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Abstract The pure exchange model is the foundation of the neoclassical theory of value, yet

equilibrium predictions and models of price adjustment for this model remained untested prior to

the experiment reported in this paper. With the exchange economy replicated several times, prices

and allocations converge sharply to the competitive equilibrium in continuous double auction (CDA)

trading. Convergence is evaluated by comparing the extent of price adjustment within each market

replication (or trading period) to the extent of adjustment across trading periods: most observed

price adjustment occurs within trading periods, so price adjustment data are evaluated with the

Hahn process model (Hahn and Negishi [1962]), which is a disequilibrium model of within-period

trades. Estimation demonstrates that the model is consistent with observed price paths within each

period of the exchange economy. The model is augmented with an additional assumption – based on

observations from this experiment – that the initial trade price in period t+1 is randomly drawn from

the interval between the minimum and maximum trade prices in period t. The estimated within-period

adjustment rule, combined with this across-period adjustment rule, generates price paths similar to

data from an experiment session.

Keywords: Competitive equilibrium, disequilibrium dynamics, continuous double auction, experi-

mental economics, exchange economy, Hahn process, neoclassical theory of value, tatonnement, unit
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1 Introduction

The pure exchange model forms the foundation of the neoclassical theory of value. Assessment

of its price and allocation predictions is important in microeconomic theory as well as in much

applied economics that rests on a general equilibrium foundation. This paper reports a direct

experimental test of the competitive equilibrium predictions and price dynamics in an exchange

economy with strong income effects. Income effects pose a challenge for the price discovery process

in a general equilibrium model. Resource ownership is specified in a general equilibrium model, so

the wealth of an agent depends on prices, and wealth affects demand. Except in the case of quasi-

linear preferences, a disequilibrium trade alters the wealth of each party to the trade from their

wealth in equilibrium. This alters agents’ demands, and hence alters the equilibrium price of the

economy that remains after the disequilibrium trade. Consequently, equilibrium may be much more

difficult to reach in a market in which agents have income effects than in the experimental markets

previously studied. This is not merely a subtle issue in general equilibrium theory. This situation

arises in international trade. The large recent increase in oil prices produces a large transfer of

income from oil importers to exporters. The process of price adjustment in the presence of income

effects of this sort tells us how prices respond to altered market conditions. The question addressed

by the experiment in this paper is whether a simple general equilibrium economy with strong income

effects can reach its competitive equilibrium, and if so, how that comes about. The test reported

here demonstrates that prices and allocations do converge to the competitive equilibrium, but the

process of convergence is subtler that in previous experiments that do not involve income effects.

In principle, an experimental test of this model is straightforward. Smith [1976, 1982] developed

a theory of induced utility which applies directly to this problem. The experimenter specifies a

utility function for each agent in an exchange economy. The value of an agent’s induced utility

function at his final allocation determines his payoff. Any of several exchange mechanisms could

meditate trades. Due to its robust performance properties and its operational simplicity, the

continuous double auction (CDA) is a natural choice. A partial test of this type – with induced

utility functions for buyers and schedules of induced costs for sellers – is reported in Williams,

Smith, Ledyard, and Gjerstad [2000]. Prices and allocations in their experiment converge, albeit

with a slight price bias. The test reported in this paper combines induced utilities for sellers

and buyers, and unlike previous general equilibrium experiments, such as Lian and Plott [1998]

or Anderson, Plott, Shimomura, and Granat [2004], the experiment uses a commodity money so

that the absolute price level is determined, and the market environment is tightly linked to the

exchange economy. Moreover, unlike previous general equilibrium experiments, all agents in the

experiment reported in this paper have strictly quasi-concave utility functions that exhibit strong

income effects, so the experiment provides a strenuous test of competitive equilibrium predictions.
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A competitive market environment is created with six sellers and six buyers, each with an

induced utility function over two commodities. One commodity is specified as the numeraire:

prices for the non-numeraire commodity are stated in terms of a number of units of the numeraire.

Buyers initially hold only the numeraire commodity in their endowment, and sellers initially hold

only the non-numeraire commodity in their endowment.1 Each experiment session consists of either

12 or 15 identical replications of the exchange economy.2 In each of these replications (or trading

periods), the sellers post offer prices and the buyers post bid prices – denominated in units of the

numeraire commodity – for one unit of the other commodity. Exchange occurs when a seller and

a buyer agree on a number of units of the numeraire commodity that they will exchange for a unit

of the other commodity. Each agent may (and typically does) participate in several trades in each

trading period.

Trades strongly support competitive equilibrium price and allocation predictions in this exper-

iment. By the final period in four sessions, allocations and prices were very near the competitive

equilibrium allocation and price: the allocation differed from the competitive equilibrium allocation

by less than 3% (measured as the ratio of the distance between the final allocations and the equilib-

rium allocations to the distance between the initial endowments and the equilibrium allocations).

In addition, the difference between the average final period price and the equilibrium price was less

than 3.7% in each session and averaged less than 3.1%. Earnings as a percentage of equilibrium

earnings were closer yet: in the final period they averaged 99.8%, which is higher than the typical

efficiency in a CDA experiment with unit costs for sellers and unit values for buyers.

In addition to confirmation of convergence to competitive equilibrium, these experiment sessions

provide a unique opportunity to assess price dynamics in an exchange economy. In the CDA trades

are negotiated directly between sellers and buyers, trades typically occur at a variety of prices even

within a single trading period, and most trades occur out of equilibrium. These characteristics of the

trading process, rather than hindering investigation of price dynamics, facilitate their evaluation.

In order to shed light on this adjustment process, market dynamics are evaluated with two

price adjustment models. Across-period adjustment is evaluated with the price adjustment rule

from the tatonnement model. Although the price adjustment rule from the tatonnement model

is normally interpreted as an action by the ‘auctioneer’ in a Walrasian auction, it is nevertheless

useful as a diagnostic tool for evaluation of changes to average price across trading periods, even

1 The position of each subject in the experiment as either a buyer or a seller is of course a fiction: those labeled

‘buyer’ in the experiment because they purchase units of the non-numeraire commodity are also sellers of the numeraire

commodity; sellers of the non-numeraire commodity can also be viewed as buyers of the numeraire commodity.

2 The first three sessions – all conducted on a single day – provided evidence that convergence is much slower in

this environment than in a market with induced costs and values, so the number of market replications was increased

for the fourth session.
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in a market that employs the CDA trading mechanism. Individual excess demand is a well-defined

function of an agent’s current allocation and the market price, and market excess demand is the

sum of individual excess demands. Market excess demand at the average price in period t leads

under the tatonnement adjustment rule to a predicted change to the average price in period t + 1.

Consequently, we can use the price adjustment rule from tatonnement as a diagnostic tool, and

determine whether it describes period-to-period price adjustment well, even though the impetus to

these price changes differs in the CDA from that in the Walrasian auction.

The tatonnement price adjustment rule is therefore used to evaluate convergence across market

periods, with the predicted average price in period t + 1 determined as p̄
t+1 = p̄ t + bZ(p̄ t) + ǫ

t+1.

Under the null hypothesis of no price change in response to excess demand (b = 0), the process is a

random walk. The linear approximation to this adjustment equation, p̄ t+1 = p̄ t +β (p∗− p̄ t)+ ǫ t+1,

is examined with Dickey-Fuller unit root tests. These tests demonstrate that average price adjusts

across periods toward equilibrium, as predicted.

Evaluation of period-to-period average price adjustment though neglects the substantial within-

period price adjustment. In the “Hahn process” (Hahn and Negishi [1962]), the auctioneer an-

nounces a price as in tatonnement; traders respond by announcing excess demand. Unlike taton-

nement though, in this disequilibrium exchange model trade takes place if there is some exchange

compatible with announced excess demands. Then price adjusts in response to excess demand, as

in the tatonnement model, and the process is repeated at the new price. Proceeding iteratively,

the model predicts a path of prices within a trading period. The Hahn process model is used

to evaluate experiment data by comparing predicted within-period price adjustment to observed

within-period price adjustment from experiment sessions. As with tatonnement adjustment, Hahn

process adjustment is a random walk under the null hypothesis of no adjustment, so unit root

tests are applied to within-period trades as well. The Hahn process accounts for and adapts to

disequilibrium trades, and converges to a Pareto optimal allocation in each period. Its predicted

price path within a period t, augmented with a predicted initial price in period t + 1, effectively

describes the evolution of prices both within and across trading periods.

When agents have income effects, convergence is slower and subtler than in markets with in-

duced supply and demand which have no income effects. In a market without income effects, the

equilibrium price near the end of the period approximately equals the equilibrium price before trad-

ing begins. This simplifies the learning problem since the end-of-period trades condition agents’

subsequent price expectations, so that prices quickly converge to the equilibrium. In a market

with income effects though, when the price path differs from the equilibrium price, the equilibrium

price by the end of the period may differ substantially from the equilibrium price at the start of a

trading period. With replication of the market conditions across several trading periods though,

this difficulty is overcome. Prices within a trading period typically adjust toward the competitive
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equilibrium price, so that the price path in each period better approximates the CE price. Eventu-

ally prices and allocations stabilize in the vicinity of the equilibrium price and allocation. Although

price paths in markets with income effects have different characteristics than price paths in markets

without income effects, both are consistent with the same adjustment process.

This paper progresses through the steps outlined above. Section 2 describes the economic

environment induced in the experiment sessions. Section 3 describes the CDA mechanism in the

exchange economy context. Section 4 evaluates experiment data for across-period convergence and

also compares across-period price adjustment to within-period price adjustment. Section 5 describes

the within-period price adjustment from the Hahn process model, augmented with a simple across-

period price adjustment rule. Section 6 reports Hahn process model parameter estimates and a

simulation of the adjustment process. Conclusions are drawn in Section 7.

2 Economic environment

At the beginning of each trading period, each buyer is endowed with 1800 units of the numeraire

commodity (X), which is described to the buyer as currency. Buyers can use this numeraire com-

modity to purchase units of the commodity (Y ). Each seller is endowed with eighteen units of

the commodity, which can be sold individually to acquire units of the numeraire commodity. The

payoff of agent i is determined from the value of the constant elasticity of substitution utility func-

tion ui(x, y) = ci ((ai x)ri + (bi y)ri)1/ri , where x is the final allocation of currency (the numeraire

commodity X) and y is the final allocation of the commodity (Y ) held by agent i at the end of a

trading period.3

In each period of an experiment session, each of six buyers (agent type B) has the same utility

function u
B
(x, y) and endowment ω

B
= (1800, 0); each of six sellers (agent type S) has the same

utility function u
S
(x, y) and endowment ω

S
= (0, 18). Table 1 shows the CES utility function

parameters and the endowments of sellers and buyers.

ci ai bi ri ωi

Sellers’ parameters (i = 2, 4, . . . , 12) 0.256 2.982 109.89 −1 (0, 18)

Buyers’ parameters (i = 1, 3, . . . , 11) 0.695 0.362 109.89 −1 (1800, 0)

Table 1: Sellers’ and buyers’ parameters.

With ρi = ri/(1 − ri), the excess demand for Y of agent i is

3 The parameter ci does not affect the competitive equilibrium price or allocation, but it does affect the utility

level attained by subject i, and is therefore a useful element of the utility inducement technique, since it permits the

experimenter to rescale a subject’s payoff with a single parameter.
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Z
Y

i ( p |ωi) =
b ρi

i (ωX

i + p ωY

i )

p
(

b ρi

i + p ρi a ρi

i

) − ωY

i . (2.1)

For commodity Y , market excess demand Z
Y
( p |ω) =

∑ 12

i=1
Z

Y

i ( p |ωi) is the sum of individual ex-

cess demands.4 When parameters from table 1 are substituted into equation (2.1) and the resulting

individual excess demand functions are substituted into the market excess demand function, the

equilibrium price p∗
.
= 91 is obtained as the solution to Z

Y
( p |ω) = 0. (In equilibrium, the market

for the numeraire commodity (X) then clears by Walras’ law.) Then p∗ = 91 is substituted into

equation (2.1) to determine the net trade of Y by agent i. Each seller has equilibrium allocation

(x
S
, y

S
) = (637, 11); each buyer has equilibrium allocation (x

B
, y

B
) = (1163, 7). The equilibrium

utility level for each agent is 189. With sellers identical to one another, and buyers identical to

each other, the economic environment can be displayed in an Edgeworth diagram, as in figure 3.

In order to implement an exchange economy experiment, each subject is provided with detailed

specifications of his objective and of the exchange institution. The next section describes the CDA

institution in the context of an exchange economy and describes the representation of the utility

inducement technique to subjects.

3 The continuous double auction (CDA)

In the CDA, any seller may submit an ask at any time during a trading period. An ask, which

is the seller’s current report of the fewest units of the numeraire commodity that he is willing to

accept for a unit of the commodity, is entered in the area on the seller’s screen display labeled

“Enter Ask,” as in figure 1. Similarly, a buyer’s bid, which represents her current report of the

most units of the numeraire commodity that she is willing to pay for a unit of the commodity,

may be submitted at any time. An ask placed at or below the current high bid generates a trade

at the bid price. A bid that meets or exceeds the current low ask yields a trade at the ask price.

A seller may make any number of asks, and may trade any number of units that is consistent

with his commodity endowment. Similarly, a buyer may make any number of bids, and may trade

any number of units that is consistent with her endowment of the numeraire commodity. Several

specific rules are implemented in the version of the CDA used in this experiment. Of these, the most

important is the “spread reduction rule,” which requires that each new ask is below the current

low ask and each new bid exceeds the current high bid. A seller has the option to remove any ask

that he has previously made, provided his request to remove the ask is received before it results in

4 Dependence of excess demand on endowments ω
i

or on interim allocations (x
i
, y

i
) is indicated because in the

Hahn process, price adjusts after each trade in response to excess demand at the current allocation. In Section 5, which

defines the Hahn process adjustment rule, the excess demand for Y is written Z
Y

( p | (x, y)) =
∑ 12

i=1
Z

Y

i
( p | (x

i
, y

i
)).
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a trade. Each seller is permitted a single ask in the market queue at any time. Any new ask by a

seller replaces his previous ask if he has one in the queue. Each ask is the unit price offered for one

unit: multiple unit trades are not permitted. Analogous restrictions apply to each buyer’s bids.

Figure 1: Seller screen with elements of market institution.

During each period, a queue on the seller’s screen displays all current asks and bids (shown

as the “Market Queue” in figure 1); each buyer’s screen also displays both queues. When a seller

successfully enters an ask into the ask queue, he receives a confirmation message in the “Messages”

area of the screen display. This ask also appears in the “Unit Ask” row of the “Trade Summary”

table, in the column that corresponds to the unit the seller has offered for sale. Similarly, a buyer

receives a confirmation message when she enters a bid into the bid queue, and also sees an update

to the appropriate cell in her Trade Summary table. When a seller and buyer complete a trade,

they both receive a confirmation message, “Unit Price,” “Unit Profit,” and “Total Profit” figures

are recorded in their Trade Summary tables, and the price appears in the “Market Transaction

Prices” graph, which displays all trade prices from the current period. The trading phase of each
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period lasts 180 seconds; a clock at the top of each agent’s screen shows the time remaining in the

current phase. Each of these elements of the market institution appears on a seller’s trading screen,

as in figure 1. Buyers have a similar trading screen.

Figure 2: Profit calculator table and graph for seller (left) and buyer (right).

Profit (or utility) representation

Each market period is separated into three phases. During the preview phase, which lasts 60

seconds, and during the 180 second trading phase, a seller is able to enter “Price” and “Quantity”

into a “Profit Calculator,” which appears on the lower right hand side of the seller screen in figure 1.

(The final phase is the 30 second review phase, when sellers and buyers have an opportunity to

examine the results of the trading phase.) This Profit Calculator displays both a tabular and a

graphical representation of the utility level that would result from a proposed trade. Examples of

the Profit Calculator are shown for a seller and for a buyer in figure 2, starting from the seller’s

and the buyer’s initial endowments. When a subject enters data into the Price and Quantity boxes

in this calculator and clicks “Update Table,” the profit (or utility) level is displayed in the center

of the table for the allocation that would result from the proposed exchange. Profit levels are

also displayed in the table for prices above and below the proposed price, and for quantities above

and below the proposed quantity. In addition, the graph represents the “Current Allocation,”
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the “Proposed Allocation” which would result from the proposed Price and Quantity, and the

“Iso-profit Curve” (or indifference curve) that passes through the Proposed Allocation.

Instructions

The CDA mechanism and the representation of profit (or utility) levels are explained to subjects

in a detailed interactive instruction set. Instructions describe each element of the seller’s (or buyer’s)

trading screen independently, and then describe how elements relate to one another. There are

points in the instruction set at which the seller or buyer is prompted for inputs, and there are eight

interactive questions that must be answered correctly in order to proceed through the instructions.

The sequence of steps through the instructions is outlined in Appendix A.

Experiment sessions and experience

Experiment sessions York1, York2, and York3 were conducted at the University of York in

the U.K. on June 7, 2001. These three sessions had a total of thirty-six student subjects drawn

from a wide range of backgrounds, including the physical and social sciences, the arts, and the

humanities. Session Ariz1 was conducted at the University of Arizona on Nov. 16, 2001 with

twelve undergraduate students recruited from across all majors.5 Subjects in all exchange economy

sessions had prior CDA experience in a session with a list of unit costs for each seller and a list

of unit values for each buyer, rather than a utility function. Experience in a CDA with induced

costs and values simplified subjects’ learning tasks, since they were already familiar with the CDA

market institution when they participated in the induced utility experiment. From the pool of 120

subjects at York who had experience in an induced cost and value CDA in the two weeks prior to

sessions York1, York2, and York3, for the induced utility sessions we did not attempt to recruit the

20 subjects whose earnings were lowest as a fraction of equilibrium earnings in the induced cost

and value sessions. A similar criterion was applied for session Ariz1.

5 In a fifth session, prices continued to decline between periods 10 and 15, after they had already fallen to the

competitive equilibrium price. During these six periods, 22 units were sold by the sellers at a loss. Misunderstanding

of the utility inducement technique, particularly by three sellers, led to their poor performance and to a large deviation

from equilibrium. Since the supply exhibited by these sellers substantially exceeded the induced supply, analysis of

the market requires a decision error variable in the regressions. This analysis though complicates the basic adjustment

model, provides no additional insight into price dynamics, and doesn’t alter the basic conclusions of the paper, so

the fifth session is not evaluated in this paper.

It is not the failure to converge though that limits the usefulness of the data from the fifth session. An adjustment

process could fail to converge, even though no subject trades at a loss. If price adjustment includes both lagged price

changes (with positive coefficients) and the usual adjustment term from excess demand, then the price path may

repeatedly overshoot the equilibrium and fail to converge. This would be an interesting outcome well worth analysis.

The failure to converge in the fifth session though did not result from an unanticipated adjustment dynamic like this,

but rather from an apparent misunderstanding of the utility inducement technique by three sellers.
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4 Convergence

This section assesses convergence of prices and allocations in four experiment sessions. Section 4.1

assesses convergence of individual allocations to the competitive equilibrium allocation. Section 4.2

applies the tatonnement price adjustment rule to evaluate across-period convergence of mean prices.

Section 4.3, which compares the extent of across-period price convergence to the extent of within-

period price convergence, demonstrates that most price adjustment occurs within trading periods.

This motivates the analysis of within-period adjustment in Sections 5 and 6.

4.1 Convergence of allocations across periods

Prices converge reliably in the exchange economy experiment sessions (with the exception of the

session in which several subjects apparently misunderstood the utility inducement technique). Fig-

ure 3 (a) shows the per capita interim allocations after each trade during three trading periods from

session York1. Figure 3 (b) depicts final per capita allocations from each period in York1. Figure 4

shows, in detailed views, final allocations by period for each session. Note that the diagrams in

figure 4 show only 2.6% of the area of the Edgeworth diagrams in figure 3, and the diagram for

session York2 shows less than 0.25% of the area. These diagrams suggest a significant level of

convergence across periods in three of four sessions, and almost immediate convergence in the first

period of the session shown in figure 4 (b).

(a) Trades within periods (b) Final allocations across periods
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Figure 3: Interim allocations in three periods (left) and final allocation for all periods (right) of York1
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(a) York1 (b) York2

(c) York3 (d) Ariz1
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Figure 4: Edgeworth diagram details for experiment sessions.

With twelve agents and two commodities, the allocation space has twenty-four dimensions,

so these diagrams substantially – though usefully – compress the data. Statistical evaluation

of convergence of individual allocations to the competitive equilibrium allocations confirms the

impression of convergence conveyed by these diagrams. Convergence is evaluated by measuring the

distance between each trader’s allocation and their competitive equilibrium allocation, and showing

that these distances, averaged across traders, converge across periods.

Let (x
t,i

, y
t,i

) be the period t final allocation for agent i and let (x∗
i
, y∗

i
) be the equilibrium
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allocation for agent i. The metric used to measure the distance between the final allocation

(xt , yt) = ((x
t,1 , y

t,1), (xt,2 , y
t,2), . . . , (xt,12 , y

t,12)) observed in period t and the equilibrium allo-

cation (x∗, y∗) = ((x∗
1
, y∗

1
), (x∗

2
, y∗

2
), . . . , (x∗

12
, y∗

12
)) is

d((xt , yt), (x∗, y∗)) = 1
12

12
∑

i=1

1√
2

(

(

1
91 (x

t,i
− x∗

i
)
)2

+ (y
t,i

− y∗
i
)2

)0.5

.

The rationale for this distance metric is straightforward: if trades take place at the equilibrium price

p∗ = 91 and the final allocation of each trader falls short of or exceeds the equilibrium allocation

by α units, then the distance between the allocation and the equilibrium allocation is α.

With the distance d((xt , yt), (x∗, y∗)) denoted dt , convergence is evaluated with the regres-

sion equation dt = d1 e−r ln t ηt (where {ηt} is a sequence of independent, identically distributed

lognormal random variables). This can be expressed as the linear model ln dt = ln d1 − r ln t + ǫt .

(a) York1 (b) York2

(c) York3 (d) Ariz1
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Figure 5: Convergence of allocations in four sessions.

Figure 5 shows the sequence of observed distances {dt}
T

t=1
and also shows estimates from the

regression.6 Table 2 summarizes convergence estimates for each of the four sessions. Strong con-

6 Although the linear model dt = d
1
− r t + ǫt can be fit to this data, the exponential model is more appropriate,

since distances cannot be negative. In addition, the average R2 statistic for the exponential model is slightly higher

than it is for a linear model.
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vergence occurs in all four sessions (as measured by the estimates r̂ and their p-values).7 The R2

statistics from the regression too indicate that the model captures much of the variability in the

sequences {dt}
T

t=1
.

p-value

Periods d̂1 r̂ (r̂ > 0) R2 d̂
T

d̂
T
/d̂1

York1 12 2.464 0.754 0.000 0.886 0.378 0.153

York2 12 1.235 0.566 0.000 0.826 0.302 0.245

York3 12 3.006 0.605 0.001 0.675 0.669 0.223

Ariz1 15 3.483 0.559 0.000 0.699 0.740 0.212

Table 2: This table includes estimates d̂
1

of the initial distance from equilibrium, estimates of

the rate of convergence r̂, p-values for the hypothesis test that r > 0, R2 statistics for the model,

distances d̂
T

implied by the estimates r̂ and d̂
1

in the last period (where d̂
T

= d̂
1
e−r̂ ln T ), and the

ratio of the implied estimate for the last period to the estimate for the first period.

4.2 Price convergence across periods: tatonnement

Across-period adjustment of average price is evaluated with the price adjustment rule from the

tatonnement model p̄
t+1 = p̄ t + bZ(p̄ t) + ǫ

t+1, where Z(p̄ t) is market excess demand at p̄ t . If

p̄ t = p∗ then excess demand is zero, so the expected price in period t + 1 is the equilibrium price,

but for an adjustment rate b > 0 that is not too large (overshooting is possible in the discrete

version of the tatonnement model), and for p̄ t 6= p∗, the expected mean price in period t + 1 lies

between p̄ t and p∗.

If there is no systematic adjustment in response to excess demand (b = 0), this adjustment

process is the random walk p̄
t+1 = p̄ t + ǫ

t+1, and if b < 0 the process is non-stationary, so

construction of hypothesis tests requires some caution. First, in order to formulate a test of the

hypothesis b > 0 against the null hypothesis of a random walk (if b = 0) or a non-stationary process

(if b < 0), the model needs to be formulated in first differences ∆p̄
t+1 = p̄

t+1 − p̄ t, as

∆p̄
t+1 = bZ(p̄ t) + ǫ

t+1. (4.1)

4.2.1 Formal adjustment test with linear approximation to excess demand

The model in equation (4.1) is similar to the “mean-reversion” model (or what in this context could

naturally be called an “equilibrium reversion” model) ∆p̄
t+1 = β (p∗ − p̄ t) + ǫ

t+1. The equilibrium

7 Nine input errors were corrected from the four sessions for the estimates reported here and in Section 6. In the

four sessions there were 2291 trades, so the errors represent less than one in 254 trades. Three of the nine errors

occurred when a seller omitted a digit in his ask or a buyer included an extra digit in her bid.
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p∗ is known to the experimenter and β (p∗− p̄ t) is a linear approximation to bZ(p̄ t) around p∗. Let

d̄ t = p̄ t−p∗. (In Section 4.1 d t is the distance between an allocation and the equilibrium allocation.

Here d̄ t is the difference between the average price and the equilibrium price in period t.) Then

the adjustment process can be expressed as

∆d̄
t+1 = −β d̄ t + ǫ

t+1. (4.2)

The Dickey-Fuller unit root test can be applied to the model in equation (4.2) to test the null

hypothesis of a random walk (β = 0) or non-stationarity (β < 0) against the alternative hypothesis

that price responds in the predicted direction to deviations from equilibrium. The standard Dickey-

Fuller test procedure involves inclusion of a constant term β0 , and the augmented procedure tests

lagged dependent variables. The augmented model is tested, and insignificant lags are eliminated.

For the mean price sequences from the four experiment sessions, no lagged price change is significant,

so the model ∆d
t+1 = β0 − β d̄ t + ǫ

t+1 is estimated. The t-statistics for β̂0 fall within the range

(−2.179, 2.179) for sessions York1, York2, and York3, so the hypothesis of a constant term in

the adjustment process is rejected for these three sessions using a standard t-test.8 The null

hypothesis of no adjustment due to price deviation from equilibrium is then tested in the model

of equation (4.2), which doesn’t include a constant term. For that model, the critical value of the

t-statistic is the Dickey-Fuller test statistic τ = −1.95 for a test at the 95% confidence level. The

second row for each session in table 3 shows estimates for this model and the t-statistic for the test

of the null hypothesis that β = 0. For sessions York1, York2, and York3, the null hypothesis is

rejected: adjustment in each case is significant and in the direction of equilibrium.9 Results from

session Ariz1 are somewhat mixed. The constant term is significant, and in the model with the

constant term included, it is not possible to reject the null hypothesis that prices follow a random

walk or a non-stationary process, since the adjustment term has the wrong sign. If attention is

restricted to the last eight periods in Ariz1, when adjustment took place, the result differs. In

periods 8 – 15, the constant term remains significant, but in the model without a constant term,

adjustment is significant in the model. Elliott, Rothenberg, and Stock [1996] demonstrate that

Dickey-Fuller tests have very low power when the product of the sample size and the adjustment

8 The average price in the first period of York2 was p̄1 = 93.44, which is very near the competitive equilibrium

price p∗ = 91. The average price moved away from the competitive equilibrium price in period 2 to p̄2 = 95.23, moved

further away in period 3 to p̄3 = 95.85, and then began to slowly adjust back to the equilibrium price. Although the

average price movements in these two periods were small, they moved in the opposite direction from the predicted

adjustment in response to excess demand. It is remarkable that price adjusted between periods 4 and 12 toward the

competitive equilibrium: excess demand at the mean price in period 3 was Z
Y

(95.85) = −0.799, or −0.133 on a per

capita basis. With periods 1 and 2 included, it is not possible to reject the hypothesis of a random walk.

9 The general Dickey-Fuller test procedure is described in Enders [1995]. See in particular equations (4.9), (4.10),

figure 4.7. Enders provides critical values for the Dickey-Fuller test statistics in his Table A.
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parameter is small.10 In this situation, the null hypothesis is frequently accepted when it is in fact

false. Given this situation, it is noteworthy that the null hypothesis can be rejected for the first

three sessions, and for the last eight periods of the session Ariz1.

Periods β
0

−β t-stat Test

York1 1 – 12 −0.038 −0.175 −0.086 β
0

= 0

−0.172 −11.101 β = 0

York2 3 – 12 0.232 −0.096 0.366 β
0

= 0

−0.041 −2.432 β = 0

York3 1 – 12 3.041 0.009 1.814 β
0

= 0

−0.123 −4.334 β = 0

Ariz1 1 – 15 5.973 0.166 5.306 β
0

= 0

−0.066 −2.046 β = 0

Ariz1 8 – 15 4.873 0.047 0.205 β
0

= 0

−0.198 −3.246 β = 0

Table 3: Regression coefficients and statistics for the linear adjustment rule.

4.2.2 Informal adjustment test with excess demand

Equation (4.2) conforms exactly to the model specification in the Dickey-Fuller tests for a unit root,

whereas equation (4.1) conforms to the microeconomic model of price adjustment. Equation (4.1)

though can be put into a form similar to equation (4.2). First, use the change of variable d̄ t = p̄ t−p∗

to write equation (4.1) as

∆d̄ t+1 = bZ(d̄ t + p∗) + ǫ t+1. (4.3)

In equation (4.2) the regressor d̄ t passes through the origin with slope one. In equation (4.3)

the regressor Z(d̄ t + p∗) passes through the origin but its slope there is −0.1713. The function

Z̃(d̄ t) = −Z(d̄ t + p∗)/0.1713 passes through the origin with slope one, so

∆d̄
t+1 = −b′ Z̃(d̄ t) + ǫ

t+1 (4.4)

is equivalent to equation (4.1) and it is tangent to equation (4.2) at d̄ t = 0 (if b′ = β).

The Dickey-Fuller test statistic is not formally applicable to equation (4.4), but the regressor

Z̃(d̄ t) approximates the regressor d̄ t in equation (4.1) from the formal statistical model, so the test

can be carried out with equation (4.4), albeit informally.

10 A central argument in this paper is that within-period adjustment exceeds across-period adjustment. The power

of Dickey-Fuller tests is much higher in tests of the Hahn process than in tests of tatonnement adjustment, since the

sample size for the Hahn process approximately equals the number of trades rather than the number of periods. This

provides an econometric rationale that complements other arguments in the paper for within-period analysis.
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Periods b
0

−b′ t-stat Test

York1 1 - 12 0.352 −0.124 1.009 b
0

= 0

−0.143 −11.175 b′ = 0

York2 3 - 12 0.206 −0.093 0.336 b
0

= 0

−0.043 −2.431 b′ = 0

York3 1 - 12 2.677 0.007 2.088 b
0

= 0

−0.089 −4.064 b′ = 0

Ariz1 1 - 15 5.463 0.105 6.018 b
0

= 0

−0.041 −1.702 b′ = 0

Ariz1 8 - 15 4.780 0.035 7.081 b
0

= 0

−0.141 −2.548 b′ = 0

Table 4: Regression coefficients and statistics for the non-linear adjustment rule.

Table 4 reports estimates and t-statistics for the model in equation (4.4) in which price adjusts in

response to excess demand, rather than in response to deviations from equilibrium. All conclusions

remain the same with the alternative formulation. In this formulation too, the lack of adjustment

in the first seven periods of Ariz1 seems to be the reason that the null hypothesis β ≤ 0 cannot be

rejected. (This lack of adjustment is most apparent in figure 8.) When the test is performed on

periods 8 – 15, the adjustment term is, at b′ = 0.141, as strong as in any session, and its t-statistic

of −2.548 is well below the Dickey-Fuller test statistic τ = −1.95. Since lagged price changes are

rejected in the data, the lack of adjustment between periods 2 and 7 does not result from serial

correlation.11 It must be the result of a structural change. In fact, evidence of that structural

change is apparent in the data: beginning near the end of period 6, one buyer recognized that she

could increase her utility by raising her bid above the prevailing price. Figure 1 shows data from

the end of period 6, including the market queue. All prices in the period were at 60, 61, or 62 until

Buyer 2 paid 65 near the end of the period and then paid 70 in the final trade of the period. Near

the end of the period, she raised her final bid to 79. At the end of period 7 three other buyers

imitated her behavior. Starting in period 8, the structural change was fully in effect. (See figure 8.)

It is interesting and notable that the econometric technique rejects serial correlation in errors as

the explanation and points instead (via comparison between the test statistics for the full sample

and the subsample of periods) to a structural change, which examination of individual behavior

supports.

11 In these models, the presence of lagged price changes in the adjustment process and the presence of serial

correlation in the error structure are indistinguishable. Appendix B demonstrates that a model with first-order serial

correlation is equivalent to a model with a single lagged price change in the adjustment function. In general, a model

with AR(n) errors is equivalent to a model with n lagged price adjustment terms. (See Davidson and McKinnon

[1993, pp. 710 – 711].)
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4.3 Comparison of across-period and within-period price adjustment

Section 4.1 demonstrates that allocations converge to the competitive equilibrium allocation across

trading periods. Section 4.2 demonstrates that average prices converge to the competitive equilib-

rium price with tatonnement price adjustment. This section compares the extent of across-period

price adjustment to the extent of within-period price adjustment and demonstrates that across-

period price changes are typically smaller than within-period price changes, which motivates the

analysis of within-period price adjustment in Sections 5 and 6.

For periods t = 2, 3, . . . , T , the ratio A
a

t
= 1− | p̄t − p∗|/| p̄

t−1 − p∗| measures price adjustment

across periods. Denote the number of trades in period t by Kt . Within-period price adjustment for

periods t = 1, 2, . . . , T is measured as the ratio A
w

t
= 1−

∣

∣

∣

∑ Kt

k=Kt−4
(p

t,k
− p∗)

∣

∣

∣

/∣

∣

∣

∑ 5

k=1
(p

t,k
− p∗)

∣

∣

∣ .

Three cases help interpret these measures of across-period and within-period price adjustment.

The first case involves only within-period adjustment, the second considers equal within-period and

across-period adjustment, and the final one involves only across-period adjustment.

(1) If price adjusts within each period so that
∑ Kt

k=Kt−4
( p

t,k
− p∗) = (1 − α)

∑ 5

k=1
( p

t,k
− p∗), and

if there is no adjustment across periods, then A
a

t
= 0 and A

w

t
= α.

(2) If price adjusts geometrically within each period so that ( p
t,Kt

− p∗) = (1 − α) ( p
t,1 − p∗), and

if the first price in period t + 1 is equal to the last price in period t, then A
a

t
= α and A

w

t

.
= α.

(3) If price in each period is constant and ( p
t,k

− p∗) = (1 − α) ( p
t−1,k

− p∗), then A
a

t
= α and

A
w

t
= 0.

Average across-period price adjustment A
a

t
for the four sessions was Ā

a
= 0.078 and average

within-period adjustment A
w

t
was Ā

w
= 0.238.12 Although the tatonnement model tracks across-

period price changes, these average price changes are most likely a response to large within-period

price changes. The next section explores the predictions of the Hahn process model of within-period

price adjustment in order to better understand price adjustment.

5 Hahn process dynamics

In the four experiment sessions, prices and allocations converge across periods to the competitive

equilibrium. Since the magnitude of within-period price changes exceeds that of across-period price

12 In the first two periods of York2, the mean price moved away from the equilibrium price. In the fifteenth period

of Ariz1, the mean price overshot the equilibrium price slightly, going from p̄
14

= 90.1 to p̄
15

= 93.6. Both these

movements decrease the measures of within-period and the across-period price changes. Without these three periods,

the measures are Ā
a

= 0.146 for across-period price adjustment and Ā
w

= 0.347 for within-period price adjustment.

With or without these three outliers, these measures indicate that there is substantially more price adjustment within

periods than across periods.
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changes, within-period price dynamics are evaluated with the Hahn process model of disequilibrium

price adjustment.

This section begins, in Section 5.1, with a brief description of the continuous version of the Hahn

process formulated in Hahn and Negishi [1962]. Section 5.2 adapts the model to the context of

the market experiment with trade in discrete units and discrete price adjustment. The experiment

includes several replications of the exchange economy, so Section 5.3 augments the Hahn process

model with a simple rule for across-period price adjustment.

5.1 Hahn process description and notation

In an exchange economy with m commodities and n agents, each with a utility function ui(x, y)

and an endowment ω
i
, prices in the Hahn process adjust in response to excess demand. Unlike

tatonnement though, in the Hahn process, trade takes place as soon as a price is announced. In the

continuous version of the Hahn process, the initial price vector is held constant during some time

interval [ 0, h], and subsequently (for t > h) prices adjusts continually in response to excess demand

according to the rule ṗ(t) = cZ
Y
( p(t)|x(t)), where x(t) is the allocation that results from all trades

that have occurred along the price path ( p(s))s∈(0, t). Trades of the goods follow some rule ẋ
i
(t)

that satisfies three conditions: (1) the budget of each agent i balances (p(t) · ẋ
i
(t) = 0); (2) the net

flow of each commodity balances (
∑ n

i=1
ẋ

i
(t) = 0); and (3) the executed trade increases the utility of

at least one agent and does not decrease the utility of any agent (ui(xi
(t)+ ẋ

i
(t)) ≥ ui(xi

(t)) for all

i with strict inequality for at least one agent). Hahn and Negishi [1962] and Arrow and Hahn [1971,

Chapter 13] demonstrate that this price adjustment process converges to a Pareto optimal allocation

for any adjustment rate c and any trade process that satisfies the three indicated conditions.13

5.2 Discrete Hahn process price adjustment

A discrete version of this process adapts the model to the experiment. The discrete version with

two commodities operates simply. At the announced price p
t,k

some buyer with excess demand at

that price transfers p
t,k

units of the numeraire commodity to a seller, who in return transfers one

13 Their main claim though is that as adjustments approach their continuous limit, prices and allocations converge

to a competitive equilibrium of the original economy. In the Scarf example, if price adjusts slowly and the trade

quantity at each announced price is relatively large, the limit of both the price and the allocation differ from the

competitive equilibrium allocation. On the other hand, if price adjustment is rapid and trade quantities are small,

the process can converge, even in a single trading period, to the competitive equilibrium of the Scarf example.

Nevertheless, even if the theorem were stated and proven correctly, the result would only be applicable to economies

much larger than the one in the experiment, due to the assumption in the Hahn process model that trades are very

small relative to equilibrium net trades. In the experiment, convergence is to a Pareto optimal allocation within

periods; convergence to the competitive equilibrium price and allocation takes place across periods.
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unit of the other commodity to the buyer. With this adjustment process, rules (1) and (2) are

met by construction; rule (3) is imposed in simulations by ending trade when there is no Pareto

improving trade at the announced price.14

The excess demand of each agent depends on his current allocation and on the market price, so

implementation of the model requires an expression for the allocation of each trader in terms of his

initial endowment and the interim allocation that results after each trade. Suppose that from the

sequence P
t,k

= ( p
t,1 , p

t,2 , p
t,3, . . . , p

t,k
) of the first k trades in period t, agent i has taken part in

k
i
trades. These k

i
trades by agent i can be denoted P (i)

t,k = ( p
t,i1

, p
t,i2

, . . . , p
t,iki

). The allocation

for buyer i ∈ B can be written in terms of P (i)
t,k as

(

x
t,k

(P (i)
t,k ), y

t,k
(P (i)

t,k )
)

=
(

1800 −
∑ ki

j=1
p

t,ij
, k

i

)

.

The allocation for seller i ∈ S is
(

x
t,k

(P (i)
t,k ), y

t,k
(P (i)

t,k )
)

=
(

∑ ki

j=1
p

t,ij
, 18 − k

i

)

.

In the discrete version of the Hahn process, price adjusts after each trade in response to aggregate

excess demand. After trade k in period t, price adjusts so that

p
t,k+1

= p
t,k

+ c
∑12

i=1
Z

Y

i

(

p
t,k

∣

∣

∣

(

x
t,k

(P (i)
t,k ), y

t,k
(P (i)

t,k )
))

. (5.1)

The estimation procedure in Section 6.2 uses the expression for excess demand from the right side

of equation (5.1) as a regressor. Simulation uses estimates from the augmented version of this

model, which includes statistically significant lagged price changes.

5.3 Initial prices in periods t = 2, 3, . . . , T

This section examines the distribution of initial prices in period t+1 in terms of the range of prices

in period t. The Hahn process estimation procedure does not capture this aspect of the adjustment

process, so it is examined separately and combined with estimates of within-period adjustment in

a twelve-period simulation in Section 6.3.

The within-period price path predicted by the Hahn process has two free parameters: the

initial price pt,1 and the adjustment rate c. The model is adapted in this paper to account for the

replications of the economy across trading periods by including a simple rule for setting the initial

price in periods t = 2, 3, . . . , T . The initial price in period t is assumed to be a weighted average of

the maximum price and the minimum price from period t − 1:

p
t,1 ≡ (1 − a) min{ p

t−1,1 , p
t−1,2 , . . . , p

t−1,Kt−1
} + a max{ p

t−1,1 , p
t−1,2 , . . . , p

t−1,Kt−1
}. (5.2)

Forty-seven observations of a are obtained from the fifty-one periods in four experiment sessions.

In the four sessions, the median value of a was a24 = 0.477. The mean was â = 0.476, its sample

14 This rule may not reach a Pareto optimal allocation because it can stop at the net demand of one agent. Other

ending rules that are consistent with condition (3) are also possible. A rule that repeatedly changes the price if no

Pareto improving trade is possible at the current price will eventually reach a Pareto optimal allocation.
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variance was s2 = 0.083, and its minimum and maximum values were zero and one. These statistics

are almost indistinguishable from a uniform distribution on [0, 1].
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Figure 6: Distribution of initial prices p
t,1

in the four sessions (left) and simulation (right).

The distribution of a is shown on the left side in figure 6. The data on the right side of

the figure are simulated values of a for the forty-seven individual period price ranges from the

experiment sessions. The data were generated by taking each of these forty-seven price ranges,

selecting an (integer-valued) initial price for the next period uniformly from that interval, and then

calculating the statistic a for that initial price. This was replicated twenty times to get a simulation

of the distribution of initial prices. Based on the distribution of a from the experiment and the

simulated distribution, it seems reasonable to augment the Hahn process price adjustment model

for replicated market environments with the initial price in period t + 1 selected randomly from a

uniform distribution on the interval between the minimum and the maximum price in period t.15

6 Hahn process estimation and simulation

With error terms added to predicted price adjustments, prices in period t evolve according to the

equation p
t,k+1

= p
t,k

+ cZ
Y

( p
t,k

)+ ǫ
t,k+1

. As with the tatonnement model, if c = 0 the adjustment

process follows a random walk and if c < 0, the process is non-stationary. Consequently, the test

for c > 0 must be conducted in first differences ∆p
t,k+1

= p
t,k+1

− p
t,k

as

∆p
t,k+1

= cZ
Y

( p
t,k

) + ǫ
t,k+1

. (6.1)

15 Easley and Ledyard [1993] construct their model of double auction bidding behavior from their observation –

based on their examination of data from double auction trading experiments – that in market environments with

induced costs and values prices in period t + 1 typically fall within the observed price range from period t. My claim

is similar, but has two differences. I make the weaker claim that only the initial price in period t + 1 falls in the

range of period t prices, and I make the more specific assumption that it is drawn uniformly from that interval. The

two approaches are similar: both are based on observations from double auction experiments. The different economic

environment that I consider leads to my restriction of the assumption to initial prices, and I make the more specific

distributional assumption based on statistical properties of initial prices.
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6.1 Hahn process estimation with linear approximation to excess demand

As with the test of the tatonnement model, the model in equation (6.1) does not fit exactly into

the framework of the unit-root tests. With the linear approximation γ (p∗ − p
t,k

) to cZ
Y
( p

t,k
) in

equation (6.1), the adjustment equation can be written ∆p
t,k+1

= γ (p∗ − p
t,k

) + ǫ
t,k+1

. Since it is

deviations from equilibrium that lead to price adjustment, d
t,k

= p
t,k

− p∗ can be substituted into

this equation to get the equivalent adjustment model ∆d
t,k+1

= −γ d
t,k

+ ǫ
t,k+1

. This is the version

of the Dickey-Fuller test without a constant or a trend term. In the general test procedure, we can

add a constant term and lagged price changes. The adjustment model doesn’t include a constant

term, so we expect that the constant term will be rejected. The model also does not include lagged

price changes, though that seems plausible.16 With a constant term and lagged price adjustment,

the model is

∆d
t,k+1

= γ0 − γ d
t,k

+
q

∑

j=1

β
j
∆d

t,k+1−j
+ ǫ

t,k+1
. (6.2)

In this form, the hypothesis test γ > 0 is carried out by comparing the t-statistic from the parameter

estimate to the critical value of the Dickey-Fuller test statistic for a unit-root process.17

The number of lags can be examined either by a general-to-specific sequential rule or the

Bayesian information criterion (BIC). The general-to-specific sequential rule begins with a large

number of lags (set at q = 8 here), and then insignificant lags are eliminated with a standard t-test.

For the model with a constant and approximately 500 sample points, if the absolute value of the

t-statistic is greater than 1.96 the hypothesis that a lagged price adjustment parameter β
j

equals

zero can be rejected at the 5% significance level, using a standard t-test.

This test was used to eliminate insignificant lags. 18 (Only significant lags are reported in

tables 5 and 6.) Once insignificant lags are eliminated, the hypothesis that the constant term

is zero is tested with a standard t-test. Since the constant term is significant in York2, the test

statistic τµ = −2.87 is used to reject the hypothesis of no adjustment.19

16 As outlined in footnote 10 and detailed Appendix B, lagged price changes in the adjustment process and serial

correlation in the error structure are indistinguishable.

17 The procedure for these tests is similar to the tests with the tatonnement model in Section 4.2, but lags are

significant in the within-period adjustment process. For these tests, see equations (4.12) and (4.13) and figure 4.7 in

Enders [1995].

18 In general, the BIC is consistent while the general-to-specific rule has positive probability of over-fitting. Even

so, the results for the four exchange economy sessions are identical with the two procedures.

19 In York2 excess demand was small, and adjustment was in the right direction, but the impetus to adjustment

was so subtle that it is unsurprising that the constant term is significant (i.e., prices converged statistically to a price

slightly different from the equilibrium price). If the first period is not included, and the equilibrium price is taken as

pe = 94 rather than p∗ = 91, then the constant term is not significant while the adjustment term remains significant.
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In the three sessions for which the constant term is rejected, the model is estimated without a

constant to test for significance of the adjustment term. In each of these sessions, the adjustment

term is significant with a p-value below 5% (Dickey-Fuller test statistic τ = −1.95). In fact, in

sessions York1 and York3, it is significant with a p-value below 1% (Dickey-Fuller test statistic

τ = −2.58). These results are all summarized in Table 5, which shows parameter estimates for

the model in equation (6.2). In session York2, which has a significant constant term, the null

hypothesis of a unit root (no adjustment) is rejected. (The critical value of the Dickey-Fuller test

with a constant term is τµ = −3.44) at a p-value of 1%.)

N γ
0

−γ β
1

β
2

β
3

β
4

β
5

t-stat Test

York1 511 0.171 −0.034 −0.692 −0.601 −0.463 −0.300 −0.287 0.83 γ
0

= 0

— −0.045 −0.680 −0.590 −0.453 −0.293 −0.283 −5.45 γ = 0

York2 483 0.721 −0.198 −0.244 5.56 γ
0

= 0

— 0.721 −0.198 −0.244 −6.41 γ = 0

York3 527 0.420 0.005 −0.721 −0.443 −0.437 −0.219 1.78 γ
0

= 0

— −0.013 −0.699 −0.422 −0.419 −0.206 −2.90 γ = 0

Ariz1 718 −0.293 −0.022 −0.693 −1.13 γ
0

= 0

— −0.011 −0.699 −2.13 γ = 0

Table 5: Parameter estimates and t-statistics for the linear adjustment rule in equation (6.2).

6.2 Hahn process estimation with excess demand

Equation (6.2) has the merit that it is specified so that the Dickey-Fuller tests apply to it. The

model too is very similar to the Hahn process adjustment model, since Z
Y

( p
t,k

) is nearly linear in

a fairly large region around the equilibrium price p∗. As a consequence of this, the results from the

model in equation (6.2) should be similar to the results from the model

∆p
t,k+1

= a0 + cZ
Y

( p
t,k

) +
q

∑

j=1

b
j
∆p

t,k+1−j
+ ǫ

t,k+1
. (6.3)

Comparison is facilitated if, as with the unit root test for the tatonnement adjustment model, we

make the change of variable d
t,k

= p
t,k

− p∗ and then set Z̃
Y
( d

t,k
) = −Z

Y
( d

t,k
)/0.1713. Then the

regressor Z̃
Y
( d

t,k
) in

∆d
t,k+1

= a0 − c′ Z̃
Y

( d
t,k

) +
q

∑

j=1

b
j
∆d

t,k+1−j
+ ǫ

t,k+1
(6.4)

has the same slope at d
t,k

= 0 as the regressor in equation (6.2), so that estimates from the two

are comparable. In fact, all of the results for this model are identical to those for the model in

equation (6.2). All of the results in table 6 are interpreted similarly to those in table 5.
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N a
0

−c′ b
1

b
2

b
3

b
4

b
5

t-stat Test

York1 511 0.199 −0.028 −0.678 −0.589 −0.455 −0.295 −0.284 1.12 a
0

= 0

— −0.037 −0.660 −0.571 −0.439 −0.282 −0.278 −5.54 c′ = 0

York2 483 0.535 −0.165 −0.245 4.90 a
0

= 0

— 0.535 −0.165 −0.245 −5.95 c′ = 0

York3 527 0.233 0.003 −0.707 −0.431 −0.428 −0.212 1.19 a
0

= 0

— −0.010 −0.686 −0.412 −0.412 −0.202 −3.21 c′ = 0

Ariz1 719 −0.186 −0.012 −0.687 −0.80 a
0

= 0

— −0.007 −0.694 −2.09 c′ = 0

Table 6: Parameter estimates and t-statistics for model in equation (6.4)

6.3 Construction of predicted price sequences

The sequence of predicted price changes ∆p
t,k+1

for k = 1, 2, 3, . . . ,Kt from equation (6.4) with

parameter estimates substituted into the equation can be used to generate the predicted price path

from each session. The predicted price sequence is p
t,1, p

t,2 +∆p
t,2, p

t,3 +∆p
t,3, . . . , p

t,Kt
+∆p

t,Kt
.

Figures 7 and 8 show the trade prices and the estimated adjustment function in each session. In

each graph, successive periods are separated by a vertical line, trade prices are shown as dots,

and the number of trades is indicated for each period. The equilibrium price is shown as a solid

horizontal line at p∗ = 91. The estimated adjustment path is shown as a solid path in each graph

(though the estimated path is often difficult to distinguish from the observed price path). Prices

demonstrate a remarkably tendency toward the equilibrium, even in York2, which was so close to

the equilibrium in the third period that the excess demand on a per capita basis was less than

−0.133 units.

6.4 Hahn process simulation

Hahn process simulation with discrete trades in two commodities and replication of trading periods

is fully specified by (1) an initial price p1,1 in period 1; (2) the price adjustment rule in equation (6.3);

and (3) the initial price in periods t = 2, 3, . . . , T in equation (5.2). The price path through T

periods is only a function of the initial price p1,1 in period 1, the adjustment rate c, the coefficients

β
j

on lagged price changes, and the random terms ǫ
t,k

and across-period adjustment terms a.

For a fixed value of c, a predicted price path for period t is determined starting from the initial

price p
t,1. The predicted second price p

t,2 is determined based on p
t,1 and the adjustment rule in

equation (6.3). Subsequent predicted prices are determined iteratively.

The Hahn process model and its adaptation to the replicated economies of experiments can

be brought together in a simulation of the process. Figure 9 shows the path of prices within and
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Figure 7: Prices and estimated adjustment in York1, York2, and York3.
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Figure 9: Simulation of price path within and across periods.

across trading periods from a simulation of this model. In this simulation, within-period prices are

determined by equation (6.3), with parameter estimates from session York1. The initial price in

period t + 1 is selected randomly from the interval of period t prices, and the standard deviation

of the errors decreased geometrically across periods according to the equation σt = 2 · 0.9 t−1.

Comparison of this figure with figure 7 (a) suggests that the Hahn process price adjustment model
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captures many key features of the price path.

7 Conclusions

The pure exchange economy is the fundamental model in the neoclassical theory of value. Em-

pirical assessment of the Generalized Axioms of Revealed Preference (GARP), as in Cox [1997],

demonstrates that choices over a small number of commodities are consistent with the existence of a

regular preference ordering or utility function. The experiments reported in this paper demonstrate

that when agents with (induced) regular utility functions trade in an exchange economy, prices and

allocations converge across trading periods to its competitive equilibrium. Consequently, the two

key assumptions in the neoclassical theory of value – agents have consistent preference orderings

and exchange by agents with consistent preference orderings (or utility) leads to a competitive equi-

librium allocation – are supported by experimental evidence, at least when these two assumptions

are evaluated separately.

Equilibrium predictions though are not the whole story. Price dynamics in an exchange economy

have a complex structure. Exchange economy experiments exhibit both across-period and within-

period convergence. Comparison of price adjustment across periods and price adjustment within

periods demonstrates that most price adjustment occurs within each trading period. Consequently,

disequilibrium models that predict price adjustment within trading periods are essential in order

to understand the dynamics of convergence in general equilibrium models. Previous experiments

with induced values and costs did not reveal the full complexity of the convergence process.

The augmented Hahn process price adjustment model estimated in this paper is broadly consis-

tent with price adjustment in partial equilibrium environments that have been studied in numerous

CDA experiments beginning with Smith [1962]. Experimentally, a partial equilibrium market en-

vironment is created in the laboratory by inducing values for buyers and costs for sellers. Gjerstad

and Shachat [2007] demonstrate that any partial equilibrium environment can be generated from

an exchange environment with quasi-linear utility functions, so the price adjustment model esti-

mated in this paper should apply also to adjustment in CDA experiments with induced values and

costs, since these too can be viewed as exchange economy environments. In partial equilibrium

market experiments, during early periods prices typically come from one side of the equilibrium in

a wide arc that approaches the equilibrium price. In each successive period prices tend to follow

a flatter arc, with the initial price closer to the equilibrium price than in the previous period, and

the final price in each period approaches the equilibrium price. In these partial equilibrium market

environments, even when units trade at prices away from the competitive equilibrium price, the

equilibrium price of the economy that remains after a disequilibrium trade is typically the same as

or very close to the equilibrium price of the original economy. As a result, trade prices converge to
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the equilibrium price at the end of the first period. In the second period, prices typically fall in the

range of period 1 prices (as in the Easley-Ledyard model). As this process proceeds across periods,

prices converge to the equilibrium price, in the strict sense that prices are near the equilibrium

price throughout the period, not just at the end of the period.20

The exchange economy experiment provides strong evidence for convergence to competitive

equilibrium, and also demonstrates the importance of within-period price adjustment. A third

issue also motivates the experiment. Experimental evidence on price adjustment in standard partial

equilibrium market settings led eventually to development of models of price adjustment based on

the incentives of the individual agents. Models of this sort include Wilson [1987], Friedman [1991],

Easley and Ledyard [1993], Gjerstad and Dickhaut [1998], and Gjerstad [2007]. The objective of

this line of research has been to gain insight into the processes that lead markets to their equilibrium

prices and allocations by examining the interactions among sellers and buyers. Extension of this

line of research to the general equilibrium context requires a base of facts to be explained. The

experiment reported in this paper examines the most elemental general equilibrium model, and as

such is a natural starting point for models of price formation in general equilibrium markets.

(a) Near middle of trading period (b) Near end of trading period

XB

YB

0 400 800 1200 1600
B

0

2

4

6

8

10

12

14

16

XS

YS

1600 1200 800 400 0 S

16

14

12

10

8

6

4

2

0

A

DS

DB

XB

YB

0 400 800 1200 1600
B

0

2

4

6

8

10

12

14

16

XS

YS

1600 1200 800 400 0 S

16

14

12

10

8

6

4

2

0

DS

DB

Figure 10: Cone of Pareto improving prices and individual demands

In general, individual incentives vary much more than the global conditions summarized in

excess demand. A simple example illustrates this point. If prices are constant, then excess demand

does not change as trades are conducted. In figure 10 (a), suppose that the current allocation

20 This issue is discussed in Gjerstad and Shachat [2007].
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is at point A. Then the demand of agent B is D
B

and the demand of agent S is D
S
. Excess

demand for Y is the vertical component of the distance D
B
−D

S
. The cone of prices that support

Pareto improving trades is shown as the two line segments emanating from A. Figure 10 (b)

shows the situation if trades continue at the same price until the allocation reaches D
S
. At that

point, excess demand is the same as it was when the allocation was A, but individual incentives

are much altered. Agent S has no more incentive to trade at the current price, and the cone of

prices that support Pareto improving trades has narrowed considerably. Even when prices change

over the course of a trading period, the change to excess demand is minor relative to the change

in the cone of Pareto improving prices. So models based on excess demand neglect aspects of the

exchange environment that will most likely prove to be important as incentive based models of price

adjustment are developed. Models of this process, once developed, will almost certainly enhance

further our understanding of the important problem of price dynamics in exchange economies.
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Appendix A

Prior to the start of an experiment session, a seller goes through an instruction set that describes each of the

elements of the seller screen and their operations. These elements include: (1) the seller’s endowment and current

allocation of currency and commodity, (2) the seller’s profit (or utility) function, (3) input that the seller provides

during the session, (4) processing of input (by the CDA mechanism) from the seller, as well as from other sellers and

from buyers, and (5) determination of the seller’s profit, which is based on the seller’s allocation of currency and

commodity. Buyers’ instructions are analogous to sellers’ instructions. The most important principle adhered to in

our implementation of instructions is that inputs of asks by sellers (or bids by buyers) are initiated by the seller (or

by the buyer) in order to avoid creation of a reference point effect that would influence asks or bids once the session

begins.

Each seller and each buyer views a total of 33 screens, and makes inputs on five of these screens. There are eight

interactive questions that each seller and each buyer must answer correctly in order to proceed. Although there are

33 screens, most of the screen space is devoted to the actual screen display that the subject views and uses during the

experiment session. During the instructions, a text box describes elements of the seller’s screen display. The total

length of the sellers’ instructions in these text boxes is 3250 words, which is equivalent to approximately six pages of

text. Subjects typically complete instructions in 15 to 35 minutes.

The sequence of steps through the screens is described below. The instruction summary below refers frequently

to elements of the seller’s screen, which is shown in figure 1 (p. 6). The instructions for a buyer are similar. Direct

experimenter interaction with subjects was kept to a minimum whenever possible, including sign-in, seating, and

payment.

Screen 1: The subject’s earnings are based on subject’s decisions and the decisions of other participants.

Screen 2: The subject is a seller throughout an experiment session that lasts for 12 trading periods (in the first

three sessions) or 15 periods (in session Ariz1).

Screen 3: The subject should not communicate with or distract others. The subject’s data are anonymous.

Screen 4: Payment is made at an exchange rate of £0.01 per unit of experiment currency accumulated. (This rate

was $0.008 in session 4 at the University of Arizona.) Payment is made anonymously in cash at the conclusion of

the experiment session.

Screen 5: There is a set of interactive instructions that follow this screen. The seller will know that he either has

or has not completed instructions based on the status message at the top of his screen.

Screen 6: Each period of the session consists of a 60 second “Preview Phase”, a “Trading Phase” of 180 seconds

and a “Review Phase” of 30 seconds. A clock at the top of the screen ticks down to the end of each phase.

Screen 7: The seller begins each period with eighteen units of the commodity. The current balance of both currency

and commodity are shown throughout each trading period in the Current Allocation box on the seller’s screen.

Screen 8: The location and purpose of the “Profit Calculator” is described to the seller.

Screen 9: The seller is prompted to enter a Quantity and a Price into the Profit Calculator. The profit that would

result if the seller sold the proposed quantity at the proposed price is shown in the Profit Calculator table, and

the Current Allocation and Proposed Allocation are shown in the Profit Calculator Graph. (See figure 2 on p. 7

for a view of the Profit Calculator for a seller and for a buyer.)

Screen 10: The Profit Calculator table is described to the seller. Rows correspond to different prices and columns

correspond to different numbers of units sold. The profit level for the price and quantity that the seller entered

on Screen 9 is displayed in the center of the table.
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Question 1: For the quantity ‘q’ and the price ‘p’ that the seller entered, he is asked to state what his profit would

be if he were to sell ‘q + 1’ units at price ‘p’.

Screen 11: The Profit Calculator Graph is described. The graph shows the seller’s Current Allocation, the seller’s

Proposed Allocation (which is the allocation that would result if the seller exchanges q units of the commodity

for p q units of the numeraire commodity), and the Iso-profit Curve that passes through the Proposed Allocation.

Screen 12: The seller is reminded that he begins each period with eighteen units of the commodity, and is asked to

use the Profit Calculator to determine what his total profit would be if he were to sell all eighteen units of the

commodity at the price that he entered on Screen 9.

Question 2: The seller is asked to enter the profit that he would obtain if he were to sell all 18 units from his

commodity endowment at the price that he entered on screen 9.

Screen 13: The Profit Calculator includes left and right arrows that can be used to decrease or increase the quantity

proposal and up and down arrows that can be used to decrease or increase the price proposal. (See figures 1 and

2.) The seller is encouraged to test these features.

Screen 14: An ask is entered in the “Enter Ask” area of the seller screen. The subject enters an ask at this point.

Screen 15: The ask entered by the subject appears in the Unit Ask row of the Trade Summary display. Commodity

Holding remains unchanged, but Commodity Available is reduced by one unit. The ask also appears in the “Your

Asks” display area.

Screen 16: Asks by all sellers and bids by all buyers appear in the “Market Queue” display.

Screen 17: A new ask is generated randomly to simulate an action by another seller. The new ask is at a higher

amount than the subject’s ask, to illustrate the Ask Improvement rule. (The new ask is generated randomly from

one to ten above the seller’s own ask, though the subject is not informed of the process that generates the new

ask.) The subject is also informed that if he makes a new ask at this point, the new ask will replace his current

ask.

Question 3: The seller has a quiz question appear at this point. The seller, after seeing a description of the Ask

Improvement rule, is prompted to state what is the highest ask that can be submitted at this point.

Question 4: After the subject answers Question 1 correctly, he is asked to state the number of asks that will be in

the Market Queue if he submits a new ask.

Screen 18: The subject is asked to enter a new ask that improves on the ask submitted by the simulated seller.

Screen 19: The new ask replaces the seller’s previous ask. The “Messages” display is shown, and updates to the

Trade Summary display are described.

Screen 20: The subject is prompted to remove his ask by double clicking on the ask in the “Your Asks” display.

Screen 21: Changes to the seller screen that result from the removal of his ask are described, including updates to

the Commodity Available, Your Asks, Market Queue, Trade Summary, and Messages displays.

Screen 22: The seller is prompted to enter a new ask to replace the ask that he just removed.

Screen 23: Updates to the seller’s screen that result from the new ask are reviewed.

Screen 24: A trade occurs when a seller’s ask is at or below the current best bid, or a buyer’s bid meets or exceeds

the best ask. The seller is informed that on the next screen, a bid from a simulated buyer will be generated that

will meet the seller’s ask, so that the seller will trade with the simulated buyer.

Screen 25: Updates to the seller’s Unit Price, Unit Profit, and Total Profit entries in his Trade Summary table that

result from the most recent trade are described. Changes to the Currency Holdings and Commodity Holdings

areas are described. The Market Transaction Prices graph update is described.



PRICE DYNAMICS IN AN EXCHANGE ECONOMY 31

Screen 26: The price determination rule is reviewed and the seller is informed that after two questions, a bid will

be simulated that results in a trade with the current low ask.

Question 5: The seller is asked whether a trade will result if a buyer now submits a bid that is below the current

low ask.

Question 6: The subject is asked what the trade price will be if a bid is submitted that meets or exceeds the current

low ask.

Screen 27: A bid is simulated that generates another trade. (This trade is between a simulated seller and a simulated

buyer, so the subject only sees public information regarding the trade, i.e., its price on the Market Transaction

Prices graph.)

Screen 28: A new simulated bid appears in the Market Queue. The price determination rule is reviewed once more

and the subject is asked two more questions (Questions 7 and 8).

Question 7: The seller is asked whether a trade will result if he submits an ask that exceeds the current high bid.

Question 8: The seller is asked what the trade price will be if he submits an ask that is below the current high bid.

Screen 29: The seller is prompted to enter an ask that is at or below the current high bid, in order to produce a

new trade.

Screen 30: Changes to the Current Allocation, Trade Summary, and other screen displays that result from the most

recent trade are reviewed.

Screen 31: The seller is informed of the ‘Vote to End Period’ option, and the unanimity rule that triggers an early

end to the trading phase of the current period.

Screen 32: A Period Profit window appears during the review phase of each period.

Screen 33: Subjects are cautioned that the ask by another seller and the bids by other buyers in the instructions

were simulated and that these may not be similar to the responses by buyers and by other sellers during the

experiment. The subject is informed that he has now completed the instructions and trading will begin when all

subjects have completed their instructions.

Appendix B

Starting from the adjustment process model

∆d̂
t+1

= −γ d̂t + u
t+1

, (B.1)

if errors are generated by the AR(1) process u
t+1

= ρ ut + ǫ
t+1

, then substitution of u
t+1

into equation (B.1) results

in the equation

∆d̂
t+1

= −γ d̂t + ρ ut + ǫ
t+1

. (B.2)

Equation (B.1) for period t (rather than for period t + 1) is ∆d̂t = −γ d̂
t−1

+ ut . Solve this for ut to get ut =

∆d̂t + γ d̂
t−1

. When this is substituted into equation (B.2), the result is

∆d̂
t+1

= −γ d̂t + ρ (∆d̂t + γ d̂
t−1

) + ǫ
t+1

. (B.3)

This equation, with some minor rearrangement, is equivalent to an equation with lagged price changes on the right

hand side and i.i.d. errors:
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∆dt+1
= −γ d̂t + ρ (∆d̂t + γ d̂t−1

) + ǫt+1

= −γ d̂t + ρ γ d̂
t−1

+ ρ ∆d̂t + ǫ
t+1

= −γ d̂t + ρ γ d̂t − ρ γ d̂t + ρ γ d̂
t−1

+ ρ ∆d̂t + ǫ
t+1

= −γ (1 − ρ) d̂t − ρ γ ∆d̂t + ρ ∆d̂t + ǫ
t+1

= −γ (1 − ρ) d̂t − ρ (γ − 1) ∆d̂t + ǫ
t+1

.
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