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INTRODUCTION

In this paper, we examine the productivity of commercial activity by U.S. universities in the past

six years. While it is generally acknowledged that there has been a dramatic increase in university li-
censing and patenting, there is little understanding as to the extent to which this is the result of increased
resources devoted to commercialization or to technical change in commercialization, where technical
change has the standard definition of any increase in outputs that cannot be attributed to an increase in
inputs. This paper employs data envelopment analysis (DEA) combined with regression analysis to ex-
amine the productivity of university commercial activity as well as changes in that productivity. DEA
allows us to determine a commercialization frontier in order to evaluate overall productivity of universi-
ties in the sample, as well as to evaluate the technical efficiency of individual universities. We find that
the commercialization frontier has moved out, indicating technical change in commercialization. That is,
given input levels, universities are today more commercially productive than they were in the recent past;
we propose several reasons for this shift. The regression analysis allows us to relate efficiency to univer-
sity characteristics. We find that, ceteris paribus, private universities tend to be more efficient in com-
mercialization than public, while universities with medical school are less likely to be efficient. The latter
result is particularly interesting given that the majority of university licenses are related to biomedical
inventions. We also examine efficiency as related to the size and quality of faculty in biological sciences,
engineering, and physical sciences. Our measures of faculty input in biological sciences and engineering
are significantly related to efficiency, while they are not for physical sciences; we propose reasons for
this difference.

In our study of the commercialization of university intellectual property (IP) we consider the levels
and changes in the levels of the “outputs”
e sponsored research agreements between universities and industry,
e license agreements which permit the use of university IP by private sector firms,
e royalty payments received by universities in exchange for the use of IP,
e disclosures by faculty to their central administration of potentially commercializable innovations, and
e university patent applications.
Each of these outputs is an integral part of a university’s efforts to obtain commercial rewards from the
creation of IP. While some of these outputs might be more properly regarded as intermediate inputs, we
have settled on the above five outcomes as commercialization outputs based on interview and survey re-
sults reported in Thursby and Thursby (1998a). Each is viewed as an important criteria in measuring the
success of a university’s technology transfer. For want of better terms we use “commercialization,”

“commercial activity” and “licensing activity” as succinct ways of referring to the above five outcomes.



Why might such a study as this be of interest? Recent public policy has been aimed at increasing
the commercial impact of universities. For reasons of greater U.S. “competitiveness,” the federal gov-
ernment has encouraged greater interactions between universities and the private sector. The Bayh-Dole
act of 1980 (P.L. 96-517, Patent and Trademark Act Amendments of 1980) changed the nature of owner-
ship of inventions developed under federally funded programs. With passage of the act, universities
could elect to retain title to such inventions, but they are required to file patent applications on those in-
ventions. The Act also encourages the technology transfer activities of universities. The federal gov-
ernment has not been alone in encouraging university licensing activity. State governments have looked
increasingly toward public universities as sources of economic development.

Whether in response to government incentives for commercial activity or whether it has followed
from greater university needs/wants for revenues, the evidence suggests a shift in university goals toward
greater commercialization. The Public Policy Center for Stanford Research International reported in 1986
that more than 90% of universities in their sample intended to increase interactions with industry.
Morgan, Kannankutty and Strickland (1997) report survey results which show increasing responsiveness
of engineering faculty to industry needs. Lee (1996) reports a similar finding based on his survey of en-
gineering and science faculty. Finally, we note that university based “research parks” that are, in part,
designed to facilitate commercialization of university technology are increasingly common.

Changing university goals has been accompanied by industry looking increasingly to universities
for new technologies. Roessner and Wise (1994) report increasing industry participation in university
research, and, based on interviews with industry licensing executives, Thursby and Thursby (1998b) re-
port a similar finding.

Have the Bayh-Dole Act and state government efforts to increase commercialization made a dif-
ference? Have changing university and industry interests made a difference? The record suggests that
the answers are yes. According to results reported in the AUTM Licensing Survey (Association of Uni-
versity Technology Managers, 1997), as well as AUTM press releases, university licensing activity has
increased over the six year period during which AUTM has collected data. Using the sample of univer-
sities that participated in all years of the survey we find that the number of licenses agreements has risen
by nearly 70% and the amount of royalties received (in real terms) has more than doubled between 1991
and 1996. Prior to 1980, fewer than 250 patents were awarded annually to universities; currently, over
1500 patents are awarded annually. The number of universities actively engaged in technology transfer
has increased eightfold since 1980 to now more than 200.

It is clear that government, university, and industry goals are for greater involvement of universi-

ties in licensing activities, but, while evidence suggests an increase in such activity, the basis of those



changes is not clear nor is there clear evidence on the relative productivity of universities with regard to
commercial activities. In this paper we shed light on these issues by looking at relative university com-
mercial productivity and factors related to levels of and changes in that productivity. In the next section
we state more clearly the problem. Following that section we discuss the primary method of analysis, the

data, and then present our detailed results.

THE PROBLEM

Universities are in the business of creation and dissemination of knowledge. This activity is gen-
erally divided into three interrelated (and hard to measure) outputs: teaching, service, and research. It is
research that creates IP, and it is our purpose to study the management of that portion of IP with com-
mercial potential. We have three specific goals. First, we wish to measure the productivity or efficiency
of individual universities in the commercialization of their IP. Our measure of efficiency is based on a
university’s commercialization productivity relative to the productivity of other universities. Second, we
seek to shed light on factors associated with different commercialization success across universities. Fi-
nally, we show that university commercialization activities have expanded substantially in the recent
past. We consider whether that expansion in commercial activities has followed from a “catching” up by
the lagging institutions or whether it stems from expanding activity of all institutions.

Commercial output can vary over time and across universities either because of changes in the
amount of resources devoted to the creation and licensing of commercializable IP, or because of techno-
logical change which makes inputs more productive in the commercialization of university IP. There are
two primary problems in analyzing university commercialization. First, there are multiple measures both
of university licensing output and of the inputs used to produce commercializable output. These output
and input measures cannot be easily aggregated due to the lack of prices for all outputs and inputs. We
solve this technical problem by using DEA which is a linear programming approach to aggregating out-
puts and inputs and measuring productive efficiency. Second, and of substantially greater difficulty, is
the fact that the inputs to university commercialization are also inputs to teaching, service, and non-
commercializable research (i.e., basic research). While we can measure the number of faculty engaged in
research and the funds available with which to conduct that research, we cannot measure the intensity of
efforts directed toward teaching, basic research, etc. That is, we cannot distinguish between an increase
in commercial output that follows from a reallocation of inputs away from, say, basic research toward
commercializable (applied) research and an increase in output that follows from technical change.

Before proceeding it should be emphasized that the terms productivity, success and efficiency

must be used guardedly as these terms might imply that an inefficient university is poorly run with re-



spect to commercialization. This is, of course, not necessarily the case. As noted above, a university
might specialize in basic over applied research, or it may have a greater preference for teaching over re-
search vis-a-vis other institutions. If such specialization or preferences hold for some university, then it
might fare poorly on measures of commercialization success because the showing follows, in part, from
preferences and not from competencies.

University commercialization can be characterized with the following sequence: Research is
conducted by faculty, though it is not necessarily conducted with the intent of creating a commercializ-
able innovation or invention. This research may or may not have been sponsored by the private sector
(industry sponsored research). If a faculty member believes that results of research are commercializable
he or she undertakes a formal, confidential process of disclosure of the results to the university’s Tech-
nology Transfer Office (TTO) which evaluates the innovation for patentable and commercial potential.
If deemed commercializable, the TTO might seek patent protection and does seek to find private sector
firms as licensees of the technology. If licensed, the university might receive royalties either in the form
of upfront fees (a one time charge), milestone payments (fixed charges paid at specified points during
commercial development), running royalties (a percent of revenues from sale or use of the IP) and/or eq-
uity. They might also seek sponsored research funds from an interested firm for further development of
the IP, or for further undirected research; this further research may lead to other commercializable tech-
nologies.

While it might seem to the observer of this process that the ultimate objective is money either
through sponsored research or royalties, this is not necessarily the case for every university. The private
sector measures success via profits, but university obligations are more complex as universities — par-
ticularly public universities — are charged with the creation and dissemination of knowledge regardless of
whether such activities are currently profitable in the private sector. Many universities view not only
royalties and sponsored research as outputs of their commercialization activities, but also the number of
patents and disclosures (measures of commercialization efforts) as well as the number of licenses (a
measure of the dissemination of knowledge via new or improved products and processes). This is not to
say that each of these commercialization outputs is equally important (they are not — see Thursby and
Thursby (1998a)), but the fact that they are viewed as outputs by at least some universities makes the

process of measuring commercialization activities difficult.



DATA ENVELOPMENT ANALYSIS AND EFFICIENCY MEASURES

In order to measure the relative productive efficiencies of universities in commercialization ac-
tivities we must deal with multiple outputs (industry sponsored research, royalties, and numbers of dis-
closures, licenses, and patent applications).! Measuring efficiency is difficult when there are multiple
outputs and the outputs do not all have prices so that they can be meaningfully aggregated and compared.
Without prices how can we determine, for example, the relative importance of another invention disclo-
sure compared to another license or dollar of royalties? To deal with this problem we use DEA. DEA is
commonly used to evaluate the relative efficiency of a number of producers when there are multiple out-
puts (and/or inputs) and when the outputs cannot be meaningfully aggregated due to the lack of prices for
at least some of the outputs. The output of DEA is an efficiency rating or score for each university.

Economists identify three types of inefficiency in production: technical, allocative and scale inef-
ficiency. Allocative efficiency considers whether the producing unit is using the best mix of inputs given
the prices that must be paid for inputs. As we do not have available input prices for all inputs we are un-
able to consider allocative efficiency. Scale efficiency deals with issues of size. A producing unit is said
to be scale inefficient if a proportionate increase or decrease in inputs would lead to a fall in average
costs. If such an increase in inputs leads to an increase (decrease) in average costs then the producing
unit is said to be in a region of decreasing (increasing) returns to scale. Otherwise, the unit is said to pro-
duce in a region of constant returns to scale. It is not necessarily the case that it is better to produce in a
region of constant returns. A profit maximizing firm may find that, based on market prices, the optimal
output level occurs in a scale inefficient region of production. Likewise, scale efficient production for a
university may not be optimal when all goals of the university are considered. In earlier analyses we
considered whether universities were scale inefficient. We found about 45% of the universities in our
sample to be scale inefficient; of these, about 60% are too large for efficient production and the rest are
too small. Further analysis of the scale inefficient versus scale inefficient universities did not reveal any
useful knowledge. For that reason and for reasons of brevity we do not present the scale results; we con-
sider only models that allow for any scale effect.

A producing unit is said to be technically inefficient if it is possible to produce more output with
the current level of inputs or, equivalently, it is possible to produce the same level of output with fewer
inputs. It is our purpose to examine the technical efficiency of universities with regard to their licensing

activities. We shall say that a technically inefficient (or, simply, inefficient) university is one that, when

! We do not include start-up companies as output. AUTM defines start-ups as new firms that are formed using a
license from the university. As such, we do not view start-ups as output that is necessarily different from a license to
an existing firm which then starts a new division or produces a new product based on that license.



compared to other universities with similar levels of inputs, could produce greater commercial output
without increasing its level of input usage, or, equivalently, it is one that, when compared to other univer-
sities with similar levels of outputs, could produce the current levels of outputs with fewer inputs. Rea-
sons for technical inefficiency include, among other things, the failure to take advantage of all commer-
cializable IP as well as a greater preference for basic research over applied research.

To compare commercialization activities we use DEA.> DEA attempts to establish the shape of
the frontier production function for, in our case, university commercialization activities when outputs are
multiple (as are inputs) and where prices for some of the outputs are either missing or distorted. DEA is a
mathematical programming method rather than a statistical tool; statistical approaches in the study of
productive efficiency fit a single regression plane through the data while DEA calculates a discrete
piecewise frontier determined by a set of efficient decision making units (DMUs). In this way a maximal
performance for each DMU relative to all others is obtained such that each DMU either lies on or below
the frontier. Units that lie on the surface are termed efficient and those not on the surface are said to be
inefficient. In quantifying relative efficiencies, DEA weighs an inefficient DMU against a convex com-
bination of the DMUs lying on the portion of the frontier closest to the inefficient DMU.

Consider the simple example. Let there be a single output and a single input for each of 6 DMUs
whose outputs and inputs are depicted in Figure 1. The solid line which links DMUs 1 through 4 is the
frontier in the presence of variable returns to scale. From the standpoint of technical efficiency, no one of
DMUs 1 through 4 dominates the others; each successively uses more input and produces more output.
These four determine the technical efficiency frontier and each is efficient in the sense that it is not
dominated by another DMU. DMUs 5 and 6, on the other hand, are clearly dominated by the others; for
example, DMU 2 uses less input and produces more output than DMU 5. DMUs 5 and 6 each lie below
the technical efficiency frontier. There are no other DMUs with exactly the same input or output levels
as 5 or 6. To measure the extent of inefficiency these DMUs are compared to the nearest facets linking
efficient DMUs. For example, in considering how much less input DMU 5 could use to produce its cur-
rent output, we compare it to a virtual DMU composed of the outputs and inputs of DMUs 1 and 2; these
latter DMUs are referred to as the “peer” or “comparison” DMUs of unit 5.

The idea behind DEA is that, if DMU i produces y; units of output with x; inputs, then it should
be the case that any other DMU j should also be able to do at least as well in the following sense. If j has
an amount x; of inputs then j should be able to produce at least y; output, otherwise j is inefficient. If j

produces more than y; using x; amount of inputs, then i is inefficient. If j produces an amount y; of output



then j should be using no more than x; of inputs, otherwise j is inefficient. If j uses less than x; of inputs
to produce y; then i is inefficient. Schematically, we have:
Let i use x; and produce y;, then
if j uses x; then: y; <Yyi =] is inefficient
yj > yi = iis inefficient
yj =Yi = no evidence that i or j is inefficient.
if j produces yi then:  x; > x; = j is inefficient
Xj < Xj = 1 is inefficient
yj =Yyi = no evidence that i or j is inefficient
DEA compares each DMU’s inputs and outputs with every other DMU’s inputs and outputs.
When there are multiple inputs and outputs, it is unlikely to find another DMU with exactly the same
amounts of inputs in order that a comparison of outputs can be made to determine which of the DMUs is
more productive. Even if another DMU is found with exactly the same amount of inputs, the presence of
multiple outputs makes it difficult to compare efficiency. For example, if i and j use the same amounts of
inputs and i produces 2 units of output y; and 4 units of y, while j produces one less unit of y; and one
more unit of y,, which DMU is more efficient? Without output prices, the answer is not obvious. Alter-
natively, even if we find two DMUs producing the same amounts of each output, the presence of multiple
inputs makes efficiency comparisons difficult. Essentially, DEA avoids this problem by considering, for
each DMU i, a combination of other DMUs that forms a “virtual” DMU that can be used to ask whether i
is or is not efficient.
DEA is formulated as a linear program to find the “best” virtual DMU for each real DMU i. If
the virtual DMU produces more outputs with the same inputs or the same outputs with less inputs, then i
is inefficient, otherwise, we have no evidence that i is inefficient. There are a number of formulations of
DEA, but the basic problem can be presented as follows. Let there be n DMUs each with vectors of out-
puts y; and vectors of inputs x;, i=1, ..., n. To determine productive efficiency of DMU i, DEA involves
the solution of the problem
max,y u'yi/Vv'x;
st wyi/vxj<1l,j=1,...,n
u,v20.

Since there are an infinite number of solutions to this problem, we add the further constraint v’x; = 1. If

? For discussions of DEA, see, for example, Seiford and Thrall (1990), Charnes, Cooper, Lewin, and Seiford (1994),
Ali and Seiford (1993), or Fare, Grosskopf and Lovell (1994). Introductory accounts can be found in Norman and
Stoker (1991) and Ganley and Cubbin (1992).



no combination of DMUs (virtual DMU) has a larger ratio than DMU i, then i is efficient. This problem
is solved for each of the n DMUs. To understand more clearly the DEA approach, consider a simple case
where each DMU produces a single output using a single input. In such a situation one determine effi-
ciency by looking at the ratio of output to input. In the multiple input, multiple output setting, DEA pro-
duces a composite or “virtual” output u’y; which is compared to the virtual input v’x;.

One can also solve the equivalent envelopment form (following duality in linear programming)

max,, ¢

st -0y; + YA 20,

xi- XA 20,

A20,
where Y and X are matrices of outputs and inputs for all universities and 1 < ¢ < 0. If ¢ = 1 we have no
evidence that DMU i is inefficient, whereas ¢-1 is the proportionate increase in output that could be
achieved if the DMU were to become efficient.

Researchers typically use either a constant or variable (VRS) returns to scale models. The VRS
model is less restrictive in that it allows for any scale effect, and, for that reason, it is increasingly the
choice for researchers. For the VRS model we add the constraint 1’A = 1 where 1 is an nx1 vector of
ones (that is, the A’s sum to one). Additionally, a DEA model can have either an input or output orienta-
tion; in the input (output) orientation the focus is on the optimal reduction in inputs (outputs) that would
follow if an inefficient DMU were to move to efficiency. Given either type of envelopment surface and
any type of orientation, DEA involves the solution of a linear programming model for each DMU. In this
paper we consider an output orientation and the VRS model. The above envelopment form is the output
oriented form of DEA. In the results section we report the value of ¢, the efficiency score for each uni-
versity in our sample.

Before turning to data and results, there are several points which need to be emphasized. First, it
is standard to say that a DMU which lies on the frontier is efficient. However, this is not to say that units
on the frontier are efficient, only that, if a unit is on the frontier, we do not observe another unit that is
more efficient given the mix of outputs and inputs. If a unit lies on the frontier, we can only say that we
do not have evidence that it is inefficient. We have the further caveat with respect to the commercializa-
tion problem that inefficient units may be deemed inefficient simply because of preferences (or, perhaps,
distractions) for other activities over commercialization. Standard DEA analysis deals only with produc-
tion efficiencies, here we have the further confounding problem that a university may not lie on the fron-
tier because of preferences in the use of inputs or the value of outputs. The actual level of input usage in

commercialization activity is not necessarily equal to our measured inputs (even if we have correctly



identified all possible inputs) since many of our inputs are used in conjunction with outputs not associ-
ated with commercialization (teaching, basic research, etc.). If an output has no value to a university
then DEA is not strictly appropriate for that institution. For example, in their survey of TTOs, Thursby
and Thursby (1998a) found that some universities do not apply for patents until a licensor is found; for
such universities, patents are a subset of licensing activity rather than a separate activity.

Second, we note that care should be used with the terms outputs and inputs. For some of the
data, the terms may seem to be misleading. For example, industry sponsored research is both an output
and an input. Universities use resources to attract industry funding, but that funding is then an input to
further research output and, possibly, disclosures, patent applications, etc. Sponsored research is, in part,

»3 For the purposes of DEA, we can think of an output

an “intermediate good” as well as a “final product.
as simply something of which the university wants more and inputs are those resources that are used (and
used up in some cases) in getting more of the outputs. Commercialization outputs consist of those ac-
tivities that reflect the commercialization of a university while the inputs consist of those resources that

are important in producing the outputs, but that themselves are not measures of commercial activity.

DATA

The AUTM licensing survey has data on the technology transfer programs of many U.S. and Ca-
nadian institutions. The survey includes public and private universities, hospitals and health care institu-
tions as well as patent management firms. Information from 1991 through 1996 is currently available.
The survey is the source for all output information; outputs are the number of licenses executed
(LCEXEC), the amount of industry sponsored research (INDSUP), the number of new patent applications
(NPTAPP), the number of invention disclosures (INVDIS), and the amount of royalties received
(ROYREC). The survey provides two input measures; it provides the amount of federal support the uni-
versity receives (FEDSUP) and the number of full time equivalent professionals employed in the tech-
nology transfer office (PTTFTE). It is clear that the number of professionals engaged in licensing activ-
ity is important for licensing activity, but the role of federal support as a technology transfer enabler is
not as clear. It has been suggested that industry money tends to flow to universities with large federal
support. Presumably, the reason is that federal support is believed to leverage industry support thereby
reducing industry research costs. All dollar denominated measures are adjusted to 1996 dollar values.

The remainder of the input data are from the National Research Council’s (NRC) Research-

* Industry sponsored research may also have elements of altruism. However, it is the case that sponsored research
agreements are almost always either for the further development of a licensed technology, or they include options for
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Doctorate Programs in the United States Data Set (1993) which is based on the NRC’s 1992 survey of
all Ph.D. granting departments in the U.S. No information is provided for departments that do not grant
the Ph.D. degree. It is plausible to assume that substantial research programs have difficulty existing in
the sciences and engineering — the departments from which the bulk of commercial activity originate --
without the presence of Ph.D. students. Research faculty are drawn, in part, to such departments because
of research aid provided by graduate students. As the Ph.D. degree in the sciences is primarily a research
degree, Ph.D. students are drawn to departments with substantial research programs. This implies the
reasonable proposition that science and engineering departments that do not grant the Ph.D. are not
strong research departments and, hence, provide less inventive input to a university’s commercial activi-
ties. The AUTM data for those universities without science and engineering Ph.D. programs supports the
position that such universities have small levels of commercial activity.

The input data from the NRC survey include the number of faculty in each Ph.D. granting de-
partment as well as a faculty quality rating obtained from a 1992 peer evaluation survey. Our units of
analysis are the three major program areas biological sciences, engineering and physical sci-
ences/mathematics. Input variables are TOTFACi and QUALI for total faculty and faculty quality rating
in the research departments of program area i (i=2 for biological sciences, i=3 for engineering and i = 4
for physical sciences/mathematics — the numbering system follows the NRC system).

The AUTM and NRC data cover a heterogeneous group of institutions. To reduce heterogeneity
we consider a subset of surveyed institutions. Any university which does not have a Ph.D. program in any
of the three major program areas is eliminated. We also exclude Canadian institutions, patent manage-
ment firms and institutions that are solely hospitals or health care institutions; thus we focus solely on
U.S. universities with at least one Ph.D. program in the sciences and engineering. This provides data on
112 universities. Of these, 57 provide complete information in each of the six survey years.

Initial computations are based on the full sample of 112 institutions. For these computations we
use averages of the annual values reported in the AUTM survey. Not every university has participated
each year so that our measures are the average values for the years in which a university participates.
Using averages allows us not only to expand the sample beyond the 57 institutions appearing in each
year, but it also reduces some of the year to year noise in the AUTM data (particularly for schools with
little commercial activity). Table 1 gives summary statistics. INDSUP, FEDSUP, and ROYREC are
each measured in millions of (constant) dollars and QUALI (i=2,3,4) are measured on a scale of 0 to 5

with 5 indicating a distinguished program. Entries in Table 1 are averages over the five years of the sur-

the grantor firm to license any commercializable innovation resulting from the sponsored research (Thursby and
Thursby, 1998b).
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vey so, for example, the minimum of 0.67 for INVDIS tells us that the minimum average number of dis-
closures across the 112 universities is 0.67. After consideration of the full sample of universities, we
turn to computations of year to year changes in productivity. For an analysis of year to year changes it is
necessary to include in the sample only those institutions that appear in every year of the AUTM survey.
A weakness of our approach is that some actions that lead to current output may be actions that
originated in earlier years. For example, current royalties are based upon research conducted in the past
and, to some extent, on licenses executed in the past. Thus, we are mixing inputs and outputs from dif-
ferent points in time. Our analysis implicitly assumes concurrent events. To the extent that there are lags
involved, our results must be considered with caution. However, it is the case that for some of our data,
the year-to-year variation is small. This is certainly true for faculty size and quality and is true to some
extent for sponsored research. Also, results for the full set of universities are based on averages of out-

puts and inputs which should reduce error from time lags.

DEA RESULTS
A. FULL SAMPLE EFFICIENCY SCORES

DEA results for the full sample of 112 universities are found in Table 2 which lists each of the
universities and their efficiency ratings (scores). Universities are listed alphabetically by state and then
alphabetically by institution. Before examining the scores, we reiterate two important points. First, uni-
versities with scores less than one are not necessarily poorly run institutions as their preferences may not
include some or all of the outputs we measure. From interviews with university technology transfer pro-
fessionals (Thursby and Thursby, 1998a), it is clear that valuation of commercialization outputs varies
substantially. For example, few universities value new patent applications as highly as, say, new li-
censes; indeed, some universities do not value new patent applications as outputs. Further, if a university
specializes in basic rather than applied research, then the result can be a lower, less efficient commer-
cialization score. Second, universities deemed efficient are measured as such because no other combina-
tion of universities is found to do better; this does not necessarily imply that no institution could do bet-
ter. We cannot conclude that a university with an efficiency score of one is efficient, only that we cannot
provide evidence that it is inefficient.

Turning to Table 2, if a university has an efficiency score of one then it lies on the frontier and
we have no evidence that it is inefficient. A score greater than one indicates the proportionate increase in
commercial output that could be produced if the university were to move to the frontier (become effi-
cient). For example, Alabama, Birmingham has an efficiency score of one, hence we have no evidence

that it is technically inefficient. On the other hand, Auburn’s score of 2.07 suggests that, based on its
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level of inputs and the performance of the efficient universities, it could more than double its commercial
output and the shortfall in output is due to technical inefficiency. There is bunching of scores on the sur-
face (multiple scores of one). Such bunching is common in DEA analysis. For intuition, consider again
Figure 1 in which we are unable to differentiate among five of the eight DMUs. We have evidence that
58 of the 112 universities exhibit some degree of technical inefficiency.

The list of universities that make up the comparison sets for each technically inefficient institu-
tion is found in the final columns of Table 2. Peer universities are the efficient universities that form the
section of the frontier closest to the inefficient university. For example, Alabama at Huntsville is ineffi-
cient and its level of inefficiency is determined by comparing it to its peer institutions University of New
Orleans, Florida Atlantic, Boston University, and Central Florida. In examining peer institutions, keep in
mind that we are dealing with comparisons across thirteen dimensions (five outputs and eight inputs).

While of interest, a listing of efficiency or productivity scores is incomplete. DEA produces an
aggregate of a university’s inputs and outputs as a single efficiency score. It does not provide evidence
on the statistical significance of the various inputs and outputs in producing that score. In the following
sections we conduct two separate analyses in an effort to understand the pattern of efficiency scores. We
begin with two-way tabulations of inputs or outputs and whether a university is efficient. These tabula-
tions, and companion statistical tests, do not require distributional assumptions about the efficiency
scores. Following the contingency table comparisons we consider regressions with efficiency scores as
dependent variables and inputs and outputs as independent variables. That analysis will allow us to con-
sider effects on efficiency of changes in each of the inputs and outputs, holding constant the values of the
remainder of the inputs and outputs. The validity of the statistical tests used in the regression analysis
rests on distributional assumptions regarding the efficiency scores.

Rather than use the scores in Table 2 we use an indicator variable for whether the university is
efficient. We do this for the following reason. DEA finds the same sets of efficient and inefficient
DMUs regardless of whether one uses an input or an output orientation. However, for inefficient institu-
tions, the relative inefficiency will vary depending on the orientation. In Figure 1, the input oriented in-
efficiency of, say, DMU 6 is based upon the horizontal distance from the efficiency frontier to 6 whereas
the output oriented inefficiency of 6 is based upon the vertical distance from the frontier to DMU 6. We
have greater confidence in the separation of universities into efficient versus inefficient than we do in the
score of the inefficient universities. The technical efficiency indicator variable is IEFF where IEFF = 1 if

the university is technically efficient and IEFF = 0 if the university is technically inefficient.
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B. TWO-WAY COMPARISONS

The formation of two-way contingency tables allows us to ask whether there are associations or
meaningful patterns between efficiency and values of the inputs and outputs. The input and output obser-
vations are divided (approximately) into quintiles. We then count the number of efficient or inefficient
universities in each of the quintiles. Pearson ” tests are used to test for association. Note that, unlike the
regression analysis in the next section, no distributional assumptions are necessary for the % tests. To
reduce the number of tables to a manageable number we aggregate the counts of faculty into a single total
faculty number (TOTFAC) and the faculty quality measures into an weighted average quality rating
(QUAL) where the weights are faculty size. The number of full time TTO professionals (PTTFTE) is the
only input measure that relates solely to a university’s licensing efforts. The remainder of the inputs are
related to other goals in addition to commercialization (teaching, service, etc.). As an added measure of a
university’s licensing efforts we form a new variable, PTTFAC, which is the ratio of PTTFTE per 100
research faculty (TOTFAC). We also consider the importance of two “environmental” variables that
could serve to influence a university’s efficiency. The first indicates whether a university has a medical
school (MEDSCH = 1 if the university has a medical school, O otherwise), and the second indicates
whether the university is private (PRIVATE = 1 if the university is private, O otherwise).

Medical schools are heavily subsidized by the federal government and have a substantial service
component. In addition, since clinical trials are conducted in medical schools, universities with medical
schools have the leverage to engage in late stage development of such products. Private universities are
able to specialize to a greater extent than are public universities which have greater service commitments
and often more substantial teaching duties. As the sample is restricted to research universities, we may
have a sample of private universities that value research highly, which, if they specialize, will devote less
of their effort to teaching and service. As these latter activities absorb resources (money and faculty
time), then it may be the case that private, research universities are more research productive.

Table 3 presents the contingency tables. The values under the input or output names are the
bound values of the input or output. Unless otherwise noted, each of these entries is the upper bound on
the value for the row. The table entries give counts of universities that fall into the efficient (IEFF = 1)
or inefficient (IEFF = 0) categories. The table also gives the p-values for the x? tests (or level at which
the test of independence between an efficiency measure and input or output is significant). For example,
the tabulation of IEFF versus ROYREC reveals that, among universities with $320,000 to $750,000 of
royalty income, 16 are inefficient and 6 efficient. The test of independence between ROYREC and IEFF
is significant at a significance level of 3.2% or smaller.

With the exception of NPTAPP and LCEXEC, we reject the hypothesis of independence between
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IEFF and the outputs at a significance level of 15% or lower. The count pattern for INDSUP, ROYREC,
and INVDIS suggests that a school in the largest or smallest quintile of royalties has a higher probability
of being efficient than does a school in any of the three middle quintiles. That is, for these three outputs,
the probability of efficiency first falls and then rises as output increases; schools with the smallest out-
puts and with the largest outputs appear to be more likely to be efficient than are midrange schools.

Efficiency and the inputs FEDSUP, TOTFAC, QUAL, and PTTFTE are significantly related.
The count “pattern suggests that schools with the smallest levels of inputs are more likely to be efficient
than are schools in the middle quintiles. For QUAL and PTTFTE there is a suggestion that, as is the case
with the output measures, the schools in the largest quintile are also more likely to be efficient than are
schools in the middle quintiles. We find interesting the suggestion that schools with the lowest quality
rating are the most likely to be efficient. This may be due to tendencies for the highest quality faculty to
specialize in basic research which, in general, results in less inventive activity. When we coﬁsider the
number of technology managers per 100 faculty members (PTTFAC), we find that it is the schools in the
largest quintile that tend to be efficient. To the extent that PTTFAC measures a university’s relative in-
tensity of effort for commercialization, this result is not surprising.

Comparisons between efficiency and the environmental variables reveals significant relation-
ships only between IEFF and PRIVATE. As expected, we find that the likelihood of efficiency is greater
for the private schools.

The above results must be qualified with the observation that nothing is held constant in a two-
way comparison. Failure to control for other effects may not only mask relationships, but it can also
suggest relationships between variables when the variables are unrelated, but each is related to a third
variable. For example, we note above that TOTFAC and QUAL are related to efficiency. Since these
two variables have a moderately high correlation (0.72), it may be that, for example, only TOTFAC is
actually related to efficiency but QUAL appears to be related to efficiency simply because of its correla-
tion with TOTFAC, a correlation that may have nothing to do with efficiency. This need for a measure

of effects holding constant levels of other factors naturally leads us to regression analysis.

C. REGRESSION RESULTS
We consider logit regressions with the indicator variable IEFF as the dependent variable. The
relevance of logit regression rests on probabilities generated by a logistic distribution and it is strictly

appropriate only under the following conditions. In our discussion we emphasized that a university can

“ On a related note, Mansfield and Lee (1996) report that industry sponsored basic research tends to be biased toward
higher quality departments, while there is no bias in industry sponsored applied research.
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be inefficient in the sense of lying below the true but unobserved production frontier, but nonetheless it
can have an efficiency score of one; a score of one only implies that we cannot find a set of universities
that do better. In other words, for many universities with scores of one, the true efficiency score is unob-
served and has been replaced with the value one. Our logit analysis implicitly assumes that the efficiency
scores of one are in place of the true and unobserved efficiency scores.

Table 4 presents results for two logit models. IEFF is considered first in a regression with out-
puts and inputs only and then in a regression with outputs, inputs and the two environmental variables.
Logit coefficients are interpretable only when used in the logistic probability function to calculate effects
on the probability that the indicator variable is equal to one or zero. For that reason we do not present
the logit coefficients, rather, with the exception of MEDSCH and PRIVATE, the entries in the table are
the elasticities of the probability that the indicator variable equals one with respect to each of the regres-
sors.® For example, the value of 0.815 for INDSUP in the first IEFF column means that a 1% increase in
industry support will increase the probability by .815% that a university is technically efficient. Elastici-
ties have the added value in allowing a comparison of the importance of various outputs and inputs in
determining efficiency. The significance levels refer to the levels for whether the associated coefficient
is equal to zero. Since MEDSCH and PRIVATE are indicator variables, elasticities calculations are
meaningless. For these two regressors we present the odds ratio for a change in MEDSCH or PRIVATE
from O to 1. For example, the value of 4.438 for PRIVATE in the second IEFF column implies that the
probability of efficiency for a private school is more than 4 times that of a public school, all other factors
held constant.

Consider the regression with only outputs and inputs (column 2). In interpreting the results it is
important to bear in mind that the coefficients are partial effects holding constant all other inputs and all
other outputs. Thus, we expect that each output will have a positive elasticity since, holding constant all
inputs, an increase in an output will clearly be a move toward efficiency. Likewise, input elasticities
should be negative as an increase in an input, holding output constant, is a move away from efficiency.

All output elasticities are positive, and, with the exception of INVDIS, each associated coeffi-
cient is significant. LCEXEC, with an elasticity of 1.273, has the greatest impact on efficiency scores.
The importance of licenses executed follows, we believe, from its central role in the commercialization
process. Faculty disclose IP that they wish to have licensed, patents are to protect IP that is licensed or

believed licensable, royalties flow from licensed IP, and industry support is either for further develop-

3 Alternatively, we can view the unobserved scores as “super efficiency” or “modified DEA” scores wherein a DMU
is omitted from its own reference set . See Anderson and Petersen (1993), Lovell, Walters, and Wood (1994), and
McCarty and Yaisawarng (1993).
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ment of a licensed technology or the sponsoring firm retains some rights to license any commercializable
IP. The smallest elasticity is the one associated with royalties. We believe this finding stems from two
factors. First, the royalty data are skewed toward a few institutions and it tends to be associated with
only a few licenses. In their survey of TTOs, Thursby and Thursby (1998a) find that 76% of royalty in-
come comes from only the top five income licenses. In other words, substantial royalty income from a
specific license has a very low probability. Second, some, but not all, universities are willing to forego
royalty income for sponsored research funds. In other words, preferences for royalty income are highly
varied across universities.

The insignificant INVDIS coefficient can be taken to imply a substantial number of inefficient
universities with large numbers of invention disclosures and/or a substantial number of efficient univer-
sities with small numbers of invention disclosures. It is perhaps not surprising that invention disclosures
might have greater variation across institutions regardless of efficiency. Of the five outputs, only
INVDIS and NPTAPP are completely within the discretion of university personnel, the others require
agreements with industry and, hence, are possibly more clearly related to commercialization. Of the two
discretionary outputs, INVDIS has low cost in comparison to NPTAPP (the patent process can cost from
five to ten thousand dollars per patent). Further, based on interviews with technology transfer profes-
sionals, Thursby and Thursby (1998a) found that some universities informally evaluate or pre-screen new
technologies with regard to their commercial appeal; those judged likely to have such appeal go through
the formal disclosure process. Pre-screening by a subset of universities implies that INVDIS is counted
differently at those universities compared to those that do not pre-screen; that is, INVDIS is potentially
subject to greater measurement error than are the other inputs.

All inputs have the expected negative elasticities, but only the number of TTO professionals
(PTTFTE), the number of research faculty in the biological sciences (TOTFAC?2), and the quality of the
research engineering faculty (QUALD3) are significant. The lack of significance of so many inputs most
likely follows from the use of these inputs to produce other university outputs such as teaching and basic
research. In other words, our measure of inputs are imperfect measures of the effort expended in licens-
ing activity. The largest elasticities are for QUAL3 (-1.94) and PTTFTE (-1.642). PTTFTE is the only
input solely associated with licensing activity so that a large elasticity is expected. Since engineering is a
more applied field than the biological and physical sciences, it is not surprising to find that it appears to
be important in creating commercializable IP, but we are somewhat surprised at the magnitude of the

elasticity and the fact that the total number of engineering faculty is apparently of less importance.

8 Since the logit regression involves a nonlinear relation between probability and the regressors, we follow the stan-
dard practice of presenting the average of the elasticities calculated at each point in the data.
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We find the opposite with biological sciences for whom quality is apparently not important but
the total number of faculty is important. It has been noted to us that the university market for biological
science IP has tended to be a seller’s market whereas the market for engineering and physical science IP
has tended to be a buyer’s market.” In such settings, we expect universities to do relatively better with
finding licensees and extracting rents in biological sciences. Further, in interviews with university tech-
nology transfer professionals (Thursby and Thursby (1998a)) several interviewees volunteered the obser-
vation that researchers in biotechnology tend to have a culture that that is more encouraging of commer-
cial activity whereas the culture in physical sciences tends to be less oriented toward commercialization.
Data collected by AUTM support these differences in markets and cultures. In 1996, AUTM collected
license information split by life sciences versus physical sciences. For our sample of universities, aggre-
gate royalties from life science licenses is around four times that of the physical sciences. Further, roy-
alties per active life science license is around 2.5 times that of the physical sciences. The relative im-
portance of TOTFAC?2 is in keeping with this difference in markets and cultures, but the quality results
are not. Our finding of importance only of total faculty in the biological sciences and quality of the engi-
neering faculty remains something of a puzzle that merits further investigation.

Finally, note that the level of federal support is unrelated to the efficiency score. This is sur-
prising given that the Bayh-Dole Act encourages commercialization activity related to federal research
money, and, in particular, it requires that patent applications be made for any commercializable IP if that
invention was sponsored by federal dollars. We suggest that the insignificance of FEDSUP may come
from the preponderance of federal money which is directed toward basic research; as such it would be
hard to detect a relation between commercialization and federal support.

In the second IEFF column of Table 4 are the elasticities and odds ratios when the environmental
variables are included as regressors. Both environmental variables are significant at a 10% level. Uni-
versities with medical schools are less likely to be efficient and private schools are more likely to be effi-
cient. The result on private schools is expected. We are somewhat surprised at the medical school re-
sults since the majority of university licenses are related to biomedical inventions and the ease of con-
ducting clinical trials when a medical school is present. It may well be that heavy service commitments
of medical schools serves to reduce commercialization efficiency. All output and input elasticities re-
main similar to their values in the regression which excludes MEDSCH and PRIVATE with the excep-
tion that the number of engineering faculty is now significant with a fairly large elasticity and FEDSUP

is now significant albeit with a small elasticity.

" We are indebted to Dan Massing of Cornell Research Foundation for this interpretation.
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D. YEAR TO YEAR PRODUCTIVITY CHANGES

Year to year efficiency changes can be examined for universities that appear in each of the six
survey years. Fifty-seven of the 112 universities provide data for every survey year. We begin with a
measure of the potential increase in output that would have occurred for each of the five outputs if each
university had been technically efficient. The experiment is as follows: We conduct a single DEA analy-
sis which includes each of the six years and each of the 57 universities. That is, we conduct an experi-
ment that implicitly assumes that there are 342 universities (57 schools by 6 years). We are looking for
“best practice” across 6 years and 57 universities. A simple count of the number of efficient institutions
by year and averages of the scores by years provides information on whether efficiency has changed over
time. We also use the scores to compute the potential outputs that would have occurred if each university
had been efficient. That is, if the efficiency score is ¢ and the actual level of some output is A, then po-
tential output is A¢. We then compute aggregate potential outputs them to actual outputs.

Table 5 presents, for each year, the number of efficient universities, the average efficiency score
and the percentage increase in each of the five outputs that would be expected under efficiency. The evi-
dence clearly indicates increasing efficiency over time. Universities in each year are generally closer to
the frontier than they were in the preceding year. The change in efficiency is particularly striking when
ones consider the shortfall from potential output. In 1991, the universities could have been producing
about 55% more commercial output had each university been efficient whereas in 1996 they could only
have produced about 17% more commercial output. Note that the potential gain in royalties is smaller in
each year than the potential gain in any of the other inputs. We interpret this result as suggesting that
inefficient universities tend to be closer to efficient universities in royalties received than in any other
dimension of output; in other words, inefficient universities do relatively “best” with royalties received.

The results in Table 5 suggests productivity improvements over time. Since those results are
based on a single frontier, they do not reveal whether the production frontier has shifted over time (tech-
nical change), whether the frontier has been stable and the inefficient universities are closer to the fron-
tier, or whether the frontier has shifted as well as a relative improvement in efficiency has occurred. To
address this issue we use DEA linear programs and a Malmquist total factor productivity (TFP) index to
measure changes in productivity. Fare, et.al. (1994) suggest as a measure of TFP the geometric mean of
two Malmquist indices, one of which is based on technology in period t and the other on technology in

period t+1, or
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A value of m greater than one indicates TFP growth between periods t and t+1; a value of m of, say, 1.1
implies 10% factor productivity growth. As we have a panel of 57 universities for a 6 year period we
calculate 6 x 57 values of m.

In Table 6 are listed geometric means of m for each of the 57 universities. The geometric mean
for all universities is 1.079 which indicates an average annual growth in TFP of 7.9% over the period
1991-96; that is, if input levels had been held constant over the 1991-96 period, there would still have
been a growth in commercialization output of 7.9% annually. Only 13 (23%) of the universities do not
appear to have experienced productivity growth.

The aggregate figure for TFP can be decomposed into the product of two separate measures of
growth: productivity growth due to movements of inefficient universities toward the frontier and expan-
sion of the frontier itself (see Fare, et. al., 1994). Changes in relative efficiency of inefficient institutions
is a sort of “catching up.” Our computations suggest that inefficient universities have been catching up to
efficient universities at an annual rate of 0.4%. The bulk of the TFP growth, however, follows from ex-
pansion of the frontier. The annual growth in the frontier over the 6 years is calculated to be 7.5%. It
would appear that, in general, universities are increasingly involved in commercialization, but this in-
creasing commercialization stems largely from an expansion of the production frontier rather than from a
catching up by the inefficient institutions. The frontier is expanding and most institutions are “chasing”
that frontier.

Standard usage of the term “technological change” refers to any change in outputs that does not

follow from a change in inputs. As discussed earlier, it is difficult to measure the actual inputs used in
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commercialization because those inputs are used to produce other university outputs such as basic re-
search and teaching. What we are calling technological change may well be a reallocation of inputs from
another activity toward commercialization so that, while we might observe constant aggregate levels of
university inputs, more of them are involved in commercialization. We suggest that the expansion of the
frontier (technological change) stems from a change in the environment for university commercialization
that involves both a reallocation of inputs, a change in market demand for university IP, and increasingly
experienced, knowledgeable and demanding TTOs.

The introduction cites sources that suggest a change in both university preferences for commer-
cialization activities and a change in industry demand for university technologies. If acted upon, the
change in university preferences implies a shift of resources away from other activities toward activities
with potential commercial appeal. This change in preferences would also imply that more commercially
viable IP is being disclosed by faculty to university TTOs. In interviews with technology transfer offi-
cers, Thursby and Thursby (1998a) asked about the potentially commercializable innovations that are not
disclosed. While reluctant to offer numbers, several interviewees suggested that they would not be sur-
prised if they were seeing substantially less than half of such innovations, though several noted an in-
creasing willingness of faculty (particularly younger faculty) to disclose. The increase in demand for
university technologies can be expected to improve the matching of university technologies with firms
that can exploit the commercial potential of the technology. University technology transfer officers sug-
gest that a major problem in licensing a technology is simply finding a firm that is suited for and inter-
ested in the technology (Thursby and Thursby, 1998a); it is sufficiently difficult that bidding for a tech-
nology is rare. Increased industry interests in university inventions would serve to improve this matching
process and both reduce the costs of searching for a licensee and increase the probability of a match.
Finally, from interviews with both industry and university licensing personnel (Thursby and Thursby,
1998a and 1998b), it is clear that university TTOs are becoming increasingly sophisticated and demand-

ing in their license dealings with industry.
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CONCLUSION

The federal and state governments have encouraged universities to increase their commercializa-
tion activities. Universities espouse an increasing willingness to engage in commercial activities and pri-
vate sector firms are looking more carefully at university intellectual property. In this paper we examine
university commercialization activities in order to shed light on the activities of individual universities as
well as the overall direction of such activities. Commercial activities include industry sponsored re-
search and royalties as well as numbers of invention disclosures, licenses executed and new patent appli-
cations. University productivity or efficiency with regard to such activities varies not only according to
the capabilities of the faculty and staff with regard to such efforts, but also according to university pref-
erences for the use of their resources. We use data envelopment analysis to measure the relative effi-
ciency of each university in our sample. Both contingency table analyses and regressions are used to re-
late the scores to the levels of all commercial outputs as well as to the level of inputs. We also examine
the changes in productivity of university commercial activity over time.

Our major results are as follows. First, we find substantial evidence of inefficiencies. As we
note, this inefficiency may well stem simply from university preferences for or specialization in outputs
unrelated to licensing activity (such as basic research and teaching) rather than from competencies in li-
censing. Second, there has been substantial growth in commercialization activities of U.S universities.
We attribute this to both a changing environment within universities regarding commercialization activity
as well as an increasing desire of industry for university technologies. Third, this growth in commer-
cialization has stemmed primarily from a growth in commercialization by all universities rather than a
“catching up” by the inefficient institutions. Fourth, we find that biological sciences and engineering are
more important to licensing activity than are the physical sciences. This we attribute to the more applied
nature of engineering and the better market opportunities and orientation toward markets of biological
sciences. Fifth, we find that, on a number of dimensions, the smallest schools tend to be more like the
largest schools than the mid-range schools. Finally, we find that private universities are more likely to be
efficient and universities with medical schools are less likely to be efficient.

It has been sﬁggested in a number of venues that university resources are not fully exploited as a
source of economic growth and competitiveness (see, for example, Gray, et. al. (1986), Public Policy
Center for Stanford Research International (1986), Geisler and Rubenstein (1989), National Academy of
Sciences (1992), National Science Board (1993)). Our results clearly show that this criticism is de-

creasing in its relevance.
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TABLE 1: SUMMARY STATISTICS

VARIABLE
OUTPUTS
INDSUP
ROYREC
INVDIS
LCEXEC
NPTAPP
INPUTS
PTTFTE
FEDSUP
TOTFAC2
TOTFAC3
TOTFAC4
QUAL2
QUALS3
QUAL4

MEAN

10.83

1.91
5343
15.05
16.85

2.50
90.81
151.79
83.41
119.99
2.59
2.20
2.63

MIN

0.85
0.00
0.67
0.00
0.00

0.00
1.86
0.00
0.00
0.00
0.00
0.00
0.00

MAX

67.80
3591
307.83
122.67
91.83

11.57
753.59
643.00
390.00
406.00

4.50
4.60
4.70



TABLE 2. EFFICIENCY SCORES AND PEER UNIVERSITIES

UNIVERSITY CODE SCORE PEERS

Auburn ALl 2.070 MAS NC2 1Al OK1 UT1 FL3 UT2
Ala./Huntsville AL2 1.274 LA3 FL1 MAl FL3

Ala./Birmingham AL3 1 AL3

South Alabama Al4 1 Al4

Ark./Fayetteville AR1 1.335 UT1 CAl L2 FL6 FL3 Ml

Arizona State AZ1 1.927 NC2 MIl MAS 1A1 CAl UT1

Arizona AZ2 1.506 CO1 MAl MA4 CAl UuT2 PA3 IN2
CALTECH CAl 1 CAl

Stanford CA2 1 CA2

Southern Cal CA3 1.656 GAl NY2 ND1 CO1 CAl OR2 MA1 CA2
Colorado State CO1 1 CO1

Colorado CO2 1.639 CAl NY2 MIl MA4  MAl PA3 CO1 AL4
Denver CO3 1 CO3

Connecticut CT1 1.739 FL6 UT2 CAl NY2 MAS Cco1 MIl PA3 FL3
Yale CT2 1.101 MD1 CA2 MA1 CO1 NY2 CAl

Georgetown DCl1 1 DC1

Delaware DE1 1.873 FL6 UT2 MA4  FL3 CA2

Florida Atlantic FL1 1 FL1

Florida State FL2 1 FL2

Central Florida FL3 1 FL3

Florida FLA 1.088 FL6 MA4  UT2 CA2 MIl NC2 FL1 L2 PA3
Miami FLS 1.647 COl GA3 GAl Al4 IL2 MA1 FL6 CA2
South Florida FL6 1 FL6

Emory GAl 1 GAl

Georgia Tech GA2 1 GA2

Georgia GA3 1 GA3

Hawaii HIl 1.736 PA4 MA1l ND1

Iowa State 1A1 1 1Al

Iowa 1A2 1.543 MA4 AL3 MD2 CAl COl1 MD1 FL6 CA2
Illinois Inst. of Tech. IL1 1 IL1

Illinois State IL2 1 L2

Northern Llinois IL3 1 IL3

Northwestern IL4 1.418 NY2 CAl Col1 MIl PA3 GA2 MAS

Chicago ILS 1 ILS

IL/Chicago IL6 2710 MI1 PA4 1A1 CAl FL6 MA4 NC2 UT2
IL/Urbana-Cham IL7 1 L7

Ball State IN1 1 IN1

Indiana IN2 1 IN2

Purdue IN3 1.019 OHS5 CAl 1A1 FL3 UT2 NC2 FL6 MA4
Kansas State KS1 1.466 1Al ND1 CAl MAS OHS5 FL6

Kansas KS2 1.709 IL2 FL3 1A1 UT2 CAl FL6

Kentucky KY1 1 KY1

Louisiana State LAl 1.075 1.2 FL6 M1l FL3 NC2 MAS UT1 CAl
Tulane LA2 1 LA2

New Orleans LA3 1 LA3

Boston U. MA1 1 MAI

Brandeis MA2 1.058 NDI GA3 OH2 OR2 LA3

Harvard MA3 1 MA3

MIT MA4 1 MA4

Northeastern MAS 1 MAS

Tufts MAG6 1.068 MD2 GALl DCl ILS MA1 ND1 GA3

Johns Hopkins MD1 1 MD1

MD/Baltimore MD2 1 MD2

MD/College Park MD3 1.340 FL3 MA4  CA2 1A1 UT2

Maine MEIl 1 MEI1

Michigan State MIl 1 Ml

Michigan Tech. M2 1.065 MA1 FL3 FL1 OHS

Michigan MI3 1.585 MA4 NY2 PA3 AlA4

Wayne State M4 1.645 FL6 UT2 UT1 NC2 OH2 L2 FL3
Minnesota MNI1 1.144 UT2 CA2 FL1 Al4 MA4  CAl

Washington MOl 1 MOI1

Mississippi State MS1 2.165 CAl NJ1 FL6 CA2 FL1 MAI MA4 FL3 Al4

Montana State MTI1 1.247 MD2 FL3 NC4 FL1 FL6 L2 1A1



TABLE 2 (Cont.). EFFICIENCY SCORES AND PEER UNIVERSITIES

UNIVERSITY
Duke

North Carolina State
NC/Chapel Hill
Wake Forest
North Dakota State
Nebraska-Lincoln
Dartmouth College
New Hampshire
NIJ Inst. of Tech.
Princeton

Rutgers

Stevens Inst. of Tech.
New Mexico State
Columbia

Comnell

Syracuse
Rochester

Case Western
Miami

Ohio State

Ohio

Akron

Cincinnati

Dayton

Tulsa

Oregon State
Oregon

Carnegie Mellon
Drexel

Penn State

Temple
Pennsylvania
Pittsburgh

Brown

Rhode Island
Clemson

South Carolina
Tennessee
Vanderbilt

Rice

Texas A&M

Texas at Austin
Brigham Young
Utah

Virginia

Virginia Tech
Washington
Washington State
Wisconsin-Madison

CODE
NC1
NC2
NC3
NC4
ND1
NEI
NH1
NH2
NJ1
NJ2
NJ3
NJ4
NM1
NY1
NY2
NY3
NY4
OH1
OH2
OH3
OH4
OHS5
OH6
OH7
OK1
OR1
OR2
PA1
PA2
PA3
PA4
PAS
PA6
RI1
RI2
SC1
SC2
TNI
TN2
TX1
TX2
TX3
UTI
uT2
VALl
VA2
WALl
WA2
WI1

SCORE
1

1

1.183

1

1

1.621
1.565

PEERS

NC1
NC2
FL6
NC4
ND1
MAS
GAl
NH2
NJ1
NJ2
MIl
OHS5
GA2
NY1
NY2
UT1
Ml
OH7
OH2
MIl
OH4
OH5
GA2
OH7
OK1
CA2
OR2
PA1
IL1
PA3
PA4
NY2
Al4
MIl1
MAl1
IL2
MIl
PA3
CA2
MEI
FL3
IL7
UT1
UT2
MIl
GA2
CA2
NY2
Al4

CAl

CAl
OH2

1A1

CAl

CAl
MAL1

NY2

CA2

Col1

UT2

Al4
MA1
CAl
Cco3
LA3
Col1

CO1
GA2
PA3
UT2

NY2
CAl
MA4
IL7
CA2

MA1

GA3

MA4
IL1
NY2

Col
CA2

PA3

UT2

CAl

IL7
UT2
MA3
MAS
MA1

IA1
Co1

CAl
OH2
OHS5
GA2
UT2

GA2

MAS

NY2

CO1

MD1
CAl

CAl
OK1
CO3
LA3
PA3

CA2

CAl

1A1
NY2

MD1

OHS5
CA2

CAl

ND1

1Al
CA2

GA2
IA1
MD2
OH2
1A1

CA2

ND1
ND1

NC2

Co1

CAl
NY2

UT2

COl1

OH2

COl

Col1
CAl
(¢0)]

GA2

(6(0)]
MAS

uT2
CAl

Co1

OR2

OH2

OKl1

MIl

GAl

CO3
UT2

IL1

UT2

uUT2

OH2
NC2

OK1
MA4

Co3

NY2

PA3
Col

IN1

NY2

OKl1

LA3

ND1



TABLE 3: CONTINGENCY TABLES

IEFF
INDSUP 0 1
<3.25 5 15
5.5 15 8
9.75 13 10
17 14 8
>17 11 13
p-VALUE 0.056
ROYREC 0 1
<0.1 6 14
0.32 14 9
0.75 16 6
2 13 10
>2 9 15
p-VALUE 0.032
INVDIS 0 1
<13 8 14
28 14 9
45 12 8
82 15 8
>82 9 15
p-VALUE 0.135
NPTAPP 0 1
<4.5 10 12
9 12 10
14.75 15 9
25 11 9
>25 10 14
p-VALUE 0.628
LCEXEC 0 1
<2.75 8 13
5.5 13 10
11.5 13 9
22 13 9
>22 11 13
p-VALUE 0.547
MEDSCH 0 1
0 26 30
1 32 24
p-VALUE 0.257

IEFF
FEDSUP 0 1
<195 4 18
46 17 6
83 13 8
140 1 12
>140 13 10
p-VALUE 0.003
TOTFAC 0 1
<100 3 17
235 14 11
350 12 8
550 13 10
>575 16 8
p-VALUE 0.008
QUAL 0 1
<21 6 17
2.55 10 10
3 16 6
35 15 8
>3.5 1 13
p-VALUE 0.018
PTTFTE 0 1
.02 7 16
1.4 15 6
2 10 1
35 16 9
>3.5 10 12
p-VALUE 0.051
PTTFAC 0 1
<325 12 10
0.55 16 7
0.8 13 9
1.3 1 9
>1.3 6 19
p-VALUE 0.024
PRIVATE 0 1
0 42 31
1 16 23
p-VALUE 0.096



TABLE 4: LOGIT REGRESSION RESULTS

IEFF IEFF
INDSUP 0.815  *x** 1.119 ok
ROYREC 0.156  *** 0.189  **x*
INVDIS 0.378 0.735
NPTAPP 0878 * 0.871 *
LCEXEC 1.273 ¥ 1.257  **x
PTTFTE 21,642 wkx -1.810  ***
FEDGOV -0.327 -0.445 *
TOTFAC2 -0.662 * -0.508 *
TOTFAC3 -0.657 -1.076  **
TOTFAC4 -0.435 0.128
QUAL2 -0.664 -0.654
QUAL3 -1.940  *¥*x* -2.109  ***
QUALA4 -0.150 -0.802
MEDSCH 0.145 **
PRIVATE 4438 **
R-SQUARE 0.482 0.530

*** Significant at 5% level
**  Significant at 10% level
*  Significant at 15% level

TABLE 5. YEAR TO YEAR EFFICIENCY COMPARISONS

Potential % Increase in Qutputs

Number Average
Year Inefficient  Score INDSUP ROYREC INVDIS LCEXEC NPTAPP
1991 48 0.664 57.2 45.5 56.5 53.3 57.9
1992 40 0.735 42.1 28.8 37.5 334 38.9
1993 45 0.731 40.4 25.5 39.5 37.0 39.3
1994 40 0.771 28.0 17.1 30.8 27.9 30.3
1995 37 0.802 25.1 14.3 26.0 21.3 23.6

1996 28 0.832 19.9 9.4 19.9 14.9 18.8



TABLE 6: TOTAL FACTOR PRODUCTIVITY

University
Alabama/Birmingham
Arkansas/Fayetteville
Arizona

CALTECH

Stanford

Southern California
Colorado State
Colorado
Connecticut

Yale

Delaware

Florida State

Emory

Georgia Tech.
Northern Illinois
Northwestern
Chicago

Illinois/UC

Indiana

Tulane

New Orleans
Harvard

MIT

Johns Hopkins
Maryland/Baltimore
Maryland/College Park
Michigan State
Washington
Michigan

Geometric Mean

TFP AVG.
1.168
0.977
1.049
0.953
1.085
1.262
0.916
1.350
0.987
1.075
0.943
1.163
1.144
1.078
1.232
1.232
1.041
0.759
1.060
0.994
1.115
1.142
1.037
1.092
1.191
1.219
1.048
1.054
1.120

1.079

University
Minnesota

North Carolina/Chapel Hill

Wake Forest
Dartmouth College

New Jersey Inst. of Tech.

Princeton
Rutgers
Columbia
Syracuse
Rochester

Case Western
Ohio State
Ohio

Akron
Cincinnati
Dayton

Oregon State
Oregon

Penn State
Temple
Pennsylvania
Clemson
Vanderbilt
Brigham Young
Utah

Virginia

U. of OFWashington
Washington State

TFP AVG.
1.076
0.962
1.175
1.208
1.278
1.068
1.121
1.221
0.843
1.074
0.872
1.119
1.066
1.245
1.025
1.040
0.971
1.135
1.153
0.913
1.026
1.071
0.993
1.200
1.026
1.185
1.133
1.148
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1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

ADDITIONAL INSTITUTE PAPERS AVAILABLE FROM THE KRANNERT

GRADUATE SCHOOL OF MANAGEMENT

-1993-

Piyush Kumar, Daniel S. Putler and Manohar U. Kalwani, AN EXPERIMENTAL
INQUIRY INTO THE FORMATION OF REFERENCE PRICES.

Shailendra Raj Mehta, ON THE ROBUSTNESS OF EFFICIENCY WAGE
EQUILIBRIA.

Shailendra Raj Mehta, ABILITY, WAGES AND THE SIZE DISTRIBUTION OF
FIRMS.

Michael R. Baye, Dan Kovenock and Casper De Vries, THE SOLUTION TO THE
TULLOCK RENT-SEEKING GAME WHEN R>2: MIXED-STRATEGY
EQUILIBRIA AND MEAN DISSIPATION RATES.

Donald G. Morrison and Manohar U. Kalwani, THE BEST NFL FIELD GOAL
KICKERS: ARE THEY LUCKY OR GOOD?

Lars Thorlund-Peterson, THIRD-DEGREE STOCHASTIC DOMINANCE AND
AXIOMS FOR A CONVEX MARGINAL UTILITY FUNCTION.

Manohar U. Kalwani and Narakesari Narayandas, THE IMPACT OF LONG-TERM
MANUFACTURER-SUPPLIER RELATIONSHIPS ON THE PERFORMANCE OF
SUPPLIER FIRMS.

Kenneth J. Matheny, MONEY, HUMAN CAPITAL AND BUSINESS CYCLES.

Kent D. Miller and Michael Leiblien, CORPORATE RISK-RETURN RELATIONS:
RETURNS VARIABILITY VERSUS DOWNSIDE RISK.

Armold C. Cooper, Timothy B. Folta and Carolyn Woo, ENTREPRENEURIAL
INFORMATION SEARCH: ALTERNATIVE THEORIES OF BEHAVIOR.

Douglas Bowman and Hubert Gatignon, DETERMINANTS OF COMPETITOR
RESPONSE TIME TO A NEW PRODUCT INTRODUCTION.

Kissan Joseph, Manohar U. Kalwani, and Daniel S. Putler, THE IMPACT OF
COMPENSATION STRUCTURE ON SALESFORCE TURNOVER.

Kenneth J. Matheny, IS THERE ANY ROOM FOR PRICE RIGIDITY IN CASH
ADVANCE MODELS?

Kenneth J. Matheny, EQUILIBRIUM BELIEFS AND NON-UNIQUENESS IN A
RATIONAL EXPECTATIONS MODEL OF INFLATION.

Shailendra Raj Mehta, WHAT IS RESPONSIBILITY?



1051

1052

1053

1054
1055
1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066
1067

-1994-
Shailendra Raj Mehta, THE LAW OF ONE PRICE AND A THEORY OF THE FIRM.
Manohar U. Kalwani and Narakesari Narayandas, LONG-TERM MANUFACTURER-
SUPPLIER RELATIONSHIPS: DO THEY PAY OFF FOR SUPPLIER FIRMS?
(Revision of Paper No. 1042)

Raji Srinivasan, Carolyn Y. Woo and Arnold C. Cooper, PERFORMANCE
DETERMINANTS FOR MALE AND FEMALE ENTREPRENEURS.

Kenneth J. Matheny, INCREASING RETURNS AND MONETARY POLICY.
Kent D. Miller, MEASURING ORGANIZATIONAL DOWNSIDE RISK.

Raymond J. Deneckere and Dan Kovenock, CAPACITY-CONSTRAINED PRICE
COMPETITION WHEN UNIT COSTS DIFFER.

Preyas Desai and Wujin Chu, CHANNEL COORDINATION MECHANISMS FOR
CUSTOMER SATISFACTION.

Preyas Desai and Kannan Srinivasan, DEMAND SIGNALLING UNDER
UNOBSERVABLE EFFORT IN FRANCHISING: LINEAR AND NONLINEAR
PRICE CONTRACTS.

Preyas Desai, ADVERTISING FEE IN BUSINESS-FORMAT FRANCHISING.

Pekka Korhonen, Herbert Moskowitz and Jyrki Wallenius, THE ROCKY ROAD
FROM A DRAFT INTO A PUBLISHED SCIENTIFIC JOURNAL ARTICLE IN THE
MANAGEMENT AND DECISION SCIENCES.

Preyas Desai and Kannan Srinivasan, AGGREGATE VERSUS PRODUCT-SPECIFIC
PRICING: IMPLICATIONS FOR FRANCHISE AND TRADITIONAL CHANNELS.

Beth Allen, Raymond Deneckere, Tom Faith and Dan Kovenock, CAPACITY
PRECOMMITMENT AS A BARRIER TO ENTRY: A BETRAND-EDGEWORTH
APPROACH.

John O. Ledyard, Charles Noussair and David Porter, THE ALLOCATION OF A
SHARED RESOURCE WITHIN AN ORGANIZATION.

Vijay Bhawnani, John A. Carlson andK. Rao Kadiyala, SPECULATIVE ATTACKS
AND BALANCE OF PAYMENTS CRISES IN DEVELOPING ECONOMIES WITH
DUAL EXHCNAGE RATE REGIMES.

Gayle R. Erwin and John J. McConnell, TO LIVE OR LET DIE? AN EMPIRICAL
ANALYSIS OF VOLUNTARY CORPORATE LIQUIDATIONS, 1970-1991

Elizabeth Tashjian, Ronald C. Lease and John J. McConnell, PREPACKS.

Vijay Bhawnani and K. Rao Kadiyala, EMPIRICAL INVESTIGATION OF
EXCHANGE RATE BEHAVIOR IN DEVELOPING ECONOMIES.
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1069
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1073

1074
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1076

1077

1078

1079

1080

1081

1082

1083

1084

Jeffrey W. Allen, Scott L. Lummer, John J. McConnell and Debra K. Reed, CAN
TAKEOVER LOSSES EXPLAIN SPIN-OFF GAINS?

-1995-
Sugato Chakravarty and John J. McConnell, AN ANAYLSIS OF PRICES, BID/ASK
SPREADS, AND BID AND ASK DEPTH SURROUNDING IVAN BOESKY'S
ILLEGAL TRADING IN CARNATION'S STOCK.

John J. McConnell and Henri Servaes, EQUITY OWENERSHIP AND THE TWO
FACES OF DEBT.

Kenneth J. Matheny, REAL EFFECTS OF MONETARY POLICY IN A
‘NEOCLASSICAL' MODEL: THE CASE OF INTEREST RATE TARGETING.

Julie Hunsaker and Dan Kovenock, THE PATTERN OF EXIT FROM DECLINING
INDUSTRIES.

Kessan Joseph, Manohar U. Kalwani, THE IMPACT OF ENVIRONMENTAL
UNCERTAINTY ON THE DESIGN OF SALESFORCE COMPENSATION PLANS.

K. Tomak, A NOTE ON THE GOLDFELD QUANDT TEST

Alok R. Chaturvedi, SIMDS: A SIMULATION ENVIRONMENT FOR THE DESIGN
OF DISTRIBUTED DATABASE SYSTEMS

Dan Kovenock and Suddhasatwa Roy, FREE RIDING IN NON-COOPERATIVE
ENTRY DETERRENCE WITH DIFFERENTIATED PRODUCTS

Kenneth Matheny, THE MACROECONOMICS OF SELF-FULFILLING
PROPHECIES

Paul Alsemgeest, Charles Noussair and Mark Olson, EXPERIMENTAL
COMPARISONS OF AUCTIONS UNDER SINGLE-AND MULTI-UNIT DEMAND

Dan Kovenock, Casper D de Vries, FIAT EXCHANGE IN FINITE ECONOMIES

Dan Kovenock, Suddhasatwa Roy, DYNAMIC CAPACITY CHOICE IN A
BERTRAND-EDGEWORTH FRAMEWORK

Burak Kazaz, Canan Sepil, PROJECT SCHEDULING WITH DISCOUNTED CASH
FLOWS AND PROGRESS PAYMENTS

-1996-

Murat Koksalan, Oya Rizi, A VISUAL INTRACTIVE APPROACH FOR MULTIPLE
CRITERIA DECISION MAKING WITH MONOTONE UTILITY FUNCTIONS

Janet S. Netz, John D. Haveman, ALL IN THE FAMILY: FAMILY, INCOME, AND
LABOR FORCE ATTACHMENT
Keith V. Smith, ASSET ALLOCATION AND INVESTMENT HORIZON
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Thomas H. Brush and Philip Bromiley, WHAT DOES A SMALL CORPORATE
EFFECT MEAN? A VARIANCE COMPONENTS SIMULATION OF CORPORATE
AND BUSINESS EFFECTS
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James C. Moore, William Novshek and Peter Lee U, ON THE VOLUNTARY
PROVISION OF PUBLIC GOODS

Michael R. Baye, Dan Kovenock and Casper G. deVries, THE INCIDENCE OF
OVERDISSIPATION IN RENT-SEEKING CONTESTS

William Novshek and Lynda Thoman, CAPACITY CHOICE AND DUOPOLY
INCENTIVES FOR INFORMATION SHARING

Vidyanand Choudhary, Kerem Tomak and Alok Chaturvedi, ECONOMIC BENEFITS
OF RENTING SOFTWARE

Jeongwen Chiang and William T. Robinson, DO MARKET PIONEERS MAINTAIN
THEIR INNOVATIVE SPARK OVER TIME?
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