838487 2.949469
/aTs1 | 1.217317 .0278293 43.74 0.000 1.162773 1.271862
/aTs2 | 1.54802 .0195086 79.35 0.000 1.509784 1.586256
/aT61 | 2.053388 .0256322 80.11 0.000 2.00315 2.103626
/sigl | .0266306 .0182996 1.46 0.146 -.0092359 .0624972
/sig0 | -.0118307 .0150991 -0.78 0.433 -.0414245 .017763

kdensity mixt2, addplot(kdensity f£2) scheme(sj) ///
legend(lab(1 "Estimated Factor") 1lab(2 "True Factor")) xtitle("")

Again, in order to show the accuracy of our estimates of Fys (¢) in this more complicated
setting, we plot it together with the real one in Figure 3.
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4.2 Example using the NLSY79

In this Section, we will present an example with real data. The data set used is the
National Longitudinal Survey of Youth (NLSY79). It is dataset that is widely used by
the research community (see for instance Heckman et al. (2006); Urzua (2008); Prada
and Urzua (2013)). In our example, we will estimate a Roy model where the endogenous
choice is whether or not the person went to college by age 25, and the potential outcomes
are the log of earnings by age 30. The adjunct measurement system is comprised by
the Armed Services Vocational Aptitude Battery (ASVAB) tests recorded during their
teenage years. The observable controls used in the test equations are race and mother’s
education. This last control is also used in the college enrollment decision. Finally, in
the earning equations, we control for race and experience.

heterofactor lnincome blackwhite ExperienceF Experience2, treat(HR_5)
instrum (HGC_MOTHER) scores(stASVAB_6 stASVAB_10 stASVAB_8) indvarsc(blackwhite
HGC_MOTHER)

. heterofactor lnincome blackwhite ExperienceF Experience2, treat(HR_5) instrum(HGC_MOTHER) ///

scores (stASVAB_6 stASVAB_10 stASVAB_8) indvarsc(blackwhite HGC_MOTHER)
Running Factor Model

initial: log likelihood = -23908.226
alternative: log likelihood = -19308.277
rescale: log likelihood = -19308.277
rescale eq: log likelihood = -12760.811

Iteration 0: log likelihood = -12760.811 (not concave)

Iteration 21: log likelihood = -10878.232
Iteration 22: 1log likelihood = -10878.231

Number of obs = 2188
Wald chi2(1) = 152.51
Log likelihood = -10878.231 Prob > chi2 = 0.0000
| Coef. Std. Err z P>zl [95% Conf. Intervall
_____________ A o
HR_5 |
HGC_MOTHER | .2440448 .0197617 12.35 0.000 .2053125 .2827771
_cons | -3.977122  .2557827 -15.55 0.000  -4.478447  -3.475797
_____________ o
lnincomel |
blackwhite | .0545235 .1332389 0.41 0.682 -.2066198 .3156669
ExperienceF | .0582035 .0129243 4.50 0.000 .0328723 .0835347
Experience2 | -.000468 .000138 -3.39 0.001 -.0007385 -.0001975
_cons | 1.627223 .3299871 4.93 0.000 .9804607 2.273986
_____________ o
1lnincomeQ |
blackwhite | .3306208 .0602065 5.49 0.000 .2126183 .4486233
ExperienceF | .0629075 .0069841 9.01 0.000 .049219 .0765961
Experience2 | -.0003744 .0000741 -5.05 0.000 -.0005197 -.0002291
_cons | LAT99472 .1643739 2.92 0.004 .1577802 .8021143
_____________ o
stASVAB_6 |
blackwhite | .6175045 .0523823 11.79 0.000 .5148372 .7201719
HGC_MOTHER | .0933385 .0072596 12.86 0.000 .0791098 .1075671
_cons | -1.579435 .0983605 -16.06 0.000 -1.772218 -1.386652
_____________ o
StASVAB_10 |
blackwhite | .4188891 .0469253 8.93 0.000 .3269172 .510861
HGC_MOTHER | .0880278 .0070668 12.46 0.000 .0741772 .1018785



cons | -1.345903  .0993812 -13.54 0.000  -1.540687  -1.15112

_____________ o
StASVAB_8 I

blackwhite | .6111189  .0568265  10.75  0.000 .499741 . 7224968

HGC_MOTHER |  .0676339  .0078114 8.66  0.000 .0523238 .082944

_cons | -1.285871 105387  -12.20 0.000  -1.492425 -1.079316

_____________ o

/al | .2686718  .0924776 2.91  0.004 .087419 .4499247

/a0 | .2871036  .0478504 6.00 0.000 .1933186 .3808887

Jav | 1.829669  .1091898  16.76  0.000 1.61566  2.043677

/aTi |  1.064874  .0456752  23.31  0.000 975352  1.154396

/aT2 |  1.663054 .0630574  26.37  0.000 1.539464  1.786644

/sigl | -.3036387  .0300436 -10.11 0.000  -.3625231 -.2447543

/sigd | -.2164866  .0175662 -12.32 0.000  -.2509156 -.1820575

/sigTi | -.4138092  .0171057 -24.19 0.000  -.4473358  -.3802827

/sigT2 | -1.311971 .076692  -17.11  0.000  -1.462285 -1.161657

/sigT3 | -.2876287  .0162171 -17.74 0.000  -.3194136 -.2558439

/sigfl | -1.624681  .1030396 -15.77 0.000  -1.826635  -1.422727

/sigf2 | -1.172679  .0643634 -18.22 0.000  -1.298829 -1.046529

/pl | -.6149592  .1085965  -5.66 0.000  -.8278045  -.4021139

/mul |  .5898844  .0333342  17.70  0.000 .5245506 .6552181

Done Estimating Factor Model

The results of this example indicate that people with higher levels of latent ability are
more likely to go to college and to earn more.

5 Conclusions

Models of unobserved heterogeneity are becoming increasingly popular. However, their
implementation is difficult and often tailored to the needs of each particular project. In
this paper, we presented a Stata code that is able to fit numerous models whose common
feature is that they are systems of equations liked by latent factor structures. Our code
is flexible enough to incorporate different features of the data while keeping the dis-
tributional assumptions to the minimum. Although these models are computationally
demanding, most estimations can be done using personal computers.
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