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1 Introduction

Models of bounded rationality assume that agents have limited ability to process information and

solve complex problems [32]. These models are often able to make sharper predictions than their

fully rational counterparts [10]. When players are fully rational and they interact repeatedly, a

plethora of equilibrium outcomes are possible. In particular, these games suffer from folk theorems;

namely any individually rational and feasible payoff is attainable in equilibrium. This multitude

of equilibria suggests further analysis of the equilibrium selection problem is needed. This paper

focuses on the question: Does a model of repeated interactions with boundedly rational agents lead

to a smaller set of outcomes in equilibrium? A smaller set of outcomes is required to make better

predictions about what type of behavior we should expect to see in repeated interactions.

In this paper, players are limited in two ways. First, as in many repeated interactions, players

are not able to see the actions of their opponents. Rather, they get an imperfect signal from

which the action must be inferred. An example is the “secret price cutting” game [33], in which

two competing firms give unobservable price cuts to their customers, which can only be inferred

through sales figures. In this paper, each player receives a private signal that correctly conveys the

action of their opponent with probability (accuracy) less than one. This builds on the literature

that examines imperfect private monitoring in repeated games [16].

The second limitation involves memory constraints. Typical repeated game strategies require

that players have perfect memory, and can differentiate between every possible infinitely repeated

game history1. Due to memory constraints, it is inconceivable that any economic agent could

differentiate between every history in this infinite set. Here, I assume that players are able to

classify this infinite set of histories into a finite number of groups (referred to as states). This

leads to an intuitive class of strategies that capture the simple heuristics used during the infinitely

repeated game.

By limiting recall to finite states, I can represent players’ strategies by finite automata. Intu-

itively, a finite automaton can be thought of as a set of states. Each state represents a different

mood (for example good and bad), and therefore may lead to a different behavior (nice and mean).

Based on the actions of the other player, the mood might change, in which case the automaton

moves (transitions) to a different state. A more sophisticated player may have many states which

represent a complex strategy, while a simple player may have only a handful of states. Representing

strategies with finite automata was first suggested by Aumann [2] and has been widely studied since

[21].

Using agents that are limited in the ways described above, I examine a model of repeated games,

where it is possible for players to attain cooperative relationships without using contracts. The

main insight from this paper is that in order to attain cooperation in equilibrium players must

play strategies that are forgiving enough to avoid long run conflicts if cooperation breaks down.

Conflicts between players are suboptimal, so the time spent in these conflicts has to be short in

1A history refers to a sequence of previously played actions.
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relation to the time spent playing cooperatively. I show that if players spend long periods of time

in conflict, then it is possible for one of them to switch their strategy to something that avoids

conflict.

I first consider the case where players select automata with no more than two states. In this

case, the set of equilibrium strategies is small. For a class of infinitely repeated prisoner’s dilemma

games, there are at most two types of equilibria when signal accuracy is less than one (Theorem

4.3). In the first type of equilibrium strategy, a fixed sequence of actions is played regardless of

the action of the opponent. The other type of equilibrium strategy follows the simple heuristic: if

the other player cooperates, continue playing the same action; if the other player defects, switch

actions. This simple strategy, introduced in the theoretical biology literature, has been coined

“Win-Stay, Lose-Shift” (WSLS) [24]. If both players play WSLS, then high levels of cooperation

are attained. WSLS is special because it is forgiving, and allows for quick recoordination after

cooperation breaks down. I also give sufficient conditions on stage-game payoffs which guarantee

that both players playing WSLS is an equilibrium when signal accuracy is sufficiently close to one

(Theorem 4.4). These sufficient conditions hold for a large class of 2 × 2 games, suggesting that

WSLS is a useful strategy in a wide variety of settings, and not just in the prisoner’s dilemma.

Finally, experiments run by Wedekind and Milinski [34] using human subjects suggest that WSLS

is played in repeated prisoner’s dilemma games. When players are limited to two-state automata,

the number of outcomes is small, and the predictions are supported by experimental evidence.

Next, I examine a more general model in which players’ strategies may be any finite-state

automaton. In this case, I give necessary and sufficient conditions for the structure of equilibrium

strategies when signal accuracy is close to one (Theorems 5.6 and 5.8). These conditions formalize

the insight that players must spend almost all the time cooperating. To prove these conditions, I

show that if players are not cooperating most of the time, then there exist better strategies which

allow players to avoid long periods of conflict and spend almost all the time cooperating. These

results show that the benefits of recoordination with WSLS are still required to attain cooperation

in equilibrium in a more general model.

There has been a lot of work done examining imperfect monitoring in repeated games. The

different models of imperfect monitoring all share the common theme that the players must recoordi-

nate after an error is made. When there is some common knowledge among players, recoordination

is relatively easy. Models involving imperfect public monitoring [13] as well as models of imper-

fect private monitoring with communication [8, 17, 25] are able to obtain the folk theorem. This

common knowledge allows for relatively easy recoordination.

When there is no common knowledge, as in the imperfect private monitoring case, coordination

becomes more difficult because players are not able to condition their strategies on a common

knowledge signal and therefore must make inferences about the actions of their opponents. Part of

the literature on imperfect public monitoring considers the case with discounted payoffs. Some of

the papers use belief-based techniques [30, 6] in which a player’s continuation strategy only depends

on the beliefs of their opponent’s continuation strategy. Others look at belief-free equilibria [26, 11]
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in which players randomize in almost every period in order to develop strategies that ensure that

beliefs are irrelevant. In this paper I assume that players maximize the limit of means, meaning

they have non-discounted payoffs. Radner [27] was the first to look at models of repeated games

with imperfect private monitoring and no discounting. He finds that Pareto-optimal outcomes

are possible in a infinitely repeated partnership game where players all see a common knowledge

consequence based on their actions and some random state of the environment. In addition Lehrer

[19] has a series of papers examining models of repeated games with imperfect private monitoring

and no discounting.

There has also been work examining repeated games when players have bounds on memory.

Lehrer [20] and Sabourian [29] look at models where players have bounded recall and perfect mon-

itoring, while Cole and Kocherlakota [7] examine a model of bounded recall with imperfect public

monitoring. These results typically examine the effect of memory length on possible outcomes.

Others have examined models where players select finite automata as their strategies. Using fi-

nite automata to represent strategies was first suggested by Aumann [2]. Since then, applications

have included looking at finitely repeated games [23], assuming players have some exogenous cost

of complexity (more states more costly) on their strategies [28, 1], or examining the evolutionary

stability of such strategies [22, 15]. It is important to note that not every finite automaton strategy

can be represented with a bounded memory strategy, but every bounded memory strategy can be

represented as an automaton [7].

Compte and Postlewaite [9] examine an infinitely repeated prisoner’s dilemma game where

players have imperfect private monitoring and a bound on their memory. In particular, players

have innate mental systems, and choose actions based on their system. They show that for certain

mental systems, cooperation is possible for a large region of accuracy and payoff combinations. The

analysis here differs from Compte and Postlewaite [9] in that players don’t have an innate mental

system.

This paper proceeds as follows. In Section 2, I give a motivating example, which highlights the

problems of imperfect monitoring. Then, in Section 3, I present the model of boundedly rational

agents and define the equilibrium concept. Next I give the results of the paper. First, in Section

4, I consider the restricted case where players only choose among two-state automata. Then in

Section 5, I consider the case where players can choose among any finite-state automata. Finally,

I conclude and provide extensions in Section 6.

2 Motivating Example

In 1980, Robert Axelrod invited a number of top scholars to submit programs to compete in an

iterated Prisoner’s Dilemma tournament. The strategy that fared best was tit-for-tat, which simply

repeats the play of the opponent in the previous round [3, 4]. In later work, Axelrod suggested

that players may not perfectly perceive their opponents actions. To further examine the effect of

misperceptions, he ran simulations where players had a 1 percent chance of seeing the incorrect
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Figure 1: Game PD.

action of their opponent. Not surprisingly, he found that these misperceptions led to lower levels

of cooperation. However, tit-for-tat was still the dominant strategy in the tournament. Axelrod

notes,

“[TIT FOR TAT] got into a lot of trouble when a single misunderstanding led to a long
echo of alternating retaliations, it could often end the echo with another misperception.
Many other rules were less forgiving, so that once they got into trouble, they less often
got out of it. TIT FOR TAT did well in the face of misperception of the past because
it could readily forgive and thereby have a chance to reestablish mutual cooperation.”

-Axelrod [5]

This excerpt captures one of the main insights of this paper: Players do not want to play

strategies which get stuck in suboptimal periods. Axelrod states that tit-for-tat was successful

because it was forgiving enough to be able to avoid these suboptimal periods more than most

strategies. However, the following example shows that these suboptimal periods can be detrimental

to payoffs, even when both players play tit-for-tat.

Consider two players playing the infinitely repeated prisoner’s dilemma game displayed in Figure

1. Each player plays the tit-for-tat strategy. Each player starts by cooperating, and then repeats

their opponents play from the previous round. If players’ signals are perfect, they continue to play

C throughout the remainder of the repeated game. Based on the payoff table, this leads to an

average payoff of 1 per round.

Now, suppose that players receive an imperfect signal about their opponents action. The players

start by cooperating. They continue to cooperate as long as the signals are correct. Eventually, one

may receive an incorrect signal that the other player played D, which causes the players continue

to “echo” each other’s action until another incorrect signal is received. While stuck in the period

of alternations, the average payoff for each player is 1/2, lower than the payoff when cooperating.

If during this period of alternations, one player receives a signal that C was played when actually

D was played, then both players perceive the actions as C, and hence both cooperate in the following

round. This cooperation continues until another incorrect signal is received. However, if one of

the players receives a signal that D was played when actually C was played, both players perceive

action D, and both will defect in the following round. This mutual defection continues until at



March 5th, 2011 Julian Romero

Page 5/36

least one player receives an incorrect signal. The average payoff per round when both players are

defecting is 0.

When both players play tit-for-tat, there are three periods the system can get stuck in: al-

ways play C, echo alternations, or always play D. The only way to get out of one of these

periods is if one of the players receives an erroneous signal. Suppose the signal is correct with

probability 1 − ε and incorrect with probability ε. Over the course of the infinitely repeated

game, for all ε > 0, the frequency of time spent in the cooperate and defect periods is 1/4 and

the alternating period is 1/2. Therefore, the frequency of each of the four possible action com-

binations is equal in the infinitely repeated game. So each player gets an average payoff of

1/4 [ui (C,C) + ui (C,D) , ui (D,C) + ui (D,D)] = 1+(1+L)−L
4 = 1

2 in every round. Both players

would receive higher payoffs if they played cooperate all the time.

In Section 4 , I show that in contrast to Tit-For-Tat, when both players play “Win-Stay, Lose-

Shift”, the system does not get caught in these suboptimal periods. When an incorrect signal is

received, the strategies are able to recoordinate quickly without incurring large losses. Then, in

Section 5, I show that in order to attain cooperation in equilibrium in a more general model, players

still cannot play strategies that get stuck in suboptimal periods in equilibrium. Before the results,

I first introduce the formal model and some notation.

3 Model

Two players, I = {1, 2}, play the supergame G. In every round, the players play the stage game

g = {S1, S2, u1, u2}. In the stage game, each player has |Si| pure strategies. The stage-game payoff

function is ui : S1 × S2 → R. The stage-game payoffs for player i can be represented by a payoff

matrix Pi ∈ R|S1|×|S2|. In the supergame G, the agents play stage game g for an infinite number of

rounds t = 1, 2, 3, . . ..

3.1 Imperfect Monitoring

After both players have their chosen actions in round t of the supergame, each player receives a

private signal which conveys the true action of their opponent with probability less than one. More

formally, with probability ri (s1, s2, ε) player i receives a signal that the other player played action

s2 when the other player actually played s1. The signals functions have a common rate of error,

ε ∈ [0, .5]. For example, if S1 = S2 = {C,D}, one possible signal function is

ri (C,C, ε) = ri (D,D, ε) = 1− ε
ri (C,D, ε) = ri (D,C, ε) = ε.

(1)

In words, the signal is correct with probability 1− ε and incorrect with probability ε. This signal

function is referred to as the simple signal function, rSi , and is used for many examples and results

in this paper.
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3.2 Imperfect Memory

Players have bounds on their ability to differentiate between infinitely repeated game histories.

Players are only able to classify this infinite set of histories into a finite number of states. This

restriction yields a simple set of strategies which can be represented with finite-state automata.

A finite automaton is defined as a quadruple, M =
(
Qi, q

0
i , fi, τi

)
. Here, Qi is the finite set

of states for player i and q0i is the initial state. In each state, the automaton prescribes a pure

action, which is determined by the output function fi : Qi → Si. Finally, the transition function

determines which state to transition to based on the current state and the action of the other

player, τi : Qi × S−i → Qi. Since the output function depends on Si and the transition function

depends on S−i, if players have different action sets, then each player selects from a different set of

automata. The set of all finite automata for player i is denoted by Mi.

At the beginning of the supergame, each player chooses a finite-state automaton. After each

history, this automaton is in a certain state, and plays the action corresponding to that state. So

a finite automaton prescribes a stage-game action for every possible history. Finite automata can

represent simple strategies, such as Tit-for-Tat and Win-Stay, Lose-Shift as well as more complex

strategies such as N -period action sampling [31].

3.3 Payoffs and Equilibria

When choosing automata, the players try to maximize the non-discounted limit of means. For a

given pair of signal functions, the payoff is determined by the choice of automata from each player,

and the level of error in signal function ε, Ui :M1 ×M2 × [0, .5]→ R. Given the signal function,

error level, and automata, there is some infinite sequence of realized joint actions, x0, x1, . . .. The

players payoff is the average payoff per round over this infinite sequence of joint actions.

Ui (M1,M2, ε) = lim
T→∞

1

T

T∑
t=0

ui
(
xt
)
,

where ui
(
xt
)

is the payoff for player i when joint action xt is played.

In this paper I assume non-discounted payoffs.2 This allows me to focus on long run equilibrium

rules-of-thumb rather than strategies where players deviate in the beginning because they are

impatient.

Definition 3.1 (Best Response) Player i’s best response function BRi : M−i × [0, .5] → Mi

satisfies, Ui (BRi(M, ε),M, ε) ≥ Ui (M ′,M, ε) for all M ′ ∈Mi.

Definition 3.2 (Nash Equilibrium) For fixed signal functions ri and error level ε, a pair of

automata, (M1,M2), is an equilibrium of the supergame G if and only if Mi = BRi (M−i, ε) for

i = 1, 2.

2Here I assume that players payoff is determined by the limit of means. Limit of means can sometime be prob-
lematic because the limit may cease to exist in some cases, leading to an incomplete preference order. This however
is not a problem here as displayed in Lemma 5.3.
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A Nash equilibrium pair of automata is referred to as an equilibrium.

4 Two-State Automata

In this section, I analyze the set of equilibria when players strategies are restricted to two-state

automata. First, I introduce some important automata. I then show that for a class of infinitely

repeated prisoner’s dilemma games, there are at most two types of equilibria for any parameter pair.

I then give sufficient conditions on stage-game strategies that ensure that WSLS is an equilibrium

for all small error levels. Finally, I discuss some previous work done on WSLS, including some

experiments from Wedekind and Milinski [34] which show that human subjects play these strategies

in the laboratory.

4.1 Important Two-State Automata

The restricted set of automata,M2, consists of only two-state automata. For notational simplicity,

automata are represented by a tuple with the starting points omitted,

M = ({f (q1) , . . . , f (qn)} , {τ (q1, C) , . . . , τ (qn, C)} , {τ (q2, D) , . . . , τ (qn, D)}).

The starting points are mentioned when relevant. Before giving a characterization of the two-state

equilibria, I first need to introduce some automata.

• Always play C - MC = ({C} , {q1} , {q1})

• Always play D - MD = ({D} , {q1} , {q1})

• Alternating - MCD = ({C,D} , {q2, q1} , {q2, q1})

• Win-Stay, Lose-Shift - MWSLS = ({C,D} , {q1, q2} {q2, q1})

Automata “always play C” and “always play D” play the same action regardless of the signal. The

alternating automaton always alternates between C and D regardless of the signal. The “Win-Stay,

Lose-Shift” automaton follows the simple rule: if I get a signal that you cooperated, then I play

the same action; if I get a signal that you defected, I switch actions.

4.2 Characterization of Equilibria

I give a characterization of the equilibria when players face stage-game payoffs presented in Figure

1. This game is a prisoner’s dilemma when L > 0 with unique Nash equilibrium (D,D). When

L < 0, the unique Nash equilibrium is (C,C), and it is no longer a prisoner’s dilemma game.

I am interested in equilibria which are not heavily tied to the parameters of the game. I focus on

robust equilibria. Say that G (Υ1,Υ2) is the supergame where player i is subject to payoff matrix

Υi ∈ R|S1|×|S2|.
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Definition 4.1 (Robust Equilibrium) Suppose two players play supergame G (Υ1,Υ2) and have

fixed signal functions ri and error level ε. A pair of automata, (M1,M2), is a robust equilibrium of

the supergame G (Υ1,Υ2) if and only if there exists some µ > 0 such that (M1,M2) is an equilibrium

of all supergames G (Υ′1,Υ
′
2) such that maxsi∈Si,s−i∈S−i |Υ′i (si, s−i)−Υi (si, s−i)| < µ.

This equilibrium concept is a refinement of the Nash equilibrium concept defined in Definition

3.2. So every robust equilibrium is also a Nash equilibrium. The types of Nash equilibria that are

not robust are only equilibria for a set of measure zero in the parameter space, and are therefore

heavily tied to the parameters of the game. Robust equilibria are more universal than non-robust

equilibria because they hold for a larger class of games. Therefore, they remain equilibria under

small changes in the parameters. In the infinitely repeated PD game, there are at most two types

of robust equilibria at any parameter pair.

Definition 4.2 (Payoff Equivalent Automata) Automata M and M ′ are said to be payoff

equivalent over setM if and only if, Ui (M,A, ε) = Ui (M ′, A, ε) for all A ∈M, and all ε ∈ (0, .5].

Automata M and M ′ are payoff equivalent if and only if they yield the same payoff against any

other automata of a give set of automata.

Theorem 4.3 In the infinitely repeated PD game, when players have the simple signal function rSi
and choose among the set of two-state automata,M2, there are only three types of robust equilibria:

1. L < 0 and Mi is payoff equivalent to MC for i = 1, 2,

2. L > 0 and Mi is payoff equivalent to MD for i = 1, 2, and

3. − (1− 2ε)3 < L < (1− 2ε)3 and Mi = MWSLS for i = 1, 2.

The proof of this result is left to the appendix. Based on these regions, notice that there

are at most two types of equilibria at any pair of payoff parameter and error level. Whenever

− (1− 2ε)2 < L < (1− 2ε)3, then both players playing MWSLS is an equilibrium, and therefore

high levels of cooperation are attainable in equilibrium.3

When players play MC or MD, their strategies are unresponsive to the signals they receive.

The only robust equilibrium where players’ strategies are responsive to their signals is when both

players play MWSLS . What makes MWSLS so special? When players are trying to cooperate,

they must punish their opponents to deter deviations. When an incorrect signal is received, they

may start to punish each other repeatedly. In order to sustain cooperation, they must somehow

recoordinate their actions to start cooperating again after an incorrect signal has been received.

Since recoordination is typically inefficient, players want to recoordinate as quickly as possible

after an incorrect signal is received. If both players play MWSLS , this recoordination is efficient. In

particular, after one player receives an incorrect signal, the recoordination takes only two rounds

3It is also important to note that all of the robust equilibria from Theorem 4.3 are sub-game perfect, so at no
point during the infinitely repeated game would the player want to switch to a different automaton.
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(barring no more incorrect signals). This efficient recoordination is one of the reasons why MWSLS

is an equilibrium strategy.

Another reason why MWSLS is special is because it is not dominated by MC or MD for large

regions of the parameter space. When players play
(
MWSLS ,MWSLS

)
, the action pair (C,C) is

played most of the time, so the players receive close to the cooperative payoff. In the system(
MWSLS ,MC

)
, the action pairs (C,C) and (D,C) are each played half the time. This is bad

for player 2, because u2 (D,C) = −L < u2 (C,C) = 1 when L > −1. Playing MC is only

good for player 2 when L is sufficiently negative. In the system
(
MWSLS ,MD

)
, action pairs

(C,D) and (D,D) are each played half the time. Again this is not good for player 2 because
u2(C,D)+u2(D,D)

2 = 1+L
2 ≤ u2 (C,C) when L < 1. Playing MD is only profitable for player 2 if L is

sufficiently high. For medium ranges of L, MWSLS is the best response to itself, because it receives

the cooperative payoff most of the time.

This result does not depend on the prisoner’s dilemma game. Similar results hold for a class

of Battle of the Sexes games as well as a class of minimum-effort coordination games. In both of

these cases, the only types of equilibria either are unresponsive to the signal of the other players

action, or similar to MWSLS . These results (Theorems B.18 and B.19) are left to the appendix.

4.3 General 2× 2 Games

In the previous section, I showed that both players playing MWSLS is an equilibrium for a large

region of the parameter space when players play an infinitely repeated prisoner’s dilemma game.

In this section, I give conditions on stage-game payoffs, which ensure that
(
MWSLS ,MWSLS

)
is an

equilibrium.

Theorem 4.4 Suppose both players have simple signal functions rSi . If for i = 1, 2,

1. ui (C,C) > ui (C,D), and

2. ui (C,C) > ui(D,C)+ui(D,D)
2 ;

then there exists some ε̄ > 0 such that
(
MWSLS ,MWSLS

)
is an equilibrium for all ε ∈ (0, ε̄).

This result suggests that when errors are small
(
MWSLS ,MWSLS

)
is an equilibrium for a wide

range of games. Figure 2 displays four 2× 2 games that satisfy the desired properties.

• Figure 2(a) is a stag-hunt game with Pareto ranked pure strategy Nash equilibria (C,C) and

(D,D). Both players playing MWSLS leads to high levels of the Pareto superior equilibrium.

• Figure 2(b) is a chicken game with two pure strategy Nash equilibria (C,D) and (D,C),

one preferred by each player. If both play MWSLS , then the cooperative outcome (C,C) is

possible, even though it is not one of the pure strategy Nash equilibria.

• Figure 2(c) is a Battle of the Sexes game with two pure strategy Nash equilibria (C,C) and

(D,D). If both players play MWSLS then the outcome (C,C) is frequently attained. Also
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Figure 2: 2× 2 Games.

consider, MLSWS = ({C,D} , {2, 1} , {1, 2}). This strategy is the opposite of MWSLS in that

it stays in the same state when the other player plays D, and switches when the other player

plays C. The theorem also confirms that both players playing MLSWS is also an equilibrium

in this case.

• Figure 2(d) is a game with no pure strategy equilibrium. However, both players playing

MWSLS leads to high levels of (C,C) in equilibrium.

So the simple strategy MWSLS is an equilibrium for a variety of 2 × 2 games when errors are

small.

4.4 Other Support

The strategy represented by automaton MWSLS has been studied before. The majority of work

done on this strategy focuses on biological applications. Nowak and Sigmund [24] run evolutionary

simulations on probabilistic memory one strategies. Memory one strategies are those which only

respond to the previous period of play, similar to the two-state case. Their simulations are more

general than my two-state result because they allow for probabilistic transitions. Nevertheless, the

prevailing strategy in their simulation is the deterministic MWSLS strategy.

More recently, Imhof et al. [14] use stochastic evolutionary game dynamics to study the evolution

of four strategies, MC , MD, MTFT , MWSLS . When only MC ,MD, and MWSLS are considered,

they find some payoff threshold which determines which strategy is selected. Below this threshold

MD is selected while above this threshold MWSLS is selected. When MTFT is added to the

three other strategies, they again find a threshold, but this time it is lower, meaning that MTFT

strengthens MWSLS .

The prediction from my two-state model is that the only equilibria in the infinitely repeated

prisoner’s dilemma game (L > 0) are MD or MWSLS . Experiments with human subjects playing

repeated prisoner’s dilemma games have often tried to identify subjects playing tit-for-tat [12].

Tit-for-tat typically fits the data well. One of the reasons why tit-for-tat fits the data well is that

human subjects tend to always play C or always play D, both of which are supported by tit-for-

tat. The predictions of my model also support this behavior. However, there is one key difference
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between MTFT and MWSLS or MD that allows us to identify which strategies the subjects are

playing.

To identify a strategy, look at the play of both players in round t, and then see the responses in

t+ 1. If player 1 is playing MTFT and both players play C in round t, then player 1 should play C

in round t+ 1. MWSLS provides the same prediction, that both players playing C leads to player

1 playing C. MTFT and MWSLS again share a prediction if player 1 plays C and player 2 plays D

in round t. Both predict that D will be played in round t + 1. If both players play D in round t,

then MTFT and MD both predict that D is played in the following round. So far the predictions of

MTFT have matched the prediction of MWSLS or MD. The final combination is where they differ.

If player 1 plays D and player 2 plays C in round t, then MTFT predicts that player 1 will play C

in the next round. Conversely, both MD and MWSLS predict that player 1 continues to play D in

the next round. This provides a testable prediction: if player 1 plays D and player 2 plays C, then

player 1 will play C in the next round if he is using MTFT , and will play D in the next round if he

is using MWSLS or MD.

Wedekind and Milinski [34] run experiments that examine whether players play MTFT or

MWSLS . They find that 70% of players can be classified a playing MWSLS in a variety of treat-

ments of repeated prisoner’s dilemma game. Their experiments use psuedoplayers which use prede-

termined strategies. This allows them to focus on the situation of interest. To classify the strategies

of players, they focus on the situation where player 1 plays D and player 2 plays C in round t. If

player 1 plays C more in round t + 1, then he is classified as playing MTFT . If player 1 plays D

more in round t + 1, then he is classified as playing MWSLS . These experimental results suggest

that the majority of players are playing MWSLS .

5 Unrestricted Automata

In this section, I examine the case where players can select automata with any finite number of

states to represent their strategies. The main results of this section are the necessary and sufficient

conditions on equilibrium structure for small error levels. In order to attain these results I first

introduce some concepts that are used in the necessary and sufficient conditions. The first is the

absorbing class, which allows us to consider each automaton individually, and get a measure of the

possible payoff that can be attained when it is played. The second is the communicating class, which

provides a payoff measure for a pair of automata. Finally, the necessary and sufficient conditions

show that there must be some equivalence between absorbing classes and communicating classes in

equilibrium.

For the finite-state results, I restrict the set of finite automata to those which are finite, strongly

connected, and reduced4. This set is denoted byMR
i . All equilibria over this set are also equilibria

over the set of all finite automata. For more details see Appendix A. In addition, all equilibrium over

4This rules out automata that are heavily dependent on the initial sequence of signals. For example, an automaton
that starts in a state that plays C, then if the first signal received is C it plays according to tit-for-tat forever, and
if the first signal received is D it plays according to win-stay, lose-shift forever.
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the set MR
i are also sub-game perfect because the player’s would never want to switch automata

at any point of the infinitely repeated game.

5.1 Absorbing Classes

An absorbing class of an automaton M is a set of states that the automaton can get stuck in when

it faces a fixed sequences of actions repeatedly. Formally,

Definition 5.1 (Absorbing Class) Given automaton M = (Q, q0, f, τ), an absorbing class, de-

noted by a(M) = {q, s}, where q = q1, . . . , qn is a sequence of states, and s = s1, . . . , sn is a

sequence of actions, such that

τ (qk, sk) =

{
qk+1 k < n

q1 k = n.

The length of an absorbing class is the length of the sequences of actions and states, |a(M)| = n.

When automaton M is in state q1, and sees sequence of actions s repeatedly, then M will loop

through the sequence of states q repeatedly. This leads to a repeated sequence of joint actions.

The payoff for an absorbing class is the average payoff per round over this sequence of joint actions,

UACi (a(M)) =
1

|a(M)|

|a(M)|∑
k=1

ui (sk, f (qk)) .

Note that this payoff is defined for player i playing the sequence of actions and the other player

playing automaton M . One possible example of an absorbing class for automaton MWSLS is

a
(
MWSLS

)
= {(q1, q2) , (D,D)}. This is an absorbing class because when MWSLS faces the sequence

D,D repeatedly, it repeatedly loops through states q1 and q2. The payoff for this absorbing class

for player 1 is UAC1

(
a
(
MWSLS

))
= 1

2 (u1 (D,C) + u1 (D,D)).

The set of all possible absorbing classes for automaton M =
(
Q, q0, f, τ

)
is infinite. However

there exists a payoff-maximal absorbing class for player i, denoted by a∗i (M), with |a∗i (M)| ≤ |Q|.
This result, presented in Lemmas B.2 and B.3, is left to the appendix. The idea for the proof is

that if a payoff-optimal absorbing class travels through the same state twice, then there must be

a smaller payoff-optimal absorbing class. Therefore, given any payoff-optimal absorbing class, the

length can be reduced by eliminating states that appear more than once, until it has length less

than or equal to |Q|. This finite length optimal absorbing class is used to construct a best response

automaton which is used to prove the necessary conditions.

5.2 Communicating Class

Once both players have selected automata M1 =
(
Q1, q

0
1, f1, τ1

)
and M2 =

(
Q2, q

0
2, f2, τ2

)
, the

pair of automata (M1,M2) forms a system which can be represented with a finite Markov chain

X (M1,M2, ε) with state-space X (M1,M2)
5. Each chain-state of the Markov chain corresponds to

5For clarity, states of Markov chains are referred to as chain-states, while states of automata are referred to as
states.
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a pair of automaton-states, one from each automaton. For example, the situation where M1 is in

state q1 and M2 is in state q2 is represented by one chain-state of the Markov chain. The starting

chain-state of the Markov chain represents the situation where both automata are in their initial

states, M1 in q01 and M2 in q02. Based on the signal functions ri, the Markov chain has n ≤ |Q1| |Q2|
chain-states, one corresponding to each pair of automaton states that are reachable from the initial

states with positive probability for any ε > 0. These chain-states are denoted by x1, . . . , xn.

Let qi(x) be the current chain-state of automaton Mi when the Markov chain is in chain-state

x. Automaton Mi moves from state qi (xa) to qi (xb) with probability,

P (Mi, qi (xa) , qi (xb) , ε) =
∑

si|τ(qi(xa),si)=qi(xb)

ri (si, f−i (q−i (xa)) , ε) .

In words, the term inside the sum is the probability that player i receives a signal that the other

player played action si when the other player actually played action f−i (q−i(xa)). This term is

then summed over all actions si which take automaton Mi from state qi (xa) to qi (xb). The Markov

chain is therefore defined by the probability that M1 moves from q1 (xa) to q1 (xb) and M2 moves

from q2 (xa) to q2 (xb),

X (M1,M2, ε) (xa, xb) = P (M1, q1 (xa) , q1 (xb) , ε)P (M2, q2 (xa) , q2 (xb) , ε) . (2)

The starting point of this Markov chain is chain-state x0 such that q1
(
x0
)

= q01 and q2
(
x0
)

= q02.

When the signals are perfect, the Markov chain X (M1,M2, 0) is deterministic. Each chain-state

leads to another chain-state with probability 1. When the signals are imperfect, the Markov chain

X (M1,M2, ε) is not necessarily deterministic and any chain-state may lead to multiple differ-

ent chain-states with varying probabilities. The realizations of the Markov chain are denoted by

x1, x2, . . ..

Definition 5.2 (Communicating Class) A communicating class of the system (M1,M2) is a

set of chain-states A ⊆ X (M1,M2) that satisfies,

• (X (M1,M2, 0) (x, y))n = 0 for all x ∈ A, y 6∈ A,n > 0.

• (X (M1,M2, 0) (x, y))n > 0 for all x, y ∈ A and for some n > 0.

Note that a communicating class is defined by the Markov chain for system when ε = 0. When

ε > 0 any chain-state can be reached for any other chain-state. However, once the Markov chain

enters a communicating class, it can only leave if a player receives an incorrect signal. When no

erroneous signals are received, the Markov chain deterministically loops through the chain-states in

the communicating class. The payoff of a communicating class is defined to be the average payoff

over this loop,

UCCi (Ak) =
1

|Ak|
∑
x∈Ak

ui(x), (3)
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where ui (x) = ui (f1 (q1 (x)) , f2 (q2 (x))) is the payoff for player i in chain-state x. This definition

gives the average payoff in the communicating class when signals are correct, and is used when

giving necessary and sufficient conditions in the finite-state case.

5.3 Calculating Payoffs

Representing the system as a Markov chain allows me to calculate the payoffs for a given pair of

automata using only the stationary distribution of the Markov chain. By Lemma B.1, the Markov

chain X (M1,M2, ε) is irreducible for all ε > 0, and hence has a unique stationary distribution,

π (M1,M2, ε).

Lemma 5.3 Suppose players play automata M1 and M2. The average payoff for the infinitely re-

peated game is Ui (M1,M2, ε) =
∑

xk∈X(M1,M2,ε)
π (M1,M2, ε) (xk)ui (xk) , where π (M1,M2, ε) (xk)

is the term of the stationary distribution corresponding to chain-state xk, and ui (xk) is the payoff

for player i in chain-state xk.

Lemma 5.3 implies that only the stationary distribution of the system and vector of utilities for

the corresponding states are needed to find the limit of means for a pair of automata. The idea

behind the proof is that the frequency of time the Markov chain spends in a chain-state converges

to the stationary distribution by the law of large numbers. The proof of this lemma is left to the

appendix.

5.4 Necessary and Sufficient Conditions

In this section, I provide the necessary and sufficient conditions for equilibria in the finite-state case.

As the motivating example shows, players get in trouble when they play automata that get stuck

in periods of sub-optimal play (i.e. Tit-For-Tat). In order to attain cooperation, players must play

strategies that are able recoordinate after an incorrect signal without getting stuck in a period of

suboptimal play (i.e. Win-Stay, Lose-Shift). Using the language presented in the previous sections,

players don’t want to get stuck in communicating classes that yield payoffs lower than the optimal

absorbing class payoff.

In order to understand the structure of equilibrium for small error levels, we must understand

the communicating classes for small error levels. In particular, some communicating classes are

more robust to incorrect signals than others. The system may exit some communicating classes

with only one incorrect signal, while others may require many more incorrect signals. The system

visits those communicating classes that are most robust to incorrect signals almost all the time as

the probability of error goes to zero.

Definition 5.4 (Prevalent Communicating Class) A communicating class A ⊆ X (M1,M2)

of X (M1,M2, ε) is a prevalent communicating class if limε→0 π (M1,M2, ε) (x) > 0 for some x ∈ A.
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A prevalent communicating class is a set of chain-states that the Markov Chain X (M1,M2, ε) visits

with positive probability in the limit as the error goes to zero. When ε is small, the system spends

almost all the time in the prevalent communicating classes.

Next, the necessary and sufficient conditions hold for a more general class of signal functions

than the simple signal function used above.

Definition 5.5 (Regular Signal Function) A signal function ri : S−i × S−i × [0, .5] → [0, 1] is

said to be regular if the following conditions hold.

1. lim
ε→0

ri (si, sj , ε) =

{
1 si = sj

0 si 6= sj
,

2. r (si, sj , ε) > 0 for all ε ∈ (0, .5] and all si, sj ∈ S−i,

3. For each si, sj ∈ S−i, there exists n ≥ 0 such that 0 < lim
ε→0

ε−nr (si, sj , ε) <∞ .

It is clear that the simple signal function, rSi from (1), is a regular signal function. Also, any signal

function for which all terms are polynomial in ε is a regular signal function. There are also more

complex signal functions that satisfy this as well. With these definitions, I introduce the main

results for the finite-state case.

Theorem 5.6 (Necessity) Suppose players play supergame G with regular signal function ri, and

play automata Mi ∈ MR
i represented by Markov chain X (M1,M2, ε). If there exists some ε̄ > 0

such that (M1,M2) is an equilibrium for all ε ∈ (0, ε̄), then for all prevalent communicating classes

Ak, UCCi (Ak) = UACi (a∗ (M−i)).

These conditions say that, for small error levels, each prevalent communicating class must yield

the optimal absorbing class payoff for each player. Since almost all time is spent in the prevalent

communicating classes when the errors are small, to get any level of cooperation, the system must

spend almost all the time in optimal periods of play and not get caught in suboptimal periods in

equilibrium.

To prove the necessary conditions, I show that if the necessary conditions are not satisfied for

automata pair (M1,M2), then it is always possible to construct an automaton M ′2 such that for

some ε̄ > 0, U2 (M1,M2, ε) < U2 (M1,M
′
2, ε) for all ε ∈ (0, ε̄). So M ′2 is a better response than M2

to automaton M1. This means that (M1,M2) is not an equilibrium if the desired properties are

not satisfied. I show that such an automaton M ′2 exists in the following lemma.

Lemma 5.7 Given automaton M1 ∈ MR with n states, and any absorbing class a (M1), there

exists automaton M2 such that for all communicating classes, Ak, of the system X (M1,M2, ε),

UCC2 (Ak) = UAC2 (a (M1)) .

The proof of the Lemma is left to the appendix. The idea of this proof involves constructing

an automaton M2 such that the Markov chain X (M1,M2, ε) only has one communicating class,
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and this communicating class yields the optimal absorbing class payoff. Constructed automaton

M2 contains three regions. The first region is called the absorbing region. As long as no incorrect

signals are received, M2 remains in this region when M1 is in the desired absorbing class a (M1).

When an incorrect signal is received by either player, there is a chance that automaton M1 will

leave the states of a (M1). When this happens, player 2 becomes confused about the current state

of M1, and must try to make inferences about current state. Player 2 wants to get back to the

states of a (M1) without getting caught in another suboptimal absorbing class. To do this, player

2 plays what is called a homing sequence. This homing sequence is a fixed sequence of actions,

which based on the output, determines the current state of M1 as long as no incorrect signals are

received. After the automaton exits the homing region, it enters the resynchronization region. As

long as no incorrect signals are received, this region resynchronizes the two automata, after which

automaton M1 returns to the states of the desired absorbing class, and automaton M2 returns to

the absorbing region. Automaton M1 remains in the states of the desired absorbing class until an

incorrect signal is received. Given automaton M1, automaton M2 ensures that the Markov chain

X (M1,M2, ε) has only one communicating class. To better understand the construction, I provide

an example in Appendix C.2.

Next, I give the sufficient conditions for the structure of equilibrium automata. LetMSPM (Mi)

be the set of all automataM−i ∈MR
−i such that all prevalent communicating classes ofX (Mi,M−i, ε),

Ak, yield the optimal absorbing class payoff, UCCi (Ak) = UACi (a∗i (M−i)) for i = 1, 2. This is the set

of all automata that when paired with Mi yield the optimal absorbing class payoff in all prevalent

communicating classes.

Theorem 5.8 (Sufficiency) Suppose players play supergame G with regular signal function ri,

and play automata Mi ∈MR
i represented by Markov chain X (M1,M2, ε). If

1. for all prevalent communicating classes Ak, UCCi (Ak) = UACi (a∗ (M−i)), and

2. ∂Ui(M1,M2,0)
∂ε = supM∈MSPM (M−i)

∂Ui(Mi,M,0)
∂ε ;

then there exists some ε̄ > 0 such that (M1,M2) is an equilibrium for all ε ∈ (0, ε̄).

This theorem provides sufficient conditions for equilibrium automata in the finite-state case

when errors are sufficiently small. The first condition requires that all prevalent communicating

classes yield the optimal absorbing class for both players. Since the system spends almost all the

time in prevalent communicating classes and almost no time in the other states, this formalizes

the intuition that the system cannot get stuck in suboptimal regions for long periods of time. The

second condition requires that out of all M ∈MSPM (Mi), the player must select the one that yields

the highest marginal utility at zero. The two conditions together are then sufficient for equilibrium

for small errors. The proof of the sufficient conditions is left to the appendix.
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6 Conclusion

The paper started with the question: Does a model of repeated interactions with boundedly ratio-

nal agents lead to a smaller set of outcomes in equilibrium? When player’s are limited to two-state

automata, the number of outcomes in equilibrium is small (Theorem 4.3). Importantly, in an

infinitely repeated prisoner’s dilemma game, high levels of cooperation are still possible in equilib-

rium, even when agents cannot perfectly monitor their opponents and have no common knowledge

public signal with which to recoordinate. The important strategy used is called “Win-Stay, Lose-

Shift”. If both players play this strategy, when cooperation breaks down, the players are able to

quickly recoordinate and get back to cooperation without getting stuck in conflict for long periods.

I show that WSLS holds for a variety of 2× 2 games as well (Theorem 4.4). So when restricted to

two-state automata, the number of equilibrium outcomes is small, and the predictions match the

behavior of human subjects in the laboratory.

When I remove the restriction of two-state automata, the analysis becomes more difficult. In

this case, I am able to provide necessary and sufficient conditions on equilibrium structure for

small error levels (Theorems 5.6 and 5.8). The results show that in equilibrium players must play

strategies which are able to cooperate without getting stuck in long periods of conflict. However,

the implications of these conditions on the set of equilibrium outcomes remains an open question.

There are many extensions for this work. First, a better understanding of the effect of the

necessary and sufficient conditions on outcomes. It is possible that for even small errors and finite-

state strategies, the set of outcomes could still be small compared to the folk theorem. Also there

is more work to be done examining what happens for larger errors when players can use finite-state

automata as their strategies. In addition, more experiments with human subjects to further verify

that these strategies are actually played in the lab.

There are also some more broad extensions. Assuming that players use finite automata as their

strategies is assuming that they are classifying the infinite set of repeated game histories into a

finite set of groups. It would be interesting to examine more general classification systems that

would allow players to have more general groupings of their histories, rather than just those that

can be represented with a finite automaton. Also, this paper only focuses on the equilibria, but

there may be some learning that takes place to get to these equilibria. If we assume that players

use automata to represent their strategies, there are a number of interesting learning dynamics that

the players could use to learn to play certain strategies.

Appendix

A Structure of Automata

The set of finite automata contains many automata which are redundant. It simplifies the analysis to
eliminate some of these redundant automata, allowing me to focus on a smaller set of automata. Much of
the notation from this section is from Kohavi [18].
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(a) 2-state Tit-for-Tat (b) 3-state Tit-for-Tat

Figure 3: Example of equivalent but not equal automata.

A.1 Payoff Equivalent Automata

Definition A.1 (Payoff Equivalent Automata) Automata M1 and M2 are said to be payoff equivalent
over set M if and only if,

Ui (M1, A, ε) = Ui (M2, A, ε) for all A ∈M, and all ε ∈ (0, .5].

Two automata are considered payoff equivalent over a set M if they yield the same payoff when matched
against any automaton from M. For any set of payoff equivalent automata MPE , I only need to consider
one automaton M1 ∈MPE when calculating equilibria. When M1 is not part of an equilibrium, none of the
automata inMPE are part of an equilibrium. When M1 forms an equilibrium with M2, then any automaton
from MPE forms an equilibrium with M2. When computing equilibria in my model, I can without loss of
generality search over a smaller set of automata where any set of payoff equivalent automata is represented
by a single automaton.

A.2 Reduced Automata

Next, I introduce the concept of a reduced automaton. Any non-reduced automaton is payoff equivalent to
some reduced automaton. Therefore, I am able to only focus on the set of reduced automata without loss of
generality.

Definition A.2 (Equivalent States) States si and sj are said to be equivalent if and only if, for every
possible input sequence, the same output sequence is produced, regardless of whether si or sj is the initial
state.

Definition A.3 (Equivalent Automata) Two automata, M1 and M2, are said to be equivalent if and
only if, for every state in M1, there is a corresponding equivalent state in M2, and vice versa.

If two automata are equal, then they must be equivalent. However, if two automata are equivalent they
need not be equal. Each of the automata in Figure 3 represent the tit-for-tat strategy. Figure 3(a) is a two-
state automaton which represents tit-for-tat, while Figure 3(b) is three-state automaton which represents
tit-for-tat. Both q1 and q3 from 3(b) are equivalent to q1 from 3(a), and state q2 in 3(b) is equivalent to q2

in 3(a), so these automata are equivalent but not equal.

Definition A.4 (Reduced Automaton) An automaton M is reduced if and only if it contains no equiv-
alent states.

Every non-reduced automaton has a corresponding reduced automaton, where equivalent states are
combined into a single state. The non-reduced automata and the corresponding reduced automata are
payoff equivalent over the set of finite automata, because they produce the same output for all sequences
of input. I am therefore able to restrict the set of automata from all finite automata to reduced automata
without loss of generality.
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Figure 4: Non-strongly-connected automaton.

A.3 Strongly Connected Automata

Next, I introduce the notion of a strongly connected component, an absorbing region of the automaton.

Definition A.5 (Reachable State) Given automaton M = (Q, q0, f, τ), state qm ∈ Q is reachable from
q1 ∈ Q if there exists some sequence of signals, r = {r1, . . . , rm} such that,

τ (qk, rk) = qk+1 for all 1 ≤ k ≤ m− 1 ,

where states q2, . . . , qm−1 are defined recursively.

Definition A.6 (Strongly Connected Subset) Given automaton M = (Q, q0, f, τ), a subset of states
QSCS ⊆ Q is said to be strongly connected if for every pair of states qi, qj ∈ QSCS, qi is reachable from qj.

Definition A.7 (Strongly Connected Component) Given automaton M = (Q, q0, f, τ), a subset of
states QSCC ⊆ Q is said to be strongly connected component (SCC) if QSCC is strongly connected and there
is no state q ∈ Q\QSCC such that QSCC ∪ q is strongly connected.

A strongly connected component is a region of the automaton that cannot be left once it has been reached
regardless of the future signal sequence. All states in a strongly connected component are reachable from
all other states in the SCC. Therefore, once the automaton enters one of these SCCs, all other states of the
automaton become irrelevant.

Definition A.8 (Strongly Connected Automaton) Automaton M = (Q, q0, f, τ) is strongly connected
if Q is a strongly connected component.

An example of an automaton that is not strongly connected is displayed in Figure 4. This automaton
has three states, Q = {q1, q2, q3}. It is clear by definition that this automaton has two strongly connected
components; QSCC1 = {q2} and QSCC2 = {q3}, and therefore is not a strongly connected automaton. The
automaton starts in state q1. If it receives a C signal in the first round, then it enters q2 and always plays C.
If it receives a D signal in the first round, then it enters q3 and always plays D. So with certain probability
this automata always plays C, otherwise it always plays D.

Every automaton has at least one strongly connected component. When signal are imperfect, the au-
tomaton reaches a SCC with probability one, and remains in that SCC for the remainder of the supergame.
Since I am focusing on the long run behavior of the automata, I restrict the set of automata to only strongly
connected automata. It is important to note that if player 1 plays a strongly connected automaton M1, then
player 2 is at least weakly better playing a strongly connected automaton as well.

Lemma A.9 For M1 ∈ MSCC and M2 ∈ M\MSCC and any ε ∈ (0, .5], there exists M ′2 ∈ MSCC such
that U2 (M1,M

′
2, ε) ≥ U2 (M1,M2, ε).

Therefore, any equilibrium over the set of strongly connected automata is also an equilibrium over the
set of all finite automata. However, there may be equilibria that contain one or more automata which are
not strongly connected.
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The idea for this proof is as follows. Suppose player 1 plays a strongly connected automaton. If player
2 plays an automaton with more than one strongly connected component, then depending on the starting
state, the system may enter any one of the strongly connected components with positive probability. If
different strongly connected components yield different payoffs, player 2 is better playing the automaton
with only the strongly connected component with the highest payoff.

To summarize, for the N -state analysis, I restrict the set of finite automata to those which are finite,
strongly connected, and reduced. This set is denoted by MR

i . All equilibria over this set are also equilibria
over the set of all finite automata. However, there may be additional equilibrium consisting of one or more
non-strongly connected automata.

Proof of Lemma A.9

Since M2 =
(
Q2, q

0
2 , fi, τi

)
is not a strongly connected automaton, then the states can be divided up into

strongly connected components and transient classes. Let QSCC1 , . . . , QSCCn ⊂ Q2 be the strongly connected
components of automaton M2.

First, consider the trivial case that automaton starts in a strongly connected component, q0 ∈ QSCCk .
Then let automaton M ′2 have the states QSCCk and the corresponding output function, transition function,
and starting points from M2. Since QSCCk is strongly connected component this automaton is well defined.
It is clear by the definition of strongly connected components that M2 and M ′2 yield the same payoff against
M1.

Next, consider the situation where M2 does not start in a strongly connected component, q0
2 6∈ QSCCk

for any k = 1, . . . , n. Given the starting point x0 corresponding to q0
1 and q0

2 , the system X (M1,M2, ε) has
a unique stationary distribution π (M1,M2, ε)

(
x0
)
. This stationary distribution is the convex combination

of stationary distributions,

π (M1,M2, ε)
(
x0
)

=

n∑
k=1

βkπk,

where βk is the probability that starting at x0 the system gets absorbed to QSCCk , and πk is the stationary
distribution of the system when M2 starts in QSCCk . The payoff is therefore written as

U2 (M1,M2, ε) =

n∑
k=1

βkU2

(
M1,M

SCC
k , ε

)
,

where MSCC
k is the automaton composed of the states QSCCk . Let M ′2 be the automaton MSCC

k which yields
the highest payoff against M1 and has positive probability of being reached, βk > 0. Then this automaton
yields at least weakly higher payoffs against M1 than M2. �

B Proofs

I present the finite-state results first, as some of these are used in the two-state results.

B.1 Finite-State Results

Lemma B.1 Given M1 ∈ MR
1 and M2 ∈ MR

2 and regular signal functions ri (si, sj , ε), then the Markov
chain X (M1,M2, ε) is irreducible for all ε > 0.

Proof of Lemma B.1

The Markov chain starts in chain-state x0, the chain-state corresponding to the situation where both au-
tomata are in their initial state, q1

(
x0
)

= q0
1 and q2

(
x0
)

= q0
2 . By definition, the Markov chain has one

chain-state for each automata-state pair that is reachable from x0 with positive probability. Therefore,[
X (M1,M2, ε)

(
x0, x

)]N
> 0 for all x ∈ X (M1,M2, ε), all ε > 0, some N ≥ 0.
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So every chain-state is reachable from x0. Next, I show that x0 is reachable from every chain-state x ∈
X (M1,M2, ε). By definition, an automaton Mi =

(
Qi, q

0
i , fi, τi

)
is strongly connected if Qi is a strongly

connected component. This means that every state in Qi is reachable from every other state. Therefore,
there is some sequence of actions, si (q1, q2), which takes Mi from state q1 ∈ Qi to state q2 ∈ Qi. By the
second condition of regular signal function, for all ε > 0, the probability that player i sees sequence of signals
si (q1, q2) is greater than 0.

I want to show that it is possible to get from any chain-state x ∈ X (M1,M2, ε) to chain-state x0. Let
qi (x) be the state of Mi when X (M1,M2, ε) is in chain-state x. Then there exists sequences of actions
s1

(
q1(x0), q1(x)

)
, s1

(
q1(x), q1(x0)

)
, s2

(
q2(x0), q2(x)

)
, and s2

(
q2(x), q2(x0)

)
. Since x is reachable from x0,

then there exists sequences s1

(
q1(x0), q1(x)

)
and s2

(
q2(x0), q2(x)

)
of equal length,

∣∣s1

(
q1(x0), q1(x)

)∣∣ =∣∣s2

(
q2(x0), q2(x)

)∣∣. The length of the other sequences may not be equal.

If player 2 plays sequences s1

(
q1(x), q1(x0)

)
and s1

(
q1(x0), q1(x)

)
repeatedly

∣∣s2

(
q2(x), q2(x0)

)∣∣ +∣∣s2

(
q2(x), q2(x0)

)∣∣− 1 times, and then s1

(
q1(x), q1(x0)

)
is played one more time, then M1 goes from q1(x)

to q1(x0) in(∣∣s1

(
q1(x), q1(x0)

)∣∣+
∣∣s1

(
q1(x0), q1(x)

)∣∣) (∣∣s2

(
q2(x), q2(x0)

)∣∣+
∣∣s2

(
q2(x0), q2(x)

)∣∣)− ∣∣s1

(
q1(x0)− q1(x)

)∣∣
moves. Similarly, if player 1 plays sequences s2

(
q2(x), q2(x0)

)
and s2

(
q2(x0), q2(x)

)
repeatedly

∣∣s2

(
q2(x), q2(x0)

)∣∣+∣∣s2

(
q2(x), q2(x0)

)∣∣− 1 times, and then s2

(
q2(x), q2(x0)

)
is played one more time, then M2 goes from q2(x)

to q2(x0) in(∣∣s1

(
q1(x), q1(x0)

)∣∣+
∣∣s1

(
q1(x0), q1(x)

)∣∣) (∣∣s2

(
q2(x), q2(x0)

)∣∣+
∣∣s2

(
q2(x0), q2(x)

)∣∣)− ∣∣s2

(
q2(x0)− q2(x)

)∣∣
moves. The length of these sequences are the same. So each automaton goes from qi(x) to qi(x

0), meaning
the system goes from x to x0 with positive probability. So the Markov chain is irreducible. �

Proof of Lemma 5.3

By Lemma B.1, X (M1,M2, ε) is irreducible and hence has a unique stationary distribution π (M1,M2, ε)

for all ε > 0. Let H (xi, T ) = 1
T

∑T
t=0 I {xt = xi} be the number of times that X (M1,M2, ε) has visited

chain-state xi in T rounds. By the law of large numbers for irreducible Markov chains , for all starting
chain-states, limT→∞H (xk, T ) = π (M1,M2, ε) (xk), where π (M1,M2, ε) (xk) is the term of π (M1,M2, ε)
corresponding to chain-state xk. The payoff for the first T rounds can be rewritten as, UTi (M1,M2, ε) =∑
xk∈X(M1,M2,ε)

H (xk, T )ui (xk) . Therefore, Ui (M1,M2, ε) = limT→∞
∑
xk∈X(M1,M2,ε)

H (xk, T )ui (xk) =∑
xk∈X(M1,M2,ε)

π (M1,M2, ε) (xk)ui (xk) . �

The infinite set of all possible absorbing classes of automaton M is denoted by AC(M). The set of payoff-
maximal absorbing states for player i is, AC∗i (M) = {a|Ui(a) ≥ Ui(b) for all b ∈ AC(M)} .

Lemma B.2 If a = {q, s} ∈ AC∗i (M) and qj , qk ∈ q such that qj = qk, then there exists a′ ∈ AC∗i (M) such
that |a′| < |a|.

Proof of Lemma B.2

Consider absorbing classes a = {q, s} ∈ AC∗i (M) with qj , qk ∈ q such that qj = qk. Then consider the two
absorbing classes; a1 = ({q1, . . . , qj−1, qj , qk+1, qn} , {s1, . . . , sj−1, sk, sk+1, . . . , sn}) and
a2 = ({qj+1, . . . , qk} , {sj+1, . . . , sk−1, sj}). Both of these satisfy the conditions for an absorbing class,
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because, τ (qj , sk) = τ (qk, sk) = qk+1 and τ (qk, sj) = τ (qj , sj) = qj+1. The payoff of absorbing class a is,

UACi (a) =
1

n

n∑
l=1

ui (f (ql) , sl)

=
1

n

(n− k + j)

 1

n− k + j

j,n∑
l=1,k+1

ui (f (ql) , sl)

+ (k − j)

 1

k − j

k∑
l=j+1

ui (f (ql) , sl)


=

(
n− k + j

n

)
UACi (a1) +

(
k − j
n

)
UACi (a2) .

Since a ∈ AC∗i (M), it must be that UACi (a) = UACi (a1) = UACi (a2), or else either a1 or a2 would have
higher payoff than a. Since 0 < j < k < n, |a1| = n − k + j < n = |a| and |a2| = k − j < n = |a|. So for
all payoff-maximal absorbing classes with multiple visits to one state, there exists a smaller payoff-maximal
absorbing class. �

The set of absorbing classes which contain all unique states for player i is denoted by,

ACUi (M) = {a|qi 6= qj for all qi, qj ∈ a} .

Lemma B.3 At least one of the unique state absorbing classes is payoff-maximal, i.e.

AC∗i (M) ∩ACUi (M) 6= ∅.

Proof of Lemma B.3

Select any absorbing class a ∈ AC∗i (M). By Lemma B.2, for each payoff-maximal absorbing class that visits
state qj more than once, there exists another payoff-maximal absorbing class that visits qi strictly less. This
process can be repeated until the new absorbing class visits state qj only once. This can be done for each
state in a. Then end result is a payoff-maximal absorbing class in the set of unique state absorbing classes.�

Lemma B.3 suggests that there is a payoff-maximal absorbing class with weakly fewer states than automaton
M , which means that there is a finite optimal absorbing class. Player i’s payoff-maximal absorbing class is
denoted by a∗i (M).

Lemma B.4 Ui (M1,M2, ε) ≤ UACi (a∗i (M−i)) for all ε ∈ [0, .5] and all Mi ∈M.

Proof

Suppose by means of contradiction that for some ε ∈ [0, .5], U2 (M1,M2, ε) > UAC2 (a∗2 (M1)). The Markov
chain X (M1,M2, ε) yields a sequence of automaton-state pairs x0, x1, x2, . . .. By definition, U2 (M1,M2, ε) =

limT→∞
1
T

∑T
t=0 u2 (xt), where u2 (xt) is the payoff to player 2 for the automaton-state profile xt. For every

finite integer K, there must be some sequence of length K of automaton-state pairs y1, . . . , yK such that,

1

K

K∑
k=1

u2

(
yk
)
≥ U2 (M1,M2, ε) . (4)

Let |Q1| be the number of states in M1, and let u2 be the lowest possible stage-game payoff for player 2. Set
K̄ to be a sufficiently high integer such that

U2 (M1,M2, ε)− U2 (a∗2 (M1)) >
j (U2 (M1,M2, ε)− u2)

K̄ + j
(5)



March 5th, 2011 Julian Romero

Page 23/36

holds for all j = 1, . . . , |Q1|. From (5), we get,

U2 (a∗2 (M1)) < U2 (M1,M2, ε)−
j (U2 (M1,M2, ε)− u2)

K̄ + j

=
K̄U2 (M1,M2, ε)− ju2

K̄ + j
. (6)

Fix sequence of automaton-state pairs y1, . . . , yK̄+1 such that,

1

K̄

K̄∑
k=1

u2

(
yk
)
≥ U2 (M1,M2, ε) .

Let q1
i , q

2
i , . . . , q

K̄+1
i be the sequence of states for automaton i from the sequence of automaton-state pairs

y1, . . . , yK̄+1. Automaton M1 starts in state q1
i and ends in state qK̄+1

i . Because M1 is strongly connected,

there exists some sequence of actions s1
2, s

2
2, . . . , s

j
2 ∈ S2, that moves automaton M1 from state qK̄+1

i to state

q1
i . Let p1

1 = qK̄+1
1 and pl1 = τ2

(
pl−1

1 , sl−1
2

)
for l = 2, . . . j. By construction it must be that, τ2

(
pj1, s

j
2

)
= q1

1 .

Since M1 has |Q1| states, then
∣∣∣{s1

2, s
2
2, . . . , s

j
2

}∣∣∣ ≤ |Q1|. Define the absorbing class

a′2 (M1) =
({
q1
1 , q

1
1 , . . . , q

K̄
1 , p

1
1, p

2
1, . . . , p

j
1

}
,
{
f2

(
q1
2

)
, f2

(
q2
2

)
, . . . , f2

(
qK̄2

)
, s1

2, s
2
2, . . . , s

j
2

})
.

This is a well defined absorbing class. Note that u2

(
f1

(
pk1
)
, sk1
)
≥ u2 for k = 1, . . . , j. Therefore,

UAC2 (a′2 (M1)) =
1

K̄ + j

 K̄∑
k=1

u2

(
yk
)

+

j∑
k=1

u2

(
f1

(
pk1
)
, sk2
)

≥ 1

K̄ + j

 K̄∑
k=1

u2

(
yk
)

+ ju2

 (By minimality of u2.)

≥
[
K̄U2 (M1,M2, r1(ε), r2(ε)) + ju2

]
K̄ + j

(From (4))

> U2 (a∗2 (M1)) (From (6))

This contradicts the maximality of a∗2 (M1). �

Lemma B.5 Given regular signal functions ri, if X (M1,M2, ε) has communicating classes A1, . . . , Am,
then,

lim
ε→0

Ui (M1,M2, ε) =
∑

Ak|γ(Ak)=γ∗

β(Ak)UCCi (Ak) ,

with
∑
Ak|γ(Ak)=γ∗ β(Ak) = 1 and β (Ak) > 0 for all Ak such that γ (Ak) = γ∗.

Proof

By Lemma B.1, the Markov chain X (M1,M2, ε) is irreducible and has a unique stationary distribution
π (M1,M2, ε). Let π (M1,M2, ε) (x) denote the term of the stationary distribution corresponding to chain-
state x ∈ X (M1,M2, ε). By Theorem B.13, if a communicating class doesn’t minimize stochastic potential,
γ (A) > γ∗, then,

lim
ε→0

π (M1,M2, ε) (x) = 0 for all x ∈ A. (7)

If a communicating class A does minimize stochastic potential, γ(A) = γ∗, then,

lim
ε→0

π (M1,M2, ε) (y) > 0 for all y ∈ A. (8)
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For each communicating class Ak, there exists some constant, α (Ak) such that,

lim
ε→0

∑
x∈Ak

π (M1,M2, ε) (x)ui(x) = α (Ak)
∑
x∈Ak

ui(x), (9)

Then,

lim
ε→0

Ui (M1,M2, ε) = lim
ε→0

∑
x∈X(M1,M2,ε)

π (M1,M2, ε) (x)ui (x) (by Lemma 5.3)

= lim
ε→0

∑
Ak|γ(Ak)=γ∗

∑
x∈Ak

π (M1,M2, ε) (x)ui(x) (by (7))

=
∑

Ak|γ(Ak)=γ∗

α(Ak)
∑
x∈Ak

ui(x) (by (9))

=
∑

Ak|γ(Ak)=γ∗

α(Ak) |Ak|UCCi (Ak) . (by def. of UCCi )

Set β (Ak) = α (Ak) |Ak|, then
∑
Ak|γ(Ak)=γ∗ β (Ak) =

∑
x∈X(M1,M2,ε)

π (M1,M2, ε) (x) = 1 and β (Ak) > 0

for all Ak such that γ (Ak) = γ∗ by (8). �

Definition B.6 (Homing Sequence) Given automaton M = (Q, q0, f, τ), the action sequence h ∈ Sn is
a homing sequence if and only if, ∀q1, q2 ∈ Q and q1〈h〉 = q2〈h〉 ⇒ q1h = q2h, where q〈h〉 ∈ f

(
Sn+1

)
is the

output of M starting at state q when the sequence h is played, and qh is the end state of M when h is played.

This means that when h is played, the output of M allows us to determine the current state of M .

Theorem B.7 (Kohavi [18]) A preset homing sequence, whose length is at most (n− 1)
2
, exists for every

reduced, strongly connected n-state machine M .

Proof of Lemma 5.7

I construct automaton M2 = (Q2, q
0
2 , f2, τ2) which yields the desired properties. Consider automaton M1

with n states and absorbing class a = ({q1, . . . , qm} , {s1, . . . , sm}) with m ≤ n states.
The automaton will be made up of three main parts. The first part is the absorbing class. This section

of the automaton keeps the system in the desired absorbing class when reached. Then second part of the
automaton is the homing region. In this region, the automaton plays the homing sequence. Based on the
response from M1, the current state of M1 is determined. The goal of the homing region is to determine the
current state of automaton M1 after an error has been made. Once the state of automaton M1 is known,
it will be possible to move it back into the absorbing class. The third part allows the two automata to
resynchronize, transitioning from the homing region back to the absorbing class.

Start constructing M2 by creating states and transitions such that the absorbing class is maintained.
That is for each state qj in the absorbing class a of M1, create corresponding state pj in automaton M2 that
satisfies,

f2 (pj) = sj and τ (pj , f1 (qj)) =

{
pj+1 j < m
p1 j = m

.

Also, let all incorrect plays in the absorbing class states lead to state pm+1, τ (pj , s 6= f1 (qj)) = pm+1.
The second region of the automaton is the homing region. By Theorem B.7, there exists a homing

sequence for automaton M1, call this h (M1) = {h1, . . . , hl}. There is a set of sequences of states imposed
by this homing sequence when started at different states,

S(h) = {q〈h〉|q ∈ Q} =


(
s1

1, . . . , s
1
l

)(
s2

1, . . . , s
2
l

)
...(

sk1 , . . . , s
k
l

)
 .
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There is also a set of states that this homing sequence will lead to, Q(h) = {q|q′h = q for some q′ ∈ Q}. Let
S (h, j) for 0 < j ≤ l be the first j terms of these sequences,

S (h, j) =


(
s1

1, . . . , s
1
j

)(
s2

1, . . . , s
2
j

)
...(

sk1 , . . . , s
k
j

)
 =


s1(j)
s2(j)

...
sk(j)

 .

Let SU (h, j) be the set of unique sequences of length j imposed by h,

SU (h, j) =


(
s1

1, . . . , s
1
j

)(
s2

1, . . . , s
2
j

)
...(

su1 , . . . , s
u
j

)
 =


s1(j)
s2(j)

...
su(j)

 ,

where
∣∣SU (h, j)

∣∣ = u(j) is the number of unique sequences in S (h, j).
The homing region consists of l + 1 classes, Pm+1, . . ., Pm+l+1. Class Pm+1+j consists of u(j) states,

pm+1+j

(
s1(j)

)
, . . ., pm+1+j

(
su(j)(j)

)
, one corresponding to each sequence in SU (h, j). Define SU (h, 0) =

{∅} and u(0) = 1. Automaton M2 will play the same action in all states of a given class, f2(p) = hi for all
p ∈ Pm+i for i ∈ {1, . . . , l}. This choice will correspond to the matching term in the homing sequence. The
transition function for 0 < i ≤ l is defined as follows.

τ2 (pm+i (s) , C) =

{
pm+i+1 ({s, C}) if {s, C} ∈ SU (h, i)

pm+i+1 ({s, D}) if {s, C} 6∈ SU (h, i)

τ2 (pm+i (s) , D) =

{
pm+i+1 ({s, D}) if {s, D} ∈ SU (h, i)

pm+i+1 ({s, C}) if {s, D} 6∈ SU (h, i)
.

Finally, the last region of M2 will resynchronize play, and get the system back to the absorbing class a.
There will be k states in class Pm+l+1. By definition of the homing sequence, for each state pm+l+1(q) ∈
Pm+l+1 there is a corresponding state q ∈ M1 such that when M2 is in state pm+l+1(q), M1 is in state q.
Define the resynchronizing sequence t (q) =

{
t1(q), t2(q), . . . , tr(q)(q)

}
to be the sequence of plays necessary

to get from state q to state q1 where r(q) = |t(q)|. This sequence exists for each state because M1 is strongly
connected. Then for each state p1(q) = pm+l+1(q) ∈ Pm+l+1, for 0 < i < r(q). τ2

(
pi(q),C or D

)
= pi+1(q)

and τ2
(
pr(q)(q),C or D

)
= p1. The output function for 0 < i ≤ r(q) is, f2

(
pi(q)

)
= ti(q).

So the system will always end up in chain-state (q1, p1) regardless of the starting position. Once the
system is in (q1, p1), it has entered the communicating class, and will not leave without errors. �

Definition B.8 (Regular Perturbation) Given Markov chain X, a perturbation Xε is called a regular
perturbation if the following three conditions hold,

1. Xε is irreducible for all ε ∈ (0, .5].

2. lim
ε→0

Xε (x, y) = X (x, y)

3. Xε (x, y) > 0 for some ε implies ∃n ≥ 0 such that 0 < lim
ε→0

ε−nXε (x, y) <∞

Definition B.9 (Resistance) The resistance ρij is the order of the probability that the system goes from
communicating class Ai to Aj, i.e.

ρij = min
x∈Ai,y∈Aj ,n∈N

O (X (M1,M2, ε) (x, y)
n
) ,

where O(·) is the order of the function. If the probability is 0, then the resistance is defined to be ∞.
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Define the graph G, which has one vertex, vk, for every communicating class Ak. For every vertex pair,
vi, vj ∈ G, there is an edge with resistance ρij .

Definition B.10 (i-tree) An i-tree in G is a spanning tree such that from every vertex j 6= i, there is a
unique path directed from j to i.

For each vertex, Ti is the set of all i-trees on G. The resistance on an i-tree is,

ρ (τ) =
∑

(i,j)∈τ

ρij .

Definition B.11 (Stochastic Potential) The stochastic potential of the communicating class Ai is the
least resistance among all i-trees:

γi = min
τ∈Ti

ρ(τ).

The stochastic potential measures the likelihood of the system visiting a certain communicating class.
Communicating classes that don’t have the minimum stochastic potential are at least an order ε less likely
to be visited by the system. As the errors approach zero, the system spends non-trivial amounts of the su-
pergame in only the communication classes with minimum stochastic potential. Finally, define the minimum
stochastic potential of the system to be,

γ∗ = min
i=1,...m

γi.

Lemma B.12 Given automata M1 and M2 subject to regular signal functions r1 and r2, the perturbed
system X (M1,M2, ε) is a regular perturbation.

Proof

To show that this is true, I must show that the three criteria are satisfied. The system formed by automata
M1 and M2 and regular signal functions r1 and r2 is represented by Markov chain X (M1,M2, ε). By Lemma
B.1, X (M1,M2, ε) is always irreducible, so the first criterion is satisfied. By the first part of the definition
of regular signal function and (2), the second criterion is satisfied. Finally, it is clear that the third condition
of the regular signal function remains under addition and multiplication, so the third criterion also holds by
(2). �

Theorem B.13 (Theorem 4 from Young [35]) Let X0 be a stationary Markov process on a finite state
space with communicating communication classes A1, . . . , Am. Let Xε be a regular perturbation of X0, and
let πε be its unique stationary distribution for every small positive ε. Then:

1. as ε→ 0, πε converges to a stationary distribution π0 of X0, and

2. x is stochastically stable (π0
x > 0) if and only if x is contained in a communicating class Aj that

minimizes γj.

The second part of this theorem implies that a communicating class is prevalent if and only if it minimizes
stochastic potential.

Proof of Theorem 5.6

Suppose that (M1,M2) is an equilibrium for all ε ∈ (0, ε̄). Suppose by means of contradiction that there
exists a communicating class Ak such that γ (Ak) = γ∗ and

UCC2 (Ak) < UAC2 (a∗2 (M1)) . (10)

Using (10), Lemma B.5 and that fact that a communicating class can never get payoff higher than the
optimal absorbing class gives,

U2 (M1,M2, ε) < UAC2 (a∗2 (M1)) . (11)
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By Lemma 5.7, there exists an automaton M ′2 such that for all communicating classes A of X (M1,M2, ε),
UCC2 (A) = UAC2 (a∗2 (M1)). Therefore, by Lemma B.5,

lim
ε→0

U2 (M1,M
′
2, ε) = UCC2 (A) = UAC2 (a∗2 (M1)) . (12)

By Lemma 1 from Young [35], the stationary distribution of X (M1,M
′
2, ε) is continuous at ε = 0. Therefore

the payoff must also be continuous at ε = 0. So, for all ε ∈ (0, ε̄), there exists some δ > 0 such that,∣∣∣ lim
ε→0

U2 (M1,M
′
2, ε)− U2 (M1,M

′
2, ε)

∣∣∣ < δ. (13)

Set ε̄ sufficiently small so that,∣∣∣ lim
ε→0

U2 (M1,M
′
2, ε)− U2 (M1,M

′
2, ε)

∣∣∣ < ∣∣UAC2 (a∗2 (M1))− U2 (M1,M2, ε)
∣∣ . (14)

By (11), (12), and (14) for all ε ∈ (0, ε̄),

U2 (M1,M2, ε) < U2 (M1,M
′
2, ε) .

So (M1,M2) is not an equilibrium for any ε ∈ (0, ε̄), which is a contradiction. �

Proof of Theorem 5.8

Fix (M1,M2) represented by X (M1,M2, ε) such that for all stochastic potential minimizing communicating
classes γ (Ak) = γ∗,

UCCi (Ak) = UACi (a∗ (M−i)) (15)

and
∂Ui (M1,M2, ε)

∂ε
= sup
M∈MSPM (M−i)

∂Ui (M1,M, ε)

∂ε
.

Without loss of generality, I will show that when these conditions are satisfied, M2 is a best response
to M1. For all M2 6∈ MSPM (M1), there exists a stochastic potential minimizing communicating class such
that UCC2 (Ak) < UAC2 (a∗ (M1)). By Lemma B.5 and that fact that a communicating class can never get
payoff higher than the optimal absorbing class,

U2 (M1,M2, ε) < UAC2 (a∗2 (M1)) for all M2 6∈ MSPM (M1). (16)

For all M2 ∈MSPM (M1),
lim
ε→0

U2 (M1,M2, ε) = UAC2 (a∗2 (M1))

By continuity of U2, this means that for all ε ∈ (0, ε̄) for ε̄ sufficiently small,

U2 (M1,M, ε) < U2 (M1,M
′, ε) for all M 6∈ MSPM ,M ′ ∈MSPM .

So the best response to M1 for ε ∈ (0, ε̄) must come from the set MSPM . For all M ∈MSPM (M1),

lim
ε→0

U2 (M1,M, ε) = UAC2 (a∗ (M1)) .

By definition of the derivative, for some ε̄ > 0,

∂U2 (M1,M, ε)

∂ε

∣∣∣∣
ε=0

≤ ∂U2 (M1,M
′, ε)

∂ε

∣∣∣∣
ε=0

⇒ U2 (M1,M, ε) ≤ U2 (M1,M
′, ε) for all ε ∈ (0, ε̄) .
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Therefore, if M2 satisfies,

∂Ui (M1,M2, ε)

∂ε
= sup
M∈MSPM (M−i)

∂Ui (M1,M, ε)

∂ε
.

Then it must be that for all ε ∈ (0, ε̄),

U2 (M1,M, ε) ≤ U2 (M1,M2, ε) for all M ∈MSPM .

Therefore, M2 is a best response to M1. �

B.2 Two-State Results

Proposition B.14 Players play supergame G, where each action in stage game g has a unique best response.
For any error ε ∈ (0, 1/2], both players playing automata equivalent to open-loop finite automata is an
equilibrium of the supergame G if and only if they play a Nash equilibrium of the stage game in every round
of the supergame.

Proof of Proposition B.14

⇒First suppose that both players play automata equivalent to open loop automata M1 and M2. These form
the Markov chainX (M1,M2, ε) with n chain-states and all entries either 0 or 1. Depending on x0, the Markov
chain loops through m ≤ n chain-states, x1, . . . , xm. This yields payoff, Ui (M1,M2, ε) = 1

m

∑m
k=1 ui

(
xk
)
.

Suppose without loss of generality that the actions in chain-state xj are not a Nash equilibrium of the
stage game, because player 2 receives higher payoff from playing sj2 than f2

(
q2(xj)

)
when player 1 plays

f1

(
q1(xj)

)
, u2

(
xj
)
< u2

(
f1

(
q1(xj)

)
, sj2

)
. Then player 2 is better playing automaton M ′ which is the same

as M2 except f2

(
q2(xj)

)
= sj2, U2 (M1,M2, ε) =

∑
k 6=j u2(xk)+ui(x

j) <
∑
k 6=j u2(xk)+u2(f1

(
q1(xj)

)
, sj2) =

U2 (M1,M
′, ε) . So both players playing automata equivalent to open loop automata M1 and M2 is an

equilibrium only if a Nash equilibrium is played in every round.
⇐ Assume that automata M1 and M2 generate a sequence of actions which yield a Nash equilibrium

in every stage game. Suppose that M1 is not equivalent to an open loop automaton. For some state q1,
f1 (τ1 (q1, C)) 6= f1 (τ1 (q1, D)) . So when M1 is in q1, the play in the next round can be either f1 (τ1 (q1, C))
or f1 (τ1 (q1, D)). Since ε > 0, either signal is possible with positive probability. Automaton M2 will play
s2, which has a unique best response. So, with positive probability the system of automata M1 and M2 will
not play a Nash equilibrium of the stage game. This contradicts the assumption that M1 is not equivalent
to an open loop automaton. A similar argument holds for M2. Therefore, if M1 and M2 generate a sequence
of action which yield a Nash equilibrium in every stage game that has unique best responses, the automata
must be equivalent to open-loop automata. �

Definition B.15 (Eventually Always Plays) An automaton Mi = (Qi, q
0
i , fi, τi) eventually always plays

action si ∈ Si if for all strongly connected components QSCCk ⊆ Qi,

fi (q) = si for all q ∈ QSCCk

Lemma B.16 When ε > 0, and automaton M which eventually always plays C is payoff equivalent to MC

over the set of automata with only one SCC.

Proof of Lemma B.16

Assume that player 1 plays M1 = M . Assume that player 2 plays M2 =
(
Q2, q

0
2 , f2, τ2

)
which has one

strongly connected component. Let Ti be the round for which automata Mi reaches a strongly connected
component. Since ε > 0, any sequence of signals occurs with positive probability, so P (Ti <∞) = 1. Let uti
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be the payoff for player i in round t. Let T ∗ = max(T1, T2). Then,

Ui (M1,M2, ε) = lim
T→∞

1

T

[
T∗∑
k=0

uki +

T∑
k=T∗+1

uki

]
= lim
T→∞

1

T

[
T∑

k=T∗+1

uki

]
= Ui (M ′,M2, ε) .

So any automaton M with only one SCC is payoff equivalent to the automaton M ′ consisting only of the
states of the SCC over the set of automata with only one strongly connected component. �

Lemma B.17 The set of two-state automata, M2, can be reduced to a smaller set of automata, M̄2, such
that,

1. for all M ∈M2, there exists some M ′ ∈ M̄2 such that M and M ′ are payoff equivalent over M2, and

2. for all M,M ′ ∈ M̄2, M and M ′ are not payoff equivalent over M2.

Proof of Lemma B.17

There are |Si|N
(
NN

)|S−i|
total N -state automata when the starting states are omitted. So when both

players have two actions, there are 64 two-state automata. Many of these automata are redundant.
First, divide the 64 into four categories, each containing 16 automata:

M2
1 =

{
M ∈M2|f (q1) = C, f (q2) = C

}
M2

2 =
{
M ∈M2|f (q1) = C, f (q2) = D

}
M2

3 =
{
M ∈M2|f (q1) = D, f (q2) = C

}
M2

4 =
{
M ∈M2|f (q1) = D, f (q2) = D

}
.

The automata in M2
1 play C regardless of the play of the other automaton. Therefore, these automata

are equivalent to MC , and hence payoff equivalent to MC over the set M2. Similarly, the automata in M2
4

all play D regardless of the play of the other, so they are all payoff equivalent to MD over M2.
For every M2 ∈ M2

2, there exists an equivalent M3 ∈ M2
3 (the only difference is that the states are

switched). For example, M2 = ({C,D} , {q1, q1} , {q2, q2}) and M3 = ({D,C} , {q2, q2} , {q1, q1}). Both of
these automata implement tit-for-tat, so they produce the same output regardless of the input, and hence
are payoff equivalent. Without loss of generality, I only consider those automata in M2

2.
If automaton ME = ({C,D} , {q1, q2} , {q1, q2}) starts in q1, then regardless of the signals it plays C in

every round of the supergame, and hence is equivalent to MC . If ME starts in q2, then regardless of the
signals, it plays D in every round, and hence is equivalent to MD. So depending on the starting point, ME

is equivalent to either MC or MD. After equivalent automata have been eliminated, there are 17 remaining
automata: MC ,MD, and the set M2

2\ME .
Note that all two-state automata have only one reachable SCC. For a two-state automaton to have

multiple strongly connected components, each state needs to be a strongly connected component. The only
two-state automaton which satisfies this is ME = ({C,D} , {q1, q2} , {q1, q2}). If ME starts in qk, then only
qk can be reached, so it only has one reachable SCC, regardless of the starting point. Therefore, by Lemma
B.16, any automaton which eventually always plays C is payoff equivalent to MC over the set M2.

Out of the 17 remaining automata, three eventually always play C, and three eventually always play D ,

Eventually Always Play C Eventually Always Play D

({C,D} , {1, 1} , {1, 2}) ({C,D} , {1, 2} , {2, 2})
({C,D} , {1, 1} , {1, 2}) ({C,D} , {2, 2} , {1, 2})
({C,D} , {1, 1} , {1, 1}) ({C,D} , {2, 2} , {2, 2})

So by Lemma B.16, these automata are payoff equivalent to MC and MD over M2. The remaining 11
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automata for the minimal set M̄2.

1. MC 5. ({C,D} , {1, 1} , {2, 1}) 9. ({C,D} , {2, 1} , {2, 2})
2. MD 6. ({C,D} , {1, 1} , {2, 2}) 10. ({C,D} , {2, 2} , {1, 1})
3. MCD 7. ({C,D} , {2, 1} , {1, 1}) 11. ({C,D} , {2, 2} , {2, 1})
4. MWSLS 8. ({C,D} , {2, 1} , {1, 2}).

�

Proof of Theorem 4.3

If M2 is the best response to M1, then any automaton which is payoff equivalent to M2 is also a best response
to M1. Therefore, I only need to consider the automata in the reduced payoff equivalent set M̄(2) from
Lemma B.17 when finding equilibria. However, if one of the automata in M̄(2) is an equilibrium, then all
payoff equivalent automata are also equilibria.

Three of the automata in M̄(2) are open loop automata: MD,MC ,MCD. When L 6= 0, both players
have unique best responses for all strategies in PD, so by Proposition B.14 these are equilibria if and only a
Nash equilibrium is played in every stage game. Therefore, when L > 0, the unique Nash equilibrium of the
stage game PD is for both players to play D. So MD is an equilibrium when L > 0.

There are 8 remaining automata in M̄2. For each of these automata M , I find the stationary distributions
and payoffs when matched with each of the other automata in M̄2. Using the payoffs, I calculate the best
response function for each of the remaining 8 automata over almost all of the parameter space (all but set
of measure zero). I find that the only regions which M1 = BR1 (M2) and M2 = BR2 (M1) are those stated
in the theorem. For conciseness, these stationary distributions are not included here, but are available on
my website.

The only equilibrium that is supported by a set of positive measure from these remaining 8 automata
is MWSLS on the region − (1− 2ε)

3
< L < (1− 2ε)

3
. So the three equilibria from M̄2 are MC ,MD, and

MWSLS .
There are also automata which are payoff equivalent to some of these three automata. By Lemma B.16,

every automaton which eventually always plays C is payoff equivalent to MC . Therefore, any combination
of automata which eventually always play C is an equilibrium in the region L < 0. Similarly, any pair of
automata which eventually play D is an equilibrium in the region L > 0. Finally, there are no other two-state
automata which are payoff equivalent to MWSLS . �

C D

C

D

1+L,1

0,0

0,0

1,1+L

C D

C

D

1+L,1+L

0,-L

-L,0

0,0

(a) BOS Game (b) MECG Game

Theorem B.18 In the infinitely repeated BOS game, when players have the simple signal function rSi and
choose among the set of two-state automata, M2, the only non-open-loop robust equilibria are:

1. − (1−2ε)2

2ε(2−5ε+4ε2) < L < (1−2ε)2

1−4ε+10ε2−8ε3 and Mi = MWSLS.

Proof

The proof for this Theorem follows the proof of Theorem 4.3. Details available upon request. �

Theorem B.19 In the infinitely repeated MECG game, when players have the simple signal function rSi
and choose among the set of two-state automata, M2, the only non-open-loop robust equilibria are:
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1. L > 1−4ε+10ε2−8ε3

2ε(1−2ε)2
and Mi = MLSWS, and

2. L > − 1−8ε+14ε2−8ε3

2(1−ε)(1−2ε)2
and Mi = MWSLS.

Proof

The proof for this Theorem follows the proof of Theorem 4.3. Details available upon request. �
Theorem 4.4. Suppose both players have simple signal functions rSi . If for i = 1, 2,

1. ui (C,C) > ui (C,D), and

2. ui (C,C) > ui(D,C)+ui(D,D)
2 ;

then there exists some ε̄ > 0 such that
(
MWSLS ,MWSLS

)
is an equilibrium for all ε ∈ (0, ε̄).

Proof of Theorem 4.4

To prove this theorem, I use the sufficient conditions for equilibria provided in Theorem 5.8. This says that
to be an equilibrium for all ε ∈ (0, ε̄),

1. For all communicating classes such that γ (Ak) = γ∗, UCCi (Ak) = UACi (a∗ (M−i)), and

2.
∂Ui (M1,M2, ε)

∂ε
= sup
M∈MSPM (M−i)

∂Ui (M1,M, ε)

∂ε
.

First assume that
ui (C,C) > ui (C,D) (17)

and

ui (C,C) >
ui (D,C) + ui (D,D)

2
. (18)

I then show that the two sufficient conditions are satisfied, meaning
(
MWSLS ,MWSLS

)
is an equilibrium

for all ε ∈ (0, ε̄).
When both players play MWSLS , the Markov chain for the system is,

X
(
MWSLS ,MWSLS , ε

)
=


(1− ε)2

ε (1− ε) ε (1− ε) ε2

ε2 ε (1− ε) ε (1− ε) (1− ε)2

ε2 ε (1− ε) ε (1− ε) (1− ε)2

(1− ε)2
ε (1− ε) ε (1− ε) ε2

 .
This system has one communicating class, A, consisting of the first chain-state of the Markov chain.

Since there is only one communicating class, it trivially minimizes stochastic potential. Therefore, it must
be the case that the payoff in this communicating class is equal to the optimal absorbing class payoff. The
payoff for the communicating class is, UCCi (A) = ui (C,C), which is the stage-game payoff associated with
joint action pair (C,C).

Next, I must calculate the optimal absorbing class payoff for MWSLS . There are three extreme absorbing
classes, such that any other absorbing class can be written as a convex combination of these extreme absorbing
classes. So one of these has to be the optimal absorbing class.

1. a1(MWSLS) = ({q1} , {C}) with payoff ui
(
a1(MWSLS)

)
= ui (C,C)

2. a2(MWSLS) = ({q1, q2} , {D,D}) with payoff ui
(
a2(MWSLS)

)
= ui(D,C)+ui(D,D)

2

3. a3(MWSLS) = ({q2} , {D}) with payoff ui
(
a3(MWSLS)

)
= ui (C,D)
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By (17) and (18), it is clear that a1

(
MWSLS

)
is the optimal absorbing class. Therefore UCCi (A) =

UACi
(
a∗i
(
MWSLS

))
, so the first condition is satisfied.

Next, I need to show that the marginal utility condition is satisfied. By Lemma B.17, the set of automata
can be reduced some minimal payoff equivalent set. There are 11 remaining automata, call this set M̄2. It
can easily be verified that when MWSLS is matched with any automaton M ∈ M̄2, then all communicating
classes minimize stochastic potential.

There are only two automata, such that when paired with MWSLS , all communicating classes yield the
optimal absorbing class payoff. These are MWSLS and M5 = ({C,D} , {1, 1} , {2, 1}).

When both play MWSLS , then the stationary distribution is,

π
(
MWSLS ,MWSLS , ε

)
=


1− 4ε+ 7ε2 − 4ε3

ε (1− ε)
ε (1− ε)

ε
(
2− 5ε+ 4ε2

)

′

.

By Lemma 5.3, the payoff is the stationary distribution dotted with the vector of payoffs,

Ui
(
MWSLS ,MWSLS , ε

)
= π

(
MWSLS ,MWSLS , ε

)
· u,

where u is the vector of payoffs. Therefore the marginal utility at ε = 0 is,

∂Ui
(
MWSLS ,MWSLS , 0

)
∂ε

= −4ui (C,C) + ui (C,D) + ui (D,C) + 2ui (D,D)

When player 1 plays MWSLS and player 2 plays M5, then the stationary distribution is,

π
(
MWSLS ,M5, ε

)
=

1

1 + 2ε− 6ε2 + 10ε3 − 4ε4


1− 3ε+ 5ε2 − 2ε3

ε
(
1− 2ε+ 3ε2 − 2ε3

)
ε
(
2− 3ε+ 2ε2

)
ε
(
2− 6ε+ 7ε2 − 2ε3

)
 .

Again by Lemma 5.3, the payoff is the dot product,

Ui
(
MWSLS ,M5, ε

)
= π

(
MWSLS ,M5, ε

)
· u,

This means the marginal utility at ε = 0 is,

∂Ui
(
MWSLS ,M5, 0

)
∂ε

= −5ui (C,C) + ui (C,D) + 2ui (D,C) + 2ui (D,D) .

So
∂Ui

(
MWSLS ,MWSLS , 0

)
∂ε

≥
∂Ui

(
MWSLS ,M5, 0

)
∂ε

⇐⇒ ui (C,C) > ui (D,C) .

This clearly holds by the assumption (17), and therefore both conditions are satisfied. So
(
MWSLS ,MWSLS

)
is an equilibrium for all ε ∈ (0, ε̄) if the two conditions are satisfied. �

C Examples

C.1 Stochastic Potential Example

To better understand the definitions used for the theorem, I provide a corollary which shows that both
players playing tit-for-tat can never be an equilibrium in the finite-state case. Let MTFT be the two-state
tit-for-tat automaton. Suppose players use the simple signal function rSi from (1). Finally suppose that
players play supergame G with the prisoner’s dilemma stage-game payoffs displayed in Figure 1.
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Corollary C.1 Suppose players play super game G with stage game PD and signal functions rSi , there is
no ε̄ > 0 such that the pair of automata

(
MTFT ,MTFT

)
is an equilibrium for all ε ∈ (0, ε̄).

This result is the similar to Proposition 3 from Compte and Postlewaite [9].

Proof

To prove this, I need to show that the necessary conditions from Theorem 5.6 are not satisfied. The Markov
chain of this system is,

X (M1,M2, ε) =

xCC

xCD

xDC

xDD


(1− ε)2

ε (1− ε) ε (1− ε) ε2

ε (1− ε) ε2 (1− ε)2
ε (1− ε)

ε (1− ε) (1− ε)2
ε2 ε (1− ε)

ε2 ε (1− ε) ε (1− ε) (1− ε)2

 .
There are three communicating classes: AC =

{
xCC

}
, ACD =

{
xCD, xDC

}
, AD =

{
xDD

}
. The resistance

matrix R which tells the resistance between each communicating class is,

R =
AC

ACD

AD

 0 1 2
1 0 1
2 1 0

 .

AC

ACD

AD

11

2

2

1 1

(a) Resistance graph

AC

ACD

AD

11

2

2

1 1

AC

ACD

AD

11

2

2

1 1

AC

ACD

AD

11

2

2

1 1

(b) Optimal i-tree for AC (c) Optimal i-tree for ACD (d) Optimal i-tree for AD

Figure 5: Resistance graph and optimal i-trees if both players play MTFT .

The entry in the first row, third column means that to probability of getting from AC to AD is order
ε2. The graph G with a vertex for each communicating class, and edge weights equal to the resistance
between classes is displayed in Figure C.1(a). The optimal i-tree for each communicating class is displayed
by the bold lines in Figure C.1(b)-(d). These graphs show that each communicating class has stochastic
potential γi = 2. Therefore, the minimum stochastic potential for this system is γ∗ = 2. By Theorem B.13,
all communicating classes are prevalent. By Theorem 5.6, all prevalent communicating classes must yield
the same payoff as the optimal absorbing class. The optimal absorbing class for each player yields payoff
1. Both players playing MTFT only satisfies the necessary conditions if all communicating classes yield the
same payoff, 1. Since U2

(
AC
)

= 1 and U2

(
AD
)

= 0, it is never possible for
(
MTFT ,MTFT

)
to be an

equilibrium for all ε ∈ (0, ε̄). �
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Figure 6: Homing sequence example: automaton M1.
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Figure 7: Homing sequence example: constructed automaton M2.

C.2 Constructed Automaton Example

Suppose that player 1 plays the three state automaton displayed in Figure 6. First, player 2 wants to
determine the desired absorbing class. For automaton M1, the optimal absorbing class based on the prisoner’s
dilemma game from 1 is a∗ (M1) = {{q1} , {C}}. Assume that player 2 wants to create an automaton M2

which only gets stuck in this absorbing class. This automaton has three regions as described above, and is
displayed in Figure 7. First the absorbing region is simple, it consists of one state, q1, which plays C and
returns when M1 plays C. It is clear that when M2 is in q1, and M1 is in q1, player 2 is in his optimal
absorbing class. If there is an incorrect signal while in the absorbing region, player 2 loses track of the
current state of M2, and therefore moves to the homing region to determine the current state.

The homing sequence for this automaton is h = C,D. To see why this is a homing sequence, suppose
automaton M1 starts in state q1. Player 2 is trying to determine the current state by playing the homing
sequence. In the first period, M1 plays C and player 2 plays C. Automaton M1 returns to state q1. In the
second period M1 plays C again and player 2 play D. So the output from automaton M1 from the homing
sequence is C,C. The other possible sequences of plays for the different starting states are: start in q1, first
play C, second play C, final state q2; start in q2, first play D, second play D, final state q3; and start in q3,
first play D, second play C, final state q2. When player 2 plays the homing sequence and sees output C,C
or D,C, then assuming no errors M1 must be in state q2. When the output is D,D, assuming no errors
M1 must be in q3. So based on this output, and assuming no errors, player 2 knows the current state of
M1. The second region of M2 is the homing region. In the homing region, M2 always plays the homing
sequence, and leaves the homing sequence after it has played this sequence. The homing region in Figure 7
consists of states q2, q3, and q4. In state q2 the first term of the homing sequence is played, then depending
on the output, M2 moves to either state q3 or q4 where the second term of the homing sequence is played.
The response from automaton M1 after the homing region allows player 2 to know the current state of M1,
assuming no errors. In this example, M1 is either in state q2 or q3 after the homing region. If an incorrect
signal is receive while in the homing region, the automaton will continue through the regions, and eventually
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make it back to the homing region, in which case it will try again to determine the state.
Finally, once the state has been determined, the automaton M2 simply has to resynchronize the two

automata back to the desired absorbing class a∗2 (M1). The resynchronization region consists of states q5

and q6. If M1 is in state q2, then automaton M2 goes to state q6. If automaton M1 is in state q3, then
automaton M2 goes to state q5. After the resynchronization region, both automata are in state q1, and they
remain here until an incorrect signal is received.

References

[1] D. Abreu and A. Rubinstein. The structure of nash equilibrium in repeated games with finite automata.
Econometrica, 56(6):1259–1281, 1988.

[2] R. J. Aumann. Essays in game theory and mathematical economics in honor of Oskar Morgenstern.
Bibliographisches Institut, 1981.

[3] R. Axelrod. Effective choice in the prisoner’s dilemma. J. Conflict Resolution, 24(1):3–25, Mar 1980.

[4] R. Axelrod. More effective choice in the prisoner’s dilemma. J. Conflict Resolution, 24(3):379–403, Sep
1980.

[5] R. Axelrod. The evolution of cooperation. Basic Books, revised edition, 2006.

[6] V. Bhaskar and I. Obara. Belief-based equilibria in the repeated prisoners’ dilemma with private mon-
itoring. J. Econ. Theory, 102(1):40 – 69, 2002.

[7] H. L. Cole and N. R. Kocherlakota. Finite memory and imperfect monitoring. Games Econ. Behav., 53
(1):59 – 72, 2005.

[8] O. Compte. Communication in repeated games with imperfect private monitoring. Econometrica, 66
(3):597–626, 1998.

[9] O. Compte and A. Postlewaite. Plausible Cooperation, Second Version. SSRN eLibrary, 2010.

[10] J. Conlisk. Why bounded rationality? J. Econ. Lit., 34(2):669–700, 1996.
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