
KRANNERT SCHOOL OF
MANAGEMENT

 Purdue University
 West Lafayette, Indiana

Cardinality Bundles for Spence-Mirrlees Reservation

Prices

By

 Karthik Kannan
Mohit Tawarmalani

Jianqing Wu

Paper No. 1276
Date: November, 2013

Institute for Research in the
Behavioral, Economic, and
Management Sciences

Cardinality Bundles for Spence-Mirrlees Reservation Prices

Karthik N. Kannan Mohit Tawarmalani Jianqing “Fisher” Wu

November 14, 2013

Abstract

We study the pricing of cardinality bundles, where firms set prices that depend only on the
size of the purchased bundle. The cardinality bundling (CB) problem we study was originally
proposed by Hitt and Chen (2005) and it involves consumers having a specific preference struc-
ture called Spence-Mirrlees Single Crossing Property (SCP). We show that the optimal prices
to the problem can be obtained, in strongly polynomial time, by solving a shortest-path prob-
lem. The network structure underlying the shortest path formulation is useful in developing an
algorithm to solve the quantity-discount problem proposed by Spence (1980). Lastly, we also
study the characteristics of the underlying problem that lead to similar strongly polynomial
time solution approaches.

1 Introduction

Bundling and its benefits have been extensively studied in prior literature. Bakos and Brynjolfsson

(1999) show that synergies among products can lead to more profitable opportunities when products

are bundled than when they are sold separately. Initial work on bundling has studied the pricing

strategies when all the possible combinations of bundles are available (Stigler, 1963, Adams and

Yellen, 1976, McAfee et al., 1989). The problem with that scheme is that it is only computationally

tractable for a small number of goods (Hanson and Martin, 1990).

With the emergence and rapid growth of low-cost reproduction and distribution technologies

for information goods, researchers and information goods providers are more and more attracted

to various forms of bundling. Other types of bundling that have been studied are: component

bundling, where individual components are priced and not the bundles, and pure bundling, where

only a bundle with all possible products is available. Of late, a new type of bundling, cardinality

bundles (CB) has become popular. CB sets the same price for bundles of equal size. That is to say,

for a firm selling J goods, CB offers one price for a bundle of one good, a second price for a bundle

1

of any two goods, a third price for a bundle of any three goods and so on. Therefore, compared

to mixed bundling, CB only requires J prices for J bundles. CB is implemented in reality. For

example, Chu et al. (2011) note that CB is used to sell seasonal theater tickets.

Literature on CB is limited though. To the best of our knowledge, there have been three

other papers that have studied CB. Hitt and Chen (2005) study the problem, assuming that the

consumer can buy only one bundle. They explore the conditions under which a mixed bundling

problem can be reduced to a CB problem. They also analyze optimal solutions for CB problem with

an additional assumption about consumers’ reservation price, known as the Spence-Mirrlees Single

Crossing Property (SCP). Under the same assumption, i.e., on one bundle per consumer, Wu et al.

(2008) explore the properties of the CB problem by using a nonlinear mixed-integer programming

approach. They propose a Lagrangian relaxation and a subgradient method for solving the CB

problems. The authors develop a heuristic solution strategy and provide an upper bound on the

profit. However, there is a residual gap between their best upper and lower bounds at termination.

Chu et al. (2011) consider a model where unit prices for bundles are decreasing with size. They

computationally study how specifying prices for every bundle in this scenario leads to a profit that

is close to offering every combination of bundles.

We begin by considering the model proposed by Hitt and Chen (2005), which derives prices

for cardinality bundles assuming that reservation prices follow SCP. We show that the optimal

prices can be obtained, in polynomial time, by solving a shortest-path problem. In contrast, the

earlier techniques proposed in Hitt and Chen (2005) may generate non-optimal prices. The network

structure underlying the shortest path formulation provides many insights into cardinality bundling.

It paves the way for developing useful approximation schemes for the continuous case (see Spence

(1980) and Section 3), reveals valid inequalities that help determine prices that disincentivize

customers from purchasing more than one bundle (Kannan et al., 2013), and allows us to extend

2

our analysis to costs that are not additively separable and include economies of scale as a special

case (see Section 4).

The paper is structured as follows. In Section 2, we develop the shortest-path formulation

for the discrete CBP model. In Section 3, we revisit the quantity discount problem and derive an

approximation algorithm for its solution. Finally, in Section 4, we relax the assumption that costs

are additively separable and develop efficient solution techniques for these problems.

2 CBP Discrete Case: Model & Analysis

A customized bundling problem models a situation where a vendor offers a menu of products that

maybe purchased as bundles of various sizes and a price for each bundle size. The consumer

who purchases a bundle of a particular size is free to choose any set of the products of the same

cardinality. This model was originally proposed by Hitt and Chen (2005) where the authors assumed

that the consumers could be ordered in a manner such that a consumer of higher type not only

assigned a higher value to bundles of a given size but also derived higher marginal value from

increasing the bundle size.

In this section, we consider the cardinality bundling problem where the vendor decides the

prices and cardinalities of bundles offered in the market. The model, we treat in this section, was

originally proposed in Hitt and Chen (2005). For completeness, we first review the basic model.

Consider a vendor who sells J products and assume that there are I consumers in the market. In

the following, we denote the bundle of size j as Bundle j. The vendor decides the prices pj of each

of the Bundles j = 1, . . . , J . The bundle 0 is offered for free and is introduced to simplify notation,

since it represents the case when a consumer chooses not to buy any product from the vendor. We

assume that the cost of the Bundle j for vendor is cj and that the total cost to the vendor is the

sum of the costs for the bundle sold. It should be observed that there is no loss of generality in

assuming that bundles of all sizes are offered in the market. If it is preferable for the vendor to

3

not offer a bundle, then the price of a bundle of that size can be set to a value that is a slightly

larger than the maximum any consumer would be willing to pay for that bundle ensuring that no

consumer purchases a bundle of this size.

In the model of Hitt and Chen (2005), it is assumed that each consumer can purchase at

most one bundle. Let wij ≥ 0 denote the willingness-to-pay (WTP) of Consumer i for Bundle

j. For every i, we set wi0 to zero to denote that consumers, who do not purchase anything, do

not derive any value out of the vendor’s products. Since the choice of the bundle rests with the

consumer, if Consumer i purchases Bundle ji, this bundle must maximize her consumer surplus,

i.e., ji ∈ arg maxj{wij − pj}. Let Ji be the set of bundles Consumer i prefers with price vector p.

If |Ji| > 1, we assume that the consumer i purchases the bundle ji ∈ arg max{pj − cj | j ∈ Ji}, i.e.,

the bundle that yields the most profit to the vendor. This assumption is typical in the literature

and is without loss of generality.1

Let xij be 1 if Consumer i ∈ {1, 2, . . . , I} buys Bundle j ∈ {0, 1, 2, . . . , J} and 0 otherwise.

Then, CBP can be formulated as follows (see Wu et al., 2008):

CBP1 : Max
xij ,pj

I∑
i=1

J∑
j=0

xij(pj − cj)

s.t.

J∑
j′=0

(wij′ − pj′)xij′ ≥ wij − pj ∀i, ∀j (1)

J∑
j=0

xij = 1 ∀i (2)

xij ∈ {0, 1} ∀i, ∀j. (3)

1To see this, let J ′(j) = {j′ | pj′ − cj′ < pj − cj} be the set of bundles that provide less profit to vendor than j.
Observe that since the number of consumers and bundles is finite, there exists an ε > 0 such that even if the price of
a bundle that a consumer does not prefer is reduced by Jε, the consumer continues to prefer the bundles in Ji after
the change. Now, consider a new pricing scheme p′, where the price of Bundle j is set to p′j = pj − |J ′(j)|ε. Then,
it is easy to verify that, when the prices are p′, Consumer i prefers the bundle ji ∈ arg max{pj − cj | j ∈ Ji} over
other bundles in Ji and, since |J ′(j)| < J , this preference is also over bundles not in Ji. Further, the vendor does
not lose more than JIε in the profit when he prices the bundles using p′ instead of p. Since ε can be chosen to be
arbitrarily small, this yields a sequence of solutions for which vendor’s profit converges to the one obtained under our
assumption.

4

Let (x∗, p∗) be a solution that generates the optimal profit. Constraints (1) enforce incentive

compatability (IC) and individual rationality (IR) for Consumer i. The left hand side models the

consumer surplus from the purchase decision and the right hand side models the consumer surplus

from the purchase of alternate bundles. Setting j = 0 ensures that consumer only purchases bundles

with non-negative surplus. Constraints (2) enforce that each consumer purchases only one bundle.

In Section 3.4 of Hitt and Chen (2005), in order to develop analytical insights into cardinality

bundling, the authors focus on the case where consumer valuations satisfy the Spence-Mirrlees

Single Crossing Property (SCP) (see Spence, 1980). We also assume throughout that consumer

valuations satisfy this property and remark that this assumption is quite common in models of

nonlinear pricing problems, as has also been observed by Hitt and Chen (2005). SCP imposes the

following ordering on the consumers’ WTP for the bundles:

wij ≥ wi′j ∀i > i′, (4)

wij − wij′ ≥ wi′j − wi′j′ ∀i > i′, ∀j > j′. (5)

The interpretation of these conditions is straightforward. A consumer with a higher index has a

(weakly) higher WTP for any bundle. Also, the WTP exhibits increasing differences, i.e., as bundle

size increases, the WTP for a higher-indexed consumer increases more rapidly than the WTP for

a lower-indexed consumer. Essentially, this assumption states that consumers can be ordered by

types, with higher type consumers valuing the products and marginal changes in bundle sizes more

than the lower type consumers. Before we develop an efficient solution approach for this problem,

we review the current approaches available via examples.

Example 1 Consider a scenario with I = 4 consumers, J = 4 bundle sizes, and costs cj = 0 for

all j. Suppose the WTP for the consumers are as given in Table 1(a). It can be verified easily that

5

Table 1: WTP and left hand side values of Equation (6) for Example 1

Bundle Consumers’ WTP
size I1 I2 I3 I4

0 0 0 0 0
1 26 36 58 120
2 47 62 91 180
3 58 77 113 221
4 62 83 123 240

Bundle LHS values
size I1 I2 I3 I4

0
1 -4 -8 16 120
2 6 12 -14 60
3 -1 1 3 41
4 -2 -2 1 19

(a) Willingess to Pay ([wij]) (b) Left hand side values of Equation (6)

they satisfy SCP. Observe that the CBP1 is a mixed integer nonlinear program (MINLP) since the

price vector pj and consumer decisions xij are variables and their products appear in the objective

and in Constraint (1). We use BARON (Tawarmalani and Sahinidis, 2002) to solve the MINLP

formulation of CBP1. Note that this solver guarantees that it finds the global optimal solution at

termination. The optimal solution thus found is to set p∗1 = p∗2 = 47, p∗3 = 62, and p∗4 = 72.

It is easy to check that, with these prices, Consumer 1, 2, 3, and 4 buy Bundles 2, 3, 4, and 4

respectively. The optimal profit for the vendor is 253.2

In the next example, we make a small change to the setting of Example 1 to illustrate that

the assignment for a consumer depends on the WTP of all other consumers.

Example 2 In the setting of Example 1, change w41 from 120 to 100, so that WTPs still satisfy

SCP. If CBP1 is now solved using BARON, the optimal solution assigns Consumer 1 to Bundle

0 yielding a profit of 256.3 Notwithstanding, if we restrict Consumer 1 to be allocated to Bundle

2 (by constraining x12 to 1 in CBP1) and solve the resulting problem using BARON, the optimal

2Result 3 in Hitt and Chen (2005) proposes the following approach to optimally solve CBP1. Consumer i is
assigned to the largest bundle size j that satisfies the following condition:

(I − i+ 1)(wij − wi,j−1)− (I − i)(wi+1,j − wi+1,j−1) ≥ cj − cj−1. (6)

Notice that, when Consumer i is assigned to a bundle, the WTP of Consumers other than i and i + 1 are ignored.
Here, the right hand side is 0 since we assume cj′ = 0 for all 1 ≤ j′ ≤ J . The left hand side values are shown in Table
1(b). For this instance, it can be easily verified that the approach of Hitt and Chen (2005) yields the same optimal
solution as was found earlier using BARON.

3The optimal assignment of Consumer 1, 2, 3, and 4 is to Bundles 0, 0, 1, and 4 respectively. The corresponding
prices are p∗1 = 58 and p∗2 = p∗3 = p∗4 = 198.

6

profit reduces to 253.4 This shows that the WTP of Consumer 4 must be considered if Consumer 1

is to be assigned optimally.5

In the literature, there does not exist an approach to solve CBP1 optimally that does not

use a global solver on the MINLP formuation directly (also, see Footnote 4). The MINLP-based

approach is, however, not amenable to comparative statics because global optimality certificates

are typically neither small nor easy to obtain. In this section, we develop an alternate solution

approach that is efficient, guarantees optimality, and is amenable to comparative statics. First, we

start by converting the MINLP formulation of CBP1 into a mixed integer program (MIP).

2.1 Properties of the Optimal Solution

Proposition 3 There exists an optimal pricing scheme that is nondecreasing with bundle size.

See Appendix A.1 for proof.

Proposition 4 There exists an optimal solution to CBP1 that satisfies:

J∑
j′=j

xi+1j′ ≥
J∑

j′=j

xi,j′ i = 1, . . . , I − 1, ∀j. (7)

That is, there exists an optimal solution where the mapping from consumer types to bundle sizes

is non-decreasing, i.e., for any i < I, if Consumer i buys Bundle j, then Consumer i + 1 buys a

Bundle j′ such that j′ ≥ j.

See Appendix A.2 for proof.

4Observe that Equation (6) is independent of w41 for the first Consumer (i.e., i = 1). Therefore, as in Example 1,
Hitt and Chen (2005) claims that it is optimal to assign Consumer 1 to Bundle 2. The solution obtained using this
approach or using BARON with x12 forced to 1 is the same as that in Example 1 and yields a profit of 253.

5In the proof of Result 3, Hitt and Chen (2005) modify the above procedure slightly when the selected bundle
sizes do not satisfy the property that higher type consumers buy larger sized bundles. However, this situation does
not arise in the example we consider and we do not review this modification here.

7

Lemma 5 Amongst the consumers purchasing a non-zero bundle size, the lowest indexed one is

charged at her WTP in an optimal solution.

See Appendix A.3 for proof.

Lemma 5, which was also discovered by Hitt and Chen (2005), defines the starting point to

determine optimal prices for all the bundles. The more interesting is Proposition 4, which provides

additional yet important constraints for converting CBP1 into an MIP. Note that results similar to

Lemma 5 and Proposition 4 are crucial to solving the other cardinality bundling specifications.

2.2 A Polynomial Time Solution

In this section, we demonstrate that a solution to CBP1 can be obtained by solving a shortest path

formulation. A key step in obtaining the formulation is that the vendor profit can be obtained by

recursively decomposing CBP1 into subproblems.

2.2.1 Converting MINLP to MIP

Define S(i′, j′) as the cardinality bundling problem involving Consumers i′, . . . , I and j′, . . . , J .

Let ΠS(i′,j′) be the maximum vendor profit for the same problem. Consider the problem S(i, j)

where Consumer i is allocated to purchase Bundle j in the problem, which we henceforth refer

to as S(i, j|xij = 1). We claim that we can compute ΠS(i,j|xij=1) by focusing on the purchases of

Consumers i′ > i. Specifically, it is sufficient to consider the subproblem S(i + 1, j) since Bundles

j′ < j will not be purchased by Consumers i′ > i (See Proposition 4). We show that ΠS(i,j|xij=1)

is obtained by adding an increment to ΠS(i+1,j). The increment involves two parts – the cost cj

is incurred from allocating Bundle j to Consumer i; and the change in the revenue as we project

the bundle allocations from the subproblem S(i + 1, j) to the original problem S(i, j|xij = 1).

In the following paragraph, we illustrate how the revenue changes may be computed during the

projection. Note that the process specified here can be recursively repeated to solve the overall

8

vendor’s problem S(1, 0).

In Example 2, fix Consumer 1 to purchase Bundle 2. Since the costs are zero in this

example, we focus only on the revenues. In order to obtain the revenue for the higher-level problem

S(1, 2|x12 = 1), we consider the subproblem S(2, 2). The wijs for the subproblem are shown in

Table 2 (a). Two main questions arise. Are the optimal xij values from the subproblem retained

in the higher-level problem also? Further, how can we recover the overall vendor revenue for the

higher-level problem from the subproblem? Because we fixed Consumer 1’s choice, we know that

Bundle 2 will be priced at 47 via Lemma 5. That allocation leaves Consumer 2 with a surplus of

w22 − w12 = 15 for Bundle 2. In other words, by assigning Consumer 1 to Bundle 2, the vendor is

leaving at least 15 for each of the higher type consumers as their additional surplus. So, the vendor

sets the optimal xij as if he deals with consumers with wij for i = {2, 3, 4} and j = {2, 3, 4} that

are less by 15 as seen in Table 2 (b). The “decreased” wijs and the original wijs in the subproblem

are always different by the same constant and therefore, x∗ij will not be different even if they are

projected back to the higher-level problem. Using the vendor revenue obtained by solving the

subproblem with the actual wijs, we recover the optimal revenue for the higher-level problem by

first adding 47, which is Consumer 1’s payment for Bundle 2, and then subtracting 15 × 3 = 45,

which is the additional surplus not extracted from Consumer 2, 3, and 4 because of assigning

Consumer 1 to Bundle 2. Therefore, in this example, allocating Consumer 1 to purchase Bundle 2

leads to an increment of w12 − 3(w22 − w12) = 2 compared to the subproblem.

Table 2: Subproblems for Example 2

Bundle Consumers’ WTP
size I2 I3 I4

2 62 91 180
3 77 113 221
4 83 123 240

Bundle Consumers’ WTP
size I2 I3 I4

2 47 76 165
3 62 98 206
4 68 108 225

(a) wij of the subproblem (b) Effective wij after (w22−w12) subtrac-
tion

9

The increment as we project the revenues from the subproblem S(i+1, j) to the higher-level

problem S(i, j|xij = 1) is vij = wi,j + (I − i)(wi,j − wi+1,j). The term wij , in the first part of vij ’s

definition, captures the incremental revenue from offering Bundle j to Consumer i. The second

part (I − i)(wij − wi+1,j) captures the decrement in revenue to account for the vendor’s inability

to extract surplus from other consumers because of offering Bundle j to Consumer i. Recall that

the cost cj is incurred Bundle j is allocated. Therefore, the change in the vendor profit relative to

the subproblem is vij − cj . Formally, we use the definition of vij to convert the original MINLP

problem CBP1 into an MIP.

Proposition 6 The MINLP problem CBP1 can be reformulated as the following 0-1 integer linear

problem CBP2:

CBP2 : Max
xij

I∑
i=1

J∑
j=0

(vij − cj)xij

s.t. (2), (3), (7).

See Appendix A.4 for proof.

Converting CBP1 into CBP2 is possible because
∑I

i=1

∑J
j=0 vijxij captures the total revenue

for any feasible xij . We are able to ignore the prices since CBP1 can be recursively separated and

vij is the incremental revenue relative to its corresponding subproblem. One may be able to recover

the prices from the x∗ij using the process specified in the proof.

In Example 2, vij is computed as shown in Table 3. So, to compute the profit, the appro-

priate vij values are summed up. For example, if a vendor tries to serve Consumer 1 with Bundle

1, Consumer 2 with Bundle 2, Consumer 3 with Bundle 3, and Consumer 4 with Bundle 4, then

the total vendor profit is v11 + v22 + v33 + v44 = 245. The maximum profit is the summation of

vij that yields the maximum value and also that has xij satisfy Constraints (2), (3), and (7). It is

10

v1,0 + v2,0 + v3,1 + v4,4 = 256.

Table 3: Computing vij for Example 2

Bundle vij
size I1 I2 I3 I4

0 0 0 0 0
1 -4 -8 16 100
2 2 4 2 180
3 1 5 5 221
4 -1 3 6 240

2.2.2 Shortest-Path Reformulation

The previous paragraph indicates a possible network flow structure to the problem. This subsection

formally shows that CBP2 can be reduced into a shortest-path problem, which is polynomially

solvable.

Theorem 7 CBP2 is equivalent to the following shortest path problem on a graph which has 2IJ+

2I + 2 nodes and (I + 2)(J + 1) + (I − 1)(J + 1)J/2 edges:

CBP3 : Min
xij ,χijj′

−
I∑
i=1

J∑
j=0

(vij − cj)xij

s.t. (3)

J∑
j=0

χ01j = 1 (8)

J∑
j=0

χIJj = 1 (9)

xij =

J∑
j′=j

χijj′ ∀i∀j ∀j′ ≥ j (10)

j∑
j′=0

χi−1,j′,j = xij ∀i ∀j ∀j′ ≥ j (11)

χijj′ ∈ 0, 1 ∀i ∀j ∀j′ ≥ j. (12)

11

See Appendix A.5 for proof. Since the shortest-path problem is an LP, we can relax 0-1 integer

constraints on xij and χijj′ , and let them be in between 0 and 1 for all i, j, and j′ ≥ j.

Figure 1 shows the shortest path problem structure for Example 2. The following describes

the flow for any CBP1 formulation. One unit of flow starts from the top-left node, travels through

the network, and finally arrives at the bottom-right node. The flow paths never tend upward to

reflect the constraints on xij . The graph is multipartite with edges marked with dotted and solid

lines. The flow must alternate between these types of edges to reach the destination. The variable

xij indicates the flow on the solid edge, and χijj′ indicates the flow on the dotted one between the

solid edges xij and xi+1,j′ . Everytime the flow passes through a solid edge, the cost incurred is

−vij + cj , whereas the cost of passing through the dotted edges is always zero. In Figure 1, the

numbers above the solid lines show −vij + cj values corresponding to Example 2.

Figure 1: A shortest-path problem structure

x10

x11

x12

x13

x14

x20 x30 x40

x21 x31 x41

x22 x32 x42

x23 x33 x43

x24 x34 x44

0 0 0 0

4 8 -16 -100

-2 -4 -2 -180

-1 -5 -5 -221

1 -3 -6 -240

Figure 2: A dynamic programming algo-
rithm to solve CBP3

x10

x11

x12

x13

x14

x20 x30 x40

x21 x31 x41

x22 x32 x42

x23 x33 x43

x24 x34 x44

0 0 0 0

4 8 -16 -100

-2 -4 -2 -180

-1 -5 -5 -221

1 -3 -6 -240

(0)

(4)

(-2)

(-1)

(1)

(0)

(8)

(-6)

(-7)

(-5)

(0)

(-16)

(-8)

(-12)

(-13)

(0)

(-116)

(-196)

(-237)

(-256)

A simple dynamic program can be used to solve this problem. For any given solid edge, we

can record the cost of the shortest path from the top-left node until the edge under consideration.

The corresponding numbers for Example 2 are shown in parenthesis in Figure 2. The shortest path

for the entire problem is identified by the shortest path cost amongst the last set of solid lines

prior to the end node. By tracing the path generated by the shortest path solution, we identify

the optimal xij values. The distance corresponding to the shortest path in Figure 2 is −256. In

this procedure, we only need one variable to keep track of the distance associated with the shortest

12

path when considering Consumers 1 through I, and there are J computations for each consumer.

Hence, the complexity of the dynamic programming is O(IJ). Note from our solution approach

that local differences of vij is not sufficient to guarantee optimality.

2.3 Additional Insights

This section further develops on the analyses thus far. Given the characterization of vij , Equation

(6) is simply

(I − i+ 1)(wij − wi,j−1) − (I − i)(wi+1,j − wi+1,j−1) ≥ cj − cj−1

wi,j + (I − i)(wi,j − wi+1,j)− cj ≥ wi,j−1 + (I − i)(wi,j−1 − wi+1,j−1)− cj−1

vij − cj ≥ vi,j−1 − cj−1.

Note that any such solution approach involving local searches cannot attain the optima, which

requires a dynamic programming approach, as we demonstrated earlier.

Second, even though our solution approach is different, we find the following result:

Lemma 8 The bundle size that each consumer buys in optimal will weakly decrease if the marginal

cost increases.

See Appendix A.6 for proof.

Third, there exists a one-to-one relationship between wij and vij terms. Suppose W is the

matrix comprised of all wij values and V of all vij values. Then, it is easy to show that

V = W



I 0 · · · 0

−(I − 1) (I − 1) · · · 0

...
...

. . .
...

0 0 · · · 1


and W = V



1
I 0 · · · 0

1
I

1
I−1 · · · 0

...
...

. . .
...

1
I

1
I−1 · · · 1


(13)

13

Fourth, the transformation between V andW will be useful for computational purposes since

we can randomly generate vij values and use the transformation to generate wijs that automatically

satisfy SCP.

Corollary 9 For a given vij i ∈ {1, 2, . . . , I − 1}, j ∈ {0, 1, . . . , J} matrix, there always exists

wij i ∈ {1, 2, . . . , I}, j ∈ {0, 1, . . . , J} that satisfies SCP.

See Appendix A.7 for proof. This result shows the flexibility of choosing vij i ∈ {1, 2, . . . , I−1}, j ∈

{0, 1, . . . , J} values and generating wij satisfying SCP.

3 Continuous Case: Model and Analysis

Hitt and Chen (2005) builds extensively on Spence (1980), which can be construed as involving

bundle sizes that are continuous. The approach employed by Spence (1980) to identify the prices is

also valid only for highly restricted set of utility functions. As we will expand below, the continuous

case is in general difficult to solve. However, the main insights from the discrete case carry over

to this section as well, allowing us to arrive at the solution within a pre-specified gap. In the

first subsection, we describe the model and the solution approach from Spence (1980) whereas the

second subsection describes our solution approach.

3.1 Spence (1980): Model and Solution

The model specification used in this subsection is largely similar to that in the previous subsection

except that we use a continuous variable y ∈ <+ to represent the bundle sizes, instead of the

discrete one j. Naturally, the notations for the variables also change slightly: p(y) represents the

price for bundle size y; c(y) represents the cost of bundle y; wi(y) the consumers’ WTP for bundle

size y; and yi the bundle size that consumer i buys. The variable yi is equivalent to
∑J

j=0 jxij in

the discrete case. Spence (1980) also assumes SCP and he states it as w′i(y) < w′i+1(y) ∀y. Those

14

conditions are equivalent to:6

0 = wi(0) ≤ wi(y) < wi+1(y) ∀y (14)

wi(y + d)− wi(y) < wi+1(y + d)− wi+1(y) ∀y ∀d ≥ 0. (15)

The vendor’s decision problem in the continuous case is as follows:

CBPc1 : Max
yi,p(yi)

I∑
i=1

(p(yi)− c(yi)) (16)

s.t. w(yi)− p(yi) ≥ w(y)− p(y) ∀i ∀y. (17)

When solving the decision problem, the following constraint – which Spence (1980) finds

the solution has to also satisfy – has to be included in CBPc1:

yi+1 ≥ yi ∀i ≤ I − 1. (18)

As a solution procedure, Spence (1980) shows that when WTP is differentiable, the optimal bundle

size yi for each consumer i can be obtained by solving the following equation:

(I − i+ 1)w′i(yi)− (I − i)w′i+1(yi) = c′(yi). (19)

The equation is the first order condition v′i(yi) = c′(yi) if vi, similar to the discrete case, is:

vi(yi) = (I − i+ 1)wi(yi)− (I − i)wi+1(yi), (20)

At first blush, solving the problem may not seem to be hard since each consumer’s decision

6w′i(y) < w′i+1(y) ∀y;⇒
∫ d

y
w′i(y

′)dy′ <
∫ d

y
w′i+1(y′)dy′∀y ∀d;⇒ wi(y + d)− wi(y) < wi+1(y + d)− wi+1(y)∀y ∀d

15

is independent of the other. However, the approach works only when the optimal solutions are

not tight on any of the constraints in Equation (18) and those happen only under very restrictive

cases. In most cases, the constraints are tight, and as a result the Lagrange multipliers are non-

zero. Therefore, the optimality condition (19) no longer decomposes by consumer. Spence (1980)

recognizes this limitation but does not propose an alternative approach.

There is yet another issue with Spence’s approach. Condition (19) is only a local optimal

condition. There may exist exponentially many solutions that satisfy Condition (19):

Example 10 Consider CBPc1 with zero marginal cost, I consumers, and between 0 and J bundle

sizes being available. Let

wi(y) =
I

I − i+ 1
(4Jy − y2)− cos(yπ) ∀i,

whice can be verified to satisfy SCP. As defined earlier,

vi(yi) = (I − i+ 1)wi(yi)− (I − i)wi+1(yi) = −cos(yiπ) ∀i.

The local optimal condition v′i(yi) is satisfied for all yi ∈ {1, 3, · · · , Ĵ}, where Ĵ is the largest odd

number less than or equal to J . In other words, for every Consumer i, all odd values of yi satisfy the

local optimal condition and there are exponentially many different combinations of y∗i that satisfy

Equations (18) and (19). Choosing the optimal solution from the combinations remains a challenge.

Spence (1980) does not provide further detail on this calculation. To the best of our knowledge,

this is not an easy problem to solve. Next, we discuss our solution approach.

16

3.2 Our proposed solution

Note that in Spence (1974), there is no explicit upper bound on the bundle-sizes provided by the

vendor. To be consistent with the discrete case, we hereafter impose a restriction that the vendor

only provides bundles of sizes Y or smaller. This assumption is not unreasonable because the

vendor may be limited by production capacity constraints. So, in our formulation, CBPc1 will

include both Equation (18) and the constraint 0 ≤ y ≤ Y .

Solving CBPc1 is difficult for two reasons: (a) the decision variable p(y) is a (continuous)

function now, unlike in the discrete case when the corresponding variable is a set of point values; and

(b) it is a non-convex problem because the feasible set defined by Constraint (17) is not convex.

In the discrete case, it was perhaps easy to solve because the discretized version of Constraint

(17) (which would have been
∑J

j′=0 j
′xi+1j′ ≥

∑J
j′=0 j

′xi,j′) is equivalent to Constraint (7) (i.e.,∑J
j′=j xi+1j′ ≥

∑J
j′=j xi,j′). So, we begin by exploring when the two conditions specified in the

previous sentence are equivalent. For that, we redefine the formulation for the continuous case

slightly differently.

Let kj , j ∈ {0, 1, ...N} be an arbitrary set of points corresponding to the y variable such

that k0 = 0, kN = Y , and kj+1 > kj , j ∈ {0, 1, ...N − 1}. Instead of selecting yi directly, the

consumers choose x̃ij , the weights placed on the discrete points – with restrictions
∑N

j=0 x̃ij = 1

and 0 ≤ x̃ij ≤ 1. Thereby, they indirectly choose yi =
∑N

j=0 kj x̃ij . In addition, we impose the

adjacency restriction that at most two adjacent x̃ij variables are non-zero i.e., x̃ij x̃ij′ = 0 ∀j ≤

N − 2, ∀j′ ≥ j + 2.

Lemma 11 For i ∈ {i1, i2}, if x̃ij x̃ij′ = 0 ∀j ≤ N − 2, ∀j′ ≥ j + 2,
∑N

j′=0 x̃ij′ = 1, and

0 ≤ x̃ij ≤ 1 ∀j, then
∑N

j′=0 kj′ x̃i2,j′ ≥
∑N

j′=0 kj′ x̃i1,j′ is equivalent to
∑N

j′=j x̃i2,j′ ≥
∑N

j′=j x̃i1,j′ , ∀j.

See Appendix B.1 for proof. It must be easy to realize why in the discrete case Lemma 11 is valid:

17

kj ∈ {1, 2, 3, . . . , J} and the constraints specified in the lemma are naturally satisfied.

Using the lemma, we can transform Equation (18) in CBPc1. Also, similar to the dis-

crete case, we recursively decompose the optimization problem to obtain the objective function∑I
i=1 vj(yi)− cj(yi). Both together transforms CBPc1 to yield:

CBPc2 : Max
x̃ij

I∑
i=1

vi
 N∑
j=0

x̃ijkj

− c
 N∑
j=0

x̃ijkj

 (21)

N∑
j=0

x̃ij = 1 ∀i (22)

N∑
j′=j

x̃ij′ ≥
N∑
j′=j

x̃i−1,j′ ∀i ≥ 2, ∀j (23)

x̃ij x̃ij′ = 0 ∀j ≤ N − 2, ∀j′ ≥ j + 2 (24)

0 ≤ xij ≤ 1 ∀i, ∀j. (25)

Notice that CBPc2 is similar to CBP2, except mainly for the adjacency restriction. We

next show that when the WTP and cost functions are piecewise linear, the adjacency restriction

becomes irrelevant. So, specifically, consider a formulation where kjs correspond to the breakpoints

of the WTP and the cost functions, i.e., for any i, let {wi(y), cj(y)}

=



{wi(y), cj(y)} if y = kj
y − kj

kj+1 − kj︸ ︷︷ ︸
=x̃ij

wi(kj+1) +
kj+1 − y
kj+1 − kj︸ ︷︷ ︸

=x̃i,j+1

wi(kj),
y − kj

kj+1 − kj︸ ︷︷ ︸
=x̃ij

cj(kj+1) +
kj+1 − y
kj+1 − kj︸ ︷︷ ︸

=x̃i,j+1

cj(kj)

 if kj−1 < yi < kj .

Correspondingly, define vij = vi(kj) = wi(kj) + (I − i)(wi(kj)− wi+1(kj)).

Theorem 12 In the case with piecewise linear functions, Constraints (24) may be relaxed without

18

any change to the optimal solution. The resulting decision problem is similar to CBP2:

CBPpl : Max
x̃ij

I∑
i=1

N∑
j=0

(vij − cj)x̃ij

s.t.
N∑
j=0

x̃ij = 1 ∀i

N∑
j′=j

x̃ij′ ≥
N∑
j′=j

x̃i−1,j′ ∀i ≥ 2, ∀j

0 ≤ x̃ij ≤ 1 ∀i, ∀j.

See Appendix B.2 for proof. The case with piecewise linear functions now can borrow the shortest

path solution method we developed for the discrete case.

Even if the WTP and cost functions are not necessarily piecewise linear, we can use the previ-

ous approach by approximating the WTP and cost functions. For the approximation, wi(y) and c(y)

must be Lipschitz continuous, with β as the Lipschitz constant, i.e., max{maxy c
′(y),maxi,y wi

′(y)} ≤

β < ∞. We define variables wpli (y) and cplj (y) as piecewise linear appoximations of the WTP

and cost functions respectively. So, if kjs correspond to the breakpoints, wpli (kj) = wi(kj) and

cplj (kj) = cj(kj); whereas, for kj < y < kj+1, wpli (y) and cplj (kj) are simply affine combinations of

the respective functional values at kj and kj+1. Further, we let kj = jk, j ∈ {0, ...N}, where k is

an arbitrary constant (such that, as before, k0 = 0 and kN = Y). Let Πpla∗ be the optimal vendor

profit when using the approximate piecewise linear functions and Πc∗ be the optimal profit for the

original problem without the approximation.

Theorem 13 If εt = 2I(I + 2)kβ,

Πpla∗ ≤ Πc∗ ≤ Πpla∗ + εt. (26)

The solution approach to generate Πpla∗ for a continuous problem is polynomial in both the problem

19

size I × J and 1
εt

. So, it is a fully polynomial-time approximation scheme or FPTAS.

See Appendix B.3 for proof. Given the error tolerance, εt, the vendor can choose k such that

k = εt
2I(I+2)β and use the approximation functions to solve the decision problem. Also, notice that

the problem which initially seemed difficult to solve, can now be approximated as a shortest path

problem, solvable in O(I3J/εt). Since the solution approach is polynomial in both the problem size

I × J and 1/εt, our approach provides a FPTAS solution, i.e., we can solve the problem efficiently.

4 Submodular Cost Function

Thus far, the costs were assumed to be separable in the bundles, much like in Hitt and Chen (2005)

and Spence (1980). Our solution approaches, which are strongly polynomial time algorithms, are

highly dependent on the separability of the cost function. However, in reality, this may not be

the case. For example, if the cost is concave in the total quantity across all the bundles sold (i.e.,

economies of scale exist), then our solution approach will not be applicable. So, this section focuses

on developing solution approaches to submodular cost functions. In the subsections below, we

consider the discrete and the continuous cases separately.

4.1 Discrete Case

In this case, we model the problem similar to CBP1 except that we assume a submodular cost,

C
(∑J

j=0 x1jj,
∑J

j=0 x2jj, . . . ,
∑J

j=0 xIjj
)

. The production cost is a function that is not necessarily

separable in the bundles. Then, the vendor’s decision problem is:

CBPg : Max
xij

I∑
i=1

J∑
j=0

pijxij − C

 J∑
j=0

x1jj,

J∑
j=0

x2jj, . . . ,

J∑
j=0

xIjj


s.t. (1), (2), (3).

20

The procedure in Section 2.2.1 to transform the original MINLP specification for the discrete case

with separable costs to MIP is based on how consumer’s purchasing decision affects the revenue for

the vendor. Even in CBPg the revenue term is separable, and so the same definition of vij and the

same procedure can be applied to transform CBPg into

CBPg2 : Max
xij

I∑
i=1

J∑
j=0

vijxij − C

 J∑
j=0

x1jj,
J∑
j=0

x2jj, . . . ,
J∑
j=0

xIjj


s.t. (2), (3), (7).

The new formulation cannot be characterized as a shortest-path problem. Therefore, to solve the

problem, we define a new decision variable based on the earlier one: zij =
∑J

j′=j xij′ ∀i, ∀j. Loosely

speaking, zij captures decisions at the level of components within a bundle. For example, if some i

has xi5 = 1, zij for all the components j = {0, 1, . . . , 5} that help achieve a bundle size of 5 is equal

to 1. Our focus on the components is also consistent with submodularity, which is an assumption

about the decreasing marginal values, of the cost.

Using the zij variables, CBPg2 can be converted to the following problem:

CBPg3 : Max
zij

I∑
i=1

J∑
j=0

vij(zij − zi,j+1)− C

 J∑
j=0

z1j ,
J∑
j=0

z2j , . . . ,
J∑
j=0

zIj)

 (27)

s.t. zi0 = 1 ∀i (28)

zij ≤ zi,j+1 ∀i ∀j ≤ J − 1 (29)

zij ≥ zi+1,j ∀i ≤ I − 1; ∀j (30)

zij ∈ {0, 1} ∀i; ∀j, (31)

where zi,J+1 = 0. If the zij values are represented in a matrix, Z, the objective function is Π(Z)

and the cost is C(Z). Π(Z) is obtained directly from setting xij = zij − zi,j+1 and also using

21

∑J
j=0 zij to capture the bundle size bought by consumer i. Constraints (30) replace the constraints∑J
j′=j xij′ ≥

∑J
j′=j xi−1,j′ . Constraints (28), (29), and (31) together replace

∑J
j=0 xij = 1.

Theorem 14 Since the cost function C(Z) is submodular in Z, then CBPg3 problem maximizes

a supermodular objective function over a lattice. Hence, it is solvable in strongly polynomial time.

The objective function, with the submodular cost function, is supermodular in Z. The feasible

Z belongs to a lattice (see Appendix C.1 for additional explanation), something which was not

obvious with xij values. The result that a supermodular function can be maximized over a lattice

in strongly polynomial time is from Theorem 49.2 in Schrijver (2003).

Once we establish the problem as maximizing a supermodular function over a lattice, some

properties in our formulation become corollaries of results established in the prior literature. For

example, a result similar to Corollary 8 can be established using the same proof technique.

Corollary 15 The bundle size that each consumer buys weakly decreases as the marginal cost

increases.

4.2 Continuous Case

Here again, similar to the discrete case, we include a submodular cost function, C(y1, y2, . . . , yI).

If vi(yi) = (I − i+ 1)wi(yi)− (I − i)wi+1(yi) ∀i, as before, the vendor’s decision problem is:

CBPgc2 : Max
yi

I∑
i=1

vi(yi)− C(y1, y2, . . . , yI)

s.t. (18).

For now, impose the restriction that the WTP functions are piecewise linear. Unlike in the

separable cost case, we are unable to impose the piecewise linearity restriction on the cost function

(because it is defined over I dimensions). So, the restriction needed on the cost in order to solve

22

the vendor’s problem in polynomial time is the focus of our analysis initially.

Let kj , j ∈ {0, 1, ...N} be the set of breakpoints of the WTP functions. Also, let the discrete

kj points correspond to the y variable such that kN = Y , k0 = 0, and kj+1 > kj , j ∈ {0, 1, ...N −1}.

Define vij = vi(kj) = wi(kj) + (I − i)(wi(kj)−wi+1(kj)), which corresponds to vi(yi) values at the

breakpoints. Similar to the discrete case, we consider a new decision variable instead of yi, which

relates to yi as follows:

z̃ij =



1, if kj ≤ yi

yi − kj , if kj < yi < kj+1

0, otherwise.

∀i ∀j

As before, we impose an the adjacency constraint to ensure that for each i, only one z̃ij can take

value between 0 and 1. Therefore, CBPgc2 with piecewise linear wi functions can be converted to:

CBPgc3 : Max
z̃ij

I∑
i=1

N∑
j=0

vij(z̃ij − z̃i,j+1)− C

 N∑
j=0

z̃1j ,
N∑
j=0

z̃2j , . . . ,
N∑
j=0

z̃Ij)


s.t. z̃i0 = 1 ∀i

z̃ij ≤ z̃i,j+1 ∀i ∀j;≤ N − 1

z̃ij ≥ z̃i+1,j ∀i ≤ I − 1; ∀j

(z̃ij − z̃i,j−1)(z̃ij′ − z̃i,j′−1) = 0 ∀i; ∀1 ≤ j ≤ N − 2; ∀j′ ≥ j + 2 (32)

0 ≤ z̃ij ≤ 1 ∀i; ∀j,

where zi,J+1 = 0. CBPgc3 is similar to the discrete problem, CBPg3, except for the adjacency

constraint (32) and z̃ij being a continuous as opposed to an integer variable. Those restrictions

will naturally be satisfied if the optimal solution to CBPgc3 occurs at the N breakpoints. The

condition on the cost when such a solution occurs is specified in the following lemma, where Z̃

represents zij values in a matrix form.

23

Lemma 16 Let Z̃ be the set of Z̃ matrices that are feasible to CBPgc3, and Z̃in ⊆ Z̃|zij ∈ {0, 1}.

The optimal solution Z̃∗ for CBPgc3 is in Z̃in if ∀Z̃ ∈ Z̃, ∃ (λ1, λ2, . . . , λM)|
∑M

m=1 λm = 1; λm ≥

0∀m such that Z̃m ∈ Z̃in, m ∈ {1, 2, . . . ,M}, Z̃ =
∑M

m=1 λmZ̃m and C(Z̃) ≥
∑M

m=0 λmC(Z̃m).

See Appendix C.2 for proof. The conditions specified in the lemma are: every feasible solution

of CBPgc3 must be obtainable through an affine combination of feasible solutions occuring at the

breakpoints, and the same affine combinations of the corresponding costs acts as an underestimator

of the continuous cost. If the conditions are satisfied, then the optimal solution of CBPgc3 occurs

at the breakpoints. Note that, even if the cost is not submodular but satisfies the conditions in

Lemma 16, we can solve the problem in strongly polynomial time.

We next use the results about cost decomposition to solve CBPgc2 when the WTP func-

tions are not necessarily piecewise linear. We require wi(y) and c(y1, y2, . . . , yI) to be Lipschitz

continuous functions with gradients never greater than a constant β. Let us approximate the

continuous function wi(y) to be piecewise linear wpli (y) with breakpoints at kj , j ∈ {0, 1, ...N}.

If the cost function is such that it inherently satisfies the conditions in Lemma 16 (i.e., for any

affine combination of feasible solutions, the corresponding affine combination of cost generates an

under-estimator of the continuous cost function), then we can directly solve the approximate piece-

wise linear problem as a discrete problem. As an example, a concave submodular cost function∑I
i=0Ci (yi) + βCt (y1 + y2 + . . .+ yI) where Ct() is concave in total demand, inherently satisfies

the conditions in Lemma 16. Otherwise, we need to construct an approximation to the cost func-

tion. For that, we follow Tawarmalani et al. (2013) to decompose any submodular function over a

lattice feasible set that yields the minimum weighted objective values in a way that also satisfies

Lemma 16. With those approximate cost functions, we can obtain solutions at the breakpoints of

the WTP functions using the strongly polynomial techniques described for the discrete case.

Suppose the approximate cost function is Ca(Z̃). Then, Ca(Z̃) must be such that Ca(Z̃) =

24

C(Z̃), ∀Z̃ ∈ Z̃in (i.e., Ca(Z̃) and C(Z̃) take the same values at the breakpoints of the WTP

functions). The decomposition generates λm such that the approximate function Ca(Z̃) as Ca(Z̃) =∑M
m=0 λmC(Z̃m). Algorithm 1 describes the process to generate the decomposition

∑M
m=1 λmZ̃m

for any given Z̃. An alternative explanation of the algorithm is available in Appendix C.3. We

demonstrate the process using an example.

λ0 = 1
for m = 1→ I + 1 do
z̃max = 0, î = 0, ĵ = 0
Z̃m = Z̃
for i = 1→ I do
for j = 1→ N do

if 0 < z̃mij < 1 then
if z̃mij > z̃max then
z̃max = z̃mij , î = i, ĵ = j

end if
z̃mij = 0

end if
end for

end for
λm = λm−1 − z̃max
z̃îĵ = 1

end for
Algorithm 1: Generating Z̃m and λm

Example 17 Suppose there are three consumers. The continuous solution is that Consumer 1 pur-

chases bundle 0.4, 2 purchases 0.7, and 3 purchases 1.6. The corresponding Z̃ is then

0.4 0.7 1

0 0 0.6

.

Then, using the algorithm, we get λ = (0.3, 0.1, 0.2, 0.4). Next, we have Z̃1 = e(Z̃, 1) =

0 0 1

0 0 0

.

Similarly, we get Z̃2 =

0 1 1

0 0 0

 , Z̃3 =

0 1 1

0 0 1

, and Z̃4 =

1 1 1

0 0 1

. We can easily verify

that the conditions
∑M

m=1 λm = 1 and Z̃ =
∑M

m=1 λmZ̃m are satisfied.

So, with the approximate piecewise linear WTP functions and the approximate cost function

25

Ca(Z̃), we can solve the problem using the techniques described for the discrete problem. The

following theorem evaluates the gap between the approximate and the actual continuous solution.

Let Πgpla∗ be the optimal vendor profit when using the approximate piecewise linear functions and

Πgc∗ be the optimal profit for the original problem without the approximation.

Theorem 18 Πgpla∗ ≤ Πgc∗ ≤ Πgpla∗ + 2I(I + 2)kβ.

See Appendix C.4 for proof.

5 Conclusion

Pricing of cardinality bundles has not been widely studied in literature although this bundling

scheme is increasingly being adopted in industry. Our paper provides a comprehensive analysis

of the problem when the consumer’s willingness to pay satisfies Spence-Mirrlees condition and

consumers are restricted to buy only one bundle. We contributed to this domain in three main

regards. First, in the context of discrete bundle sizes, the problem first considered in Hitt and

Chen (2005), we provide a solution approach, based on reformulating the problem as a shortest-

path problem. Second, we revisit the quantity discount problem proposed in Spence (1980) and

derive insights and solution approaches. Third, we extend the analyses to consider problems where

the costs are not additively separable by bundle sizes.

Appendix

A Proofs for the Discrete Case

A.1 Proof of Proposition 3

Proof. We first show that there exists an optimal price vector that is non-decreasing. Assume p′ is

an optimal price vector that is not non-decreasing and is such that the smallest index k for which

p′k > p′k+1 is the largest among all optimal price vectors. We claim that for every feasible solution

26

to CBP1 xik = 0 for all i. Assume otherwise that xik = 1 for some i. Then, Constraint 2 implies

that xik′ = 0 for all k′ 6= k. Since wik ≤ wik+1 for all i, it follows that wik − p′k < wik+1 − p′k+1

and Constraint 1 is violated. Therefore, we may assume that xik = 0. Then, consider an alternate

price vector p such that pj = p′j for all j 6= k and pk = pk+1. Now, consider a solution (x, p′) that

is feasible to CBP1. First, observe that since xik = 0, the objective value corresponding to x is the

same regardless of whether the price is p′ or p. We claim that (x, p) is also feasible to CBP1 and

therefore the optimal value with price p does not decrease. This follows from:

J∑
j′=0

(wij′ − pj′)xij′ ≥
J∑

j′=0

(wij′ − p′j′)xij′ ≥ wik+1 − p′k+1 ≥ wik − pk,

where the first inequality follows since p′ ≥ p, the second because of feasibility of (x, p′) and the

last because wik+1 ≥ wik and pk = p′k+1. If there is any other index k′ such that pk′ > pk′+1 it

contradicts the choice of p′ since k′ > k. Therefore, p must be non-decreasing.

A.2 Proof of Proposition 4

Proof. Let jk(i
′) denote the bundle consumer i′ buys in the kth optimal solution to CBP1. Then,

let k′ = arg maxk mini
{
i | jk(i) > jk(i+ 1)

}
. This means that k′ is the optimal solution where the

first consumer that buys a higher type bundle than its immediate successor is of the largest type.

Now, construct the solution j(i′) where j(i′) = jk′(i
′) when i′ 6= i + 1 and j(i + 1) = jk′(i). We

show that j(i′) is a feasible assignment of bundles to consumers which achieves at least the same

objective function value, thus deriving a contradiction to the choice of k′. Since we do not change the

assignment for any i′ 6= i+1, we only need to verify that j(·) satisfies wi+1j(i+1)−pj(i+1) ≥ wi+1j−pj

for all j. Now, consider the following chain of inequalities:

0 ≥ wi+1jk′ (i)
− pjk′ (i) − wi+1jk′ (i+1) + pjk′ (i+1) ≥ wijk′ (i) − pjk′ (i) − wijk′ (i+1) + pjk′ (i+1) ≥ 0,

27

where the first inequality follows because jk′(i + 1) is what i + 1 chooses under jk′(·), the second

inequality because jk′(i) > jk′(i+1) implies by SCP that wi+1jk′ (i)
−wi+1jk′ (i+1) ≥ wijk′ (i)−wijk′ (i+1)

and the last inequality because i chooses jk′(i) under jk′(·). Therefore, equality holds throughout.

Then, for any j, it follows that:

wi+1j(i+1) − pj(i+1) = wi+1jk′ (i)
− pjk′ (i) = wi+1jk′ (i+1) − pjk′ (i+1) ≥ wi+1j − pj ,

where the first equality follows because j(i + 1) = jk′(i), the second equality follows from the

argument above and the third inequality because i+ 1 chooses jk′(i+ 1) under the feasible solution

jk′(·). Therefore, we have shown that j(i′) is a feasible assignment of bundles to consumers. Now,

we show that the corresponding objective value does not decrease. This follows since

∑
i′

(
pj(i′) − cj(i′)

)
=
∑
i′ 6=i+1

(
pjk′ (i′) − cjk′ (i′)

)
+ pjk′ (i) − cjk′ (i) ≥

∑
i′

(
pjk′ (i′) − cjk′ (i′)

)
,

where the first equality follows by the definition of j(i′). To see the first inequality, observe that

we have shown that wijk′ (i)− pjk′ (i)−wijk′ (i+1) + pjk′ (i+1) = 0. Therefore, jk′(i+ 1) yields the same

surplus for i as does jk′(i). Then, the inequality follows since pjk′ (i) − cjk′ (i) ≥ pjk′ (i+1) − cjk′ (i+1).

Otherwise, the solution j′(i′) = jk′(i
′) for i′ 6= i and j′(i) = jk′(i+ 1) would be feasible and would

yield a strictly higher objective value than jk′(·), thereby contradicting the optimality of jk′(·).

A.3 Proof of lemma 5

Proof. Let consumer i1 be the lowest indexed one purchasing a non-zero sized bundle j1 > 0.

We know that p∗j1 6> wi1j1 because the price cannot be higher than the WTP. We next claim that

p∗j1 6< wi1j1 and prove that using contradiction. Suppose the profit maximizing price is such that

p∗j1 < wi1j1 . Let ∆ = wi1j1 − p∗j1 . In this case ∆ is also the surplus obtained by Consumer i1.

28

From Proposition 4, we know that any i′ > i1 buys a Bundle j′ ≥ j1. So, wi′j′ − pj′ ≥ wi′j1 − pj1 .

Additionally SCP implies wi′j′ ≥ wi′j1 . Therefore, wi′j′ − pj′ ≥ wi′j1 − pj1 ≥ wi1j1 − pj1 = ∆.

Consequently, if the prices are increased for all j by ∆, no consumer has an incentive to change

their purchase decisions. Any i < i1 will only observe a decreased surplus and will continue not to

purchase any bundle j ≥ 1. Every i > i1 will continue to buy the same bundle even after the price

increase. As a result, increasing the prices leads to higher profits counter to the assumption that

p∗j1 < wi1j1 .

A.4 Proof of Proposition 6

Proof. The key to the transformation is how the optimal prices can be determined for any given

xij matrix satisfying Constraints (2) and (7). Given such xijs, the procedure for obtaining prices

for CBP1 is as follows. Consider J ′ as the set of non-zero bundles allocated to at least one of the

consumers. Bundles of size 0 are charged 0 by assumption. For j ∈ J ′, the prices are set by solving

CBP1a. For every {j|j 6∈ J ′, j 6= 0}, the prices are set to be the same as that of the next higher

sized bundle purchased. If J 6∈ J ′, the price for Bundle J is retained to be wIj + ε.

Notice that CBP1a is only relevant if J ′ is not null. For the CBP1a formulation, ignore

consumers buying zero-sized bundles and re-index the rest of consumers so that the lowest indexed

consumer who buys a non-zero bundle is indexed at 1 and the rest sequentially numbered thereafter

until some I ′. Let wi
′
i denote the WTP of consumer i for the bundle that consumer i′ buys given

the bundle allocation. Let pi denote the price for the bundle i buys and ci cost for the bundle i

buys. Then, the prices are obtained by solving the following formulation:

CBP1a : Max
pi

I′∑
i=1

(pi − ci) (33)

s.t. wii − pi ≥ wi
′
i − pi

′ ∀i, i′ (34)

w1
1 − p1 ≥ 0. (35)

29

Constraints (34) ensure that the surplus that Consumer i gets from purchasing her bundle is no less

than the surplus she gets from bundles purchased by any other consumer. Constraint (38) enforces

that the lowest-indexed consumer gets nonzero surplus. The objective equation (33) maximizes the

total profit for the vendor.

Now, compare the problem specifications CBP1a and CBP1. The objective functions are the

same given xij values. While Constraints (34) only include the surplus comparisons with bundles

in J ′ and Constraint (35) compares with zero-sized bundles, they do not include comparisons with

non-zero bundles not in J ′ that Constraints (1) includes. However, given the aforementioned pricing

scheme, it is easy to verify that Constraints (1) also holds for the non-zero bundles not in J ′.

Now, we solve CBP1. Decompose (34) into the following:

wii − pi ≥ wi
′
i − pi

′ ∀i > i′ (36)

wii − pi ≥ wi
′
i − pi

′ ∀i < i′. (37)

We next establish the equivalence between Constraint (36) and

wii − pi ≥ wi−1
i − pi−1 ∀i. (38)

It is obvious Constraint (36) implies (38). To prove the converse, consider the difference: wii−wi
′
i =∑i−1

k=i′(w
k+1
i − wki) ≥

∑i−1
k=i′(p

k+1 − pk) = pi − pi′ The inequality is due to Constraint (38). Hence,

we obtain wii − pi ≥ wi
′
i − pi

′
.

Next, we show that the optimal prices are obtained from (CBP1b){Max
∑

(pi − ci)|(38)(35)}

and that Constraint (37) is superfluous. In CBP1b, it is easy to realize Constraints (38) and (35)

will be tight at optimality (because those constraints provide an upper bound for pi). So, p1∗ = w1
1

30

and pi∗ = wii − w
i−1
i + pi−1 for i > 1. Using the same prices, prices differences can be rewritten as

pi
′ − pi = ((wi

′
i′ − wi

′−1
i′) + (wi

′−1
i′−1 − w

i′−2
i′−1) + . . .+ (wi+1

i+1 − w
i
i+1))

≥ ((wi
′
i − wi

′−1
i) + (wi

′−1
i − wi′−2

i) + . . .+ (wi+1
i − wii))

= wi
′
i − wii.

The inequality follows from SCP and consequently, Constraint (37) is met.

Using the definition vij in Section 2.2.1, we can rewrite 33 as following:

I∑
i=1

(pi − ci) = (wII − cI) + (2wI−1
I−1 − w

I−1
I − cI−1) + . . .

+((I − i+ 1)wii − (I − i)wii+1 − ci) + . . .+ (Iw1
1 + (I − 1)w1

2 − c1)

=
J∑
j=0

(vIj − cj)xIj +
J∑
j=0

(vI−1,j − cj)xI−1,j + . . .+
J∑
j=0

(v1j − cj)x1j

=

I∑
i=1

J∑
j=0

(vij − cj)xij .

A.5 Proof of Theorem 7

Proof. We start with CBP2. First, let us define variables χijj′ as below:

χ00j = x1j ∀j (39)

χijj′ = xijxi+1,j′ ∀j ∀j′ ≥ j (40)

χIJj = xIj ∀j. (41)

Because these equations are simply definitions of new variables, adding them as constraints to

CBP2 will not change the solution.

31

Then we show that the above three constraints together with Constraints (2) and (7) always

imply Constraints (8) through (12). Constraint (12) is straightforward from the above definition.

We can show that
∑J

j=0 χ01j =
∑J

j=0 x1j = 1; the first inequality is due to Constraint (39) and the

second due to Constraint (2). So, Constraint (8) is established. Along the same lines, Constraint

(9) can also be established:
∑J

j=0 χIJj =
∑J

j=0 xJj = 1; the first inequality is due to Constraint

(41) and the second due to Constraint (2).

Next, we prove the validity of Constraints (10) and (11) by considering two cases: when

xij = 0 and xij = 1. Using the definition for χijj′ , we can show that when xij = 0, both
∑J

j′=j χijj′

and
∑j

j′=0 χi−1,j′,j are also equal to zero:

J∑
j′=j

χijj′ =
J∑

j′=j

xijxi+1,j′ = 0 = xij

j∑
j′=0

χi−1,j′,j =

j∑
j′=0

xi−1,j′xij = 0 = xij .

We next prove Constraints (10) and (11) for xij = 1. Under that condition,

J∑
j′=j

χijj′ =
J∑

j′=j

xijxi+1,j′ =
J∑

j′=j

xi+1,j′ (42)

j∑
j′=0

χi−1,j′,j =

j∑
j′=0

xi−1,j′xij =

j∑
j′=0

xi−1,j′ . (43)

Note that
∑J

j′=j xi+1,j′ ≥
∑J

j′=j xi,j′ = 1; the first inequality is due to Constraint (7) and

the second one is because when xij = 1, xij′′ = 0 for all j′′ 6= j. Furthermore, since
∑J

j′=0 xi+1,j′ = 1

and xi+1,j′ ∈ {0, 1},
∑J

j′=j xi+1,j′ = 1 and so, Equation (42) equals to 1. Constraint (7) also implies

that
∑j

j′=0 xi−1,j′ ≥
∑j

j′=0 xij′ , which along the same previous procedure results in Equation (43)

32

equaling 1. Therefore, CPB2 is equivalent to the following nonlinear mixed-integer problem CPB2a:

CBP2a : Max
xij

I∑
i=1

J∑
j=0

(vij − cj)xij

s.t. (2), (3), (7)

(39), (40), (41)

(8), (9), (10), (11), (12).

Constraints (2), (7), and (40) are next shown to be redundant. To eliminate Constraint (40), we

need to consider four cases, for (xij , xi+1,j′) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

When xij = 0, i.e., the first two of the four cases, 0 =
∑J

j′=j χijj′ ≥ χijj′ ; the first

equality is from Constraint (10) and the second is obvious. When (xij , xi+1,j′) = (1, 0), 0 =∑j
j′=0 χi−1,jj′ ≥ χijj′ ; the first equality is from Constraint (11) and the second is obvious. When

(xij , xi+1,j′) = (1, 1), we prove it by contradiction. Suppose χijj′ = 0 under that condition. Since

χijj′ = 0 and xij =
∑J

ĵ=j
χijĵ = 1, there must exist some j′′ 6= j′ such that χijj′′ = 1. Therefore,

xi+1,j′′ =
∑j′′

j′=0 χi,j′,j′′ ≥ 1, which leads to
∑J

j=0 xi+1,j ≥ xi+1,j′+xi+1,j′′ ≥ 2. It is contradictory to

Constraints (2). Therefore, χijj′ = 1 = xijxi+1,j′ . Next, we show that Constraint (2) is redundant.

J∑
j=0

xij =︸︷︷︸
by (11)

0∑
j′=0

χi−1,j′,0 +
1∑

j′=0

χi−1,j′,1 + . . .+
J∑

j′=0

χi−1,j′,J

=︸︷︷︸
by reorganization

J∑
j′=0

χi−1,0,j′ +

J∑
j′=1

χi−1,1,j′ + . . .+

J∑
j′=J

χi−1,J,j′

=︸︷︷︸
by (10)

xi−1,0 + xi−1,1 + . . .+ xi−1,J

=

J∑
j=0

xi−1,j =︸︷︷︸
by recursion

. . . =

J∑
j=0

x1,j =︸︷︷︸
by (8)

1.

33

Finally, we show that Constraint (7) is redundant.

J∑
j′=j

xij′ =︸︷︷︸
11)

j∑
j′=0

χi−1,j′,j +

j+1∑
j′=0

χi−1,j′,j+1 + . . .+
J∑

j′=0

χi−1,j′,J

=︸︷︷︸
by reorganization

J∑
j′=j

χi−1,0,j′ +

J∑
j′=j

χi−1,1,j′ + . . .+

J∑
j′=j

χi−1,J,j′

≥︸︷︷︸
ignoring the first j-1 terms

J∑
j′=j

χi−1,j,j′ +
J∑

j′=j

χi−1,j+1,j′ + . . .+
J∑

j′=j

χi−1,J,j′

=︸︷︷︸
by (10)

J∑
j′=j

xi−1,j′ .

Constraints (2), (7), and (40) are redundant. Therefore, we can relax these three constraints without

changing the problem. Therefore, after changing the objective function from max
∑I

i=1

∑J
j=0(vij−

cj)xij to min−
∑I

i=1

∑J
j=0(vij − cj)xij , CPB2a is equivalent to CPB3.

A.6 Proof of Lemma 8

Proof. Consider a CBP with I consumers, J bundles, W as the WTP matrix and its corresponding

V as obtained using Equation (13). Define the problem as P1 when the cost matrix is C1 =

(0, c1, c2, · · · , cJ)T . Let the optimal allocation for P1 be given by (X∗1,X
∗
2, · · · ,X∗I). Similarly,

define the problem as P2 when the marginal cost is increased by δ and the cost matrix is C2 =

(0, c1 + δ, c2 + 2δ, . . . , cJ + Jδ)T . Call the corresponding optimal allocation as (Y∗1,Y
∗
2, . . . ,Y

∗
I).

The lemma claims that no consumer purchases a higher-sized bundle in P2 than what he purchases

in P1. We prove the result by contradiction. Assume consumers i1 through i2 purchase higher-sized

bundles in P2 than in P1. Then,

X∗Ti · J ≥ Y∗Ti · J ∀i ∈ {1, 2, 3 . . . i1 − 1, i2 + 1, . . . , I} (44)

X∗Ti · J < Y∗Ti · J ∀i, i ∈ {i1, . . . , i2}. (45)

34

By Theorem 7, P1 and P2 are shortest-path problems. Therefore, (X∗i1 ,X
∗
i1+1, . . . ,X

∗
i2

) and

(Y∗i1 ,Y
∗
i1+1, . . . ,Y

∗
i2

) are also the shortest paths in the respective problems. Hence,

i2∑
i=i1

X∗Ti · (Vi −C1) ≥
i2∑
i=i1

Y∗Ti · (Vi −C1) (46)

i2∑
i=i1

X∗Ti · (Vi −C2) ≤
i2∑
i=i1

Y∗Ti · (Vi −C2). (47)

However,

i2∑
i=i1

X∗Ti · (Vi −C2) =︸︷︷︸
C2=C1+Jδ

i2∑
i=i1

X∗Ti · (Vi −C1)− δ
i2∑
i=i1

X∗Ti · J

≥︸︷︷︸
by (46)

i2∑
i=i1

Y∗Ti · (Vi −C1)− δ
i2∑
i=i1

X∗Ti · J

>︸︷︷︸
by (45)

i2∑
i=i1

Y∗Ti · (Vi −C1)− δ
i2∑
i=i1

Y∗Ti · J =

i2∑
i=i1

Y∗Ti · (Vi −C2),

which contradicts Equation (47).

A.7 Proof of Corollary 9

Proof. Let v̄ = maxi∈{1,2,··· ,I−1},j∈{1,2,··· ,J} vij and M = 2I2v̄. Also, let vIj = 1
2(2I − j+ 1)jM . To

generate W from V , we use Equation (13). So,

wIj = vIj =
1

2
(2I − j + 1)jM

wij =
I − i

I − i+ 1
wi+1,j +

1

I − i+ 1
vij

=
I − i

I − i+ 1

I − (i+ 1)

I − (i+ 1) + 1
wi+2,j +

1

I − (i+ 1) + 1
vi+1,j +

1

I − i+ 1
vij

=
1

I − i+ 1
wI,j +

I∑
i′=i

1

I − i′ + 1
vi′j .

35

Therefore,

wi,j+1 − wij =
1

I − i+ 1
(wI,j+1 − wI,j) +

I∑
i′=i

1

I − i′ + 1
vi′,j+1 −

I∑
i′=i

1

I − i′ + 1
vi′j

≥ 1

I − i+ 1
(J − j)M − 2Iv̄ ≥ 1

I
M − 2Iv̄ ≥ 0,

which satisfies Equation (4). In addition, we have

(wi+1,j+1 − wi+1,j)− (wi,j+1 − wi,j) = (
1

I − i
− 1

I − i
)(J − j)M +

I∑
i′=i+1

1

I − i′ + 1
vi′,j+1

−
I∑

i′=i+1

1

I − i′ + 1
vi′j −

I∑
i′=i

1

I − i′ + 1
vi′,j+1

+

I∑
i′=i

1

I − i′ + 1
vi′j

=
(J − j)

(I − i)(I − i+ 1)
M +

1

I − i
vi+1,j+1 −

1

I − i
vi+1,j

≥ 1

I2
M − 2v̄ ≥ 0,

which satisfies Equation (5). Thus, SCP holds for W .

B Proofs for the Continuous Case

B.1 Proof of Lemma 11

Proof. We first prove that
∑N

j′=0 kj′ x̃i2,j′ ≥
∑N

j′=0 kj′ x̃i1,j′ implies
∑N

j′=j x̃i2,j′ ≥
∑N

j′=j x̃i1,j′ , ∀j

by contradiction. Assume that for some i1, i2 and j, the first condition holds but not the second:

N∑
j′=j

x̃i1,j′ >

N∑
j′=j

x̃i2,j′ . (48)

The rhs of the equation can only be 0, 1, or x̃i2,j > 0 because at most two and adjacent x̃i1,j values

can be non-zero by assumption. Obviously it cannot be 1 because the lhs is at most 1. If rhs = 0,

36

then
∑j−1

j′=0 x̃i2,j′ = 1. Since kj is a strict increasing series, we have
∑j−1

j′=0 x̃i2,j′kj ≤ kj . Therefore,

N∑
j′=0

x̃i1,j′kj′ =

j−2∑
j′=0

x̃i1,j′kj′︸ ︷︷ ︸
≥0

+ x̃i1,j−1kj−1 +
N∑
j′=j

x̃i1,j′kj′︸ ︷︷ ︸
Because

∑N
j′=j x̃i1,j′

>0 and only adjacent variables can be non-zero, it is >kj−1

> kj−1 ≥
j−1∑
j′=0

x̃i2,j′kj =︸︷︷︸
rhs=0

N∑
j′=0

x̃i2,j′kj′ .

The last case is when the rhs takes the value of x̃i2,j > 0. It means that x̃i2,j and possibly

x̃i2,j−1 are non-zero; whereas the other x̃i2,j′ = 0 ∀j′ 6= {j, j − 1}. Meanwhile, since
∑N

j′=j x̃i1,j′ >∑N
j′=j x̃i2,j′ > 0, we also have

∑j−2
j′=0 x̃i1,j′ = 0. Therefore,

N∑
j′=0

x̃i1,j′kj′ =

N∑
j′=j−1

x̃i1,j′kj′

≥ kj−1 +
N∑
j′=j

x̃i1,j′(kj′ − kj−1) ≥ kj−1 + (kj − kj−1)
N∑
j′=j

x̃i1,j

> kj−1 + (kj − kj−1)x̃i2,j =
N∑
j′=0

x̃i2,j′kj′ ,

which is also a contradiction. Thus, we proved
∑N

j′=0 kj′ x̃i2,j′ ≥
∑N

j′=0 kj′ x̃i1,j′ implies
∑N

j′=j x̃i2,j′ ≥∑N
j′=j x̃i1,j′ , ∀j. Next, we prove the reverse. Since kj+1 > kj , we have (kj − kj−1)

∑N
j′=j x̃i2,j′ ≥

(kj − kj−1)
∑N

j′=j x̃i1,j′ , ∀j > 1 and k0
∑N

j′=0 x̃i2,j′ ≥ k0
∑N

j′=j x̃i1,j′ . Explicitly writing the expres-

sions in the previous sentence for j′ < j and summing up,
∑N

j′=0 kj′ x̃i′j′ ≥
∑N

j′=0 kj′ x̃i,j′ .

B.2 Proof of Theorem 12

Proof. In the piecewise linear case with the adjacency restriction, wi(
∑N

j′=0 x̃ij′kj′) =
∑N

j′=0 x̃ij′wi(kj′).

Similar decompositions are also valid for cj and vij . The resulting formulation, {Max
x̃ij

I∑
i=1

N∑
j=0

(vij −

cj)x̃ij |(22), (23), (24), (25)} is similar to CBP2, except for the adjacency restriction in Constraints

(24) and the integrality constraint in CBP2. Notice that that integrality condition in CBP2 is

37

redundant. We have already demonstrated that CBP2 is a shortest-path problem and so, the con-

straints are totally unimodular. It implies that, even without the integrality condition, the solutions

will only take extremal points. For the same reasons, even without Constraints (24), the solutions

will be integral but the resulting integral solutions satisfy the adjacency restriction naturally.

B.3 Proof of Theorem 13

Proof. Πpla∗ ≤ Πc∗ is easy to establish. Refer to the vendor’s problem with the approximate

piecewise linear functions as CBPpla. Let p∗j , j ∈ {1, 2, . . . , N} be the optimal price of CBPpla. In

the unapproximated problem, hereafter referred to as CBPc1, set the price function pc(y) to be:

pc(y) = p∗j , (j − 1)k < y ≤ jk, j ∈ {1, 2, . . . , N}. Then in CBPc1, every consumer i purchases the

same bundles as in CBPpla. Only quantities y such that y = jk, j ∈ {0, 1, 2, . . . , N} are purchased

because the surplus the consumer gets from any other y, (j − 1)k < y < jk is less. In that case,

individual consumer surpluses are the same between CBPc1 and CBPpla. So, are the payments

received by the vendor. Also, the cost for these two solutions are the same. Given a solution that

generates the same profit as CBPpla is feasible to CBPc1, Πpla∗ ≤ Πc∗.

Before generating the upperbound on Πc∗, we first bound the gap between the original and

the approximate functions

Lemma 19 max{|wpl(y)− w(y)|, |cpl(y)− c(y)|} ≤ ε ∀y, where ε = kβ.

Proof. For any arbitrary y, jk ≤ y ≤ (j + 1)k:

|wpl(y)− w(y)| ≤ |w((j + 1)k)− w(jk)| = |
∫ (j+1)k

jk
w′(y)dy| ≤

∫ (j+1)k

jk
βdy = kβ.

The gap is bounded because of Lipschitz continuity. For the same reason, |cpl(y)− c(y)| ≤ kβ.

Fix the optimal decision variables for CBPc1 as given. Let pc∗(y) be the optimal price,

Πc∗ be the optimal profit, and {y∗1, y∗2, . . . , yĵ , . . . , yĴ} be the ordered set of bundle sizes purchased

38

by some consumer(s) in the optimal solution. Let αĵ be the number of consumers who purchase

bundle y∗
ĵ
. So,

∑Ĵ
ĵ=1

αĵ ≤ I and Ĵ ≤ I. Next, we prove that for δ ≥ 2kβ, when prices are:

ps(y) = pc∗(y∗
ĵ
)− ĵδ, y∗

ĵ−1
< y ≤ y∗

ĵ
, ĵ ∈ {1, 2, . . . , Ĵ} (49)

a solution is feasible to CBPpla in a manner that no consumer purchases a lower-sized bundle than

her purchase under CBPc1. Then, using the prices, we bound the profits generated.

Let an arbitrary Conusmer i purchases bundle y∗
ĵ1

in CBPc1. Then, no bundle y∗
ĵ−1

<

y < y∗
ĵ

will be purchased under CBPpla given the prices in Equation (49): for y∗
ĵ1−1

< y < y∗
ĵ1

,

wpl(y)−(pc∗(y∗
ĵ1

)−ĵ1δ) ≤ wpl(y∗ĵ1)−(pc∗(y∗
ĵ1

)−ĵ1δ). So, when considering the incentive of Consumer

i to choose a lower-sized bundle, it is sufficient to consider her move to purchase y∗
ĵ2
< y∗

ĵ1
. In other

words, δ should be such that wpl(y∗
ĵ1

) − (pc∗(y∗
ĵ1

) − ĵ1δ) ≥ wpl(y∗
ĵ2

) − (pc∗(y∗
ĵ2

) − ĵ2δ). Because of

Lemma 19, the same condition is rewritten as wi(y
∗
ĵ1

) − kβ − (pc∗(y∗
ĵ1

) − ĵ1δ) ≥ wi(y
∗
ĵ2

) + kβ −

(pc∗(y∗
ĵ2

) − ĵ2δ). Because y∗
ĵ1

is optimally allocated to Consumer i in CBPc1, wi(y
∗
ĵ1

) − pc∗(y∗
ĵ1

) ≥

wi(y
∗
ĵ2

)−pc∗(y∗
ĵ2

). So, it is sufficient for δ to satisfy −kβ+ ĵ1δ ≥ kβ+ ĵ2δ. It then leads to δ ≥ 2kβ.

Therefore, if prices are as in Equation (49), each Consumer i in CBPpla purchases a bundle no

smaller than the one she purchase in CBPc1.

With the above prices, the total revenue in CBPpla is lower than in CBPc1 at most by∑Ĵ
ĵ=1

αĵ ĵ2kβ ≤
∑I

i=1 2ikβ ≤ 2I(I + 1)kβ. Similarly, because of maxy{|cpli (y) − c(y)|} ≤ kβ,

the vendor at most underestimates the bundle cost for each consumer by kβ, leading to a total

underestimation of Ikβ compared to CBPc1. If Πpla is the profit in CBPpla with the prices above,

Πc∗ −Πpla ≤ 2I(I + 1)kβ + Ikβ = 2I(I + 2)kβ. So, Πc∗ − 2I(I + 2)kβ ≤ Πpla ≤ Πpla∗ , where Πpla∗

is the optimal profit for CBPpla. So, Πc∗ ≤ Πpla∗ + 2I(I + 2)kβ.

39

Next, we consider the algorithm complexity. The maximum gap in the profits is εt ≤

2I(I + 2)kβ. Therefore, for a given εt, we can set k = εt
2I(I+2)β and solve the approximate problem.

The total bundle size in CBPc2 problem CBPpla is then N = J
k = β2I(I+2)J

εt
. As we claimed in

Section 2.2.2, the complexity of the dynamic programming is O(IN). Thus, the complexity of this

solution approach is O(I3J/εt). It is polynomial in both the problem size I×J and 1/εt. Therefore,

it is a fully polynomial-time approximation scheme or FPTAS.

C Proofs for the Generalized Production Cost Section

C.1 A Demonstration for the Lattice Family Structure

Let Z be a set of matrices, whose elements satisfy Constraints (28) through (31). Suppose there are

two matrices {Z1, Z2} ∈ Z representing two different feasible solutions to CBPg3. As an example,

suppose Z1 and Z2 are the two feasible solutions each represented by a different color in Figure 3(a).

Then we define Z1 ∧ Z2 as the upper envelope of Z1 and Z2 (shown in green color in Figure 3(b))

and Z1 ∨ Z2 as the lower envelope (shown in yellow color in Figure 3(b)). It is easy to verify that

both Z1 ∧ Z2 and Z1 ∨ Z2 also satisfy Constraints (28) through (31),i.e., {Z1 ∧ Z2, Z1 ∨ Z2} ∈ Z.

Thus, the feasible solutions belong to a lattice family.

J3
J4

J1
J0

J2

I1
I2

I3
I4

0
1

z

Z1
Z2

(a) Z1 and Z2

J3
J4

J1
J0

J2

I1
I2

I3
I4

0
1

z

Z1 Z2
Z1 Z2

(b) Z1 ∧ Z2 and Z1 ∨ Z2

Figure 3: Lattice Structure of S

40

C.2 Proof of Lemma 16

Proof. Define R(Z̃) =
∑I

i=1

∑N
j=0 vij(z̃ij − z̃i,j+1) as the revenue function for Z̃. We can rewrite

CBPgc3 as Max
Z̃
R(Z̃) − C(Z̃); s.t.Z̃ ∈ Z̃. Similarly, CBPgc3b is:Max

Z̃
R(Z̃) − C(Z̃); s.t. Z̃ ∈ Z̃in.

Call the optimal solution value of CBPgc3 as Πgc3 and that of CBPgc3b as Πgc3b. Therefore, we

need to prove that if C(Z̃) satisfies the conditions in the lemma, then Π∗gc3 = Π∗gc3b.

Obviously, Π∗gc3 ≥ Π∗gc3b always holds because the optimal solution of CBPgc3b is feasible

to CBPgc3 and it generates the same optimal profits in both problems. We next prove Π∗gc3 ≤

Π∗gc3b. The conditions in the lemma mean, if Z̃∗ is the optimal to CBPgc3 we can always find

(λ1, λ2, . . . , λM)|
∑M

m=1 λm = 1; λm ≥ 0∀m and Z̃m ∈ Z̃, such that Z̃ =
∑M

m=1 λmZ̃m and C(Z̃∗) ≥∑M
m=1 λmC(Z̃m). Therefore,

Πgc3(Z̃∗) =︸︷︷︸
Z̃=

∑M
m=1 λmZ̃m

R(
M∑
m=1

λmZ̃m)− C(
M∑
m=1

λmZ̃m) =︸︷︷︸
R()is linear

M∑
m=1

λmR(Z̃m)− C(
M∑
m=1

λmZ̃m)

≤
M∑
m=1

λmR(Z̃m)−
M∑
m=1

λmC(Z̃m) =

M∑
m=1

λmΠgc3b(Z̃m)

≤︸︷︷︸
λm≥0

M∑
m=1

λmMax
m
{Πgc3b(Z̃m)} =︸︷︷︸∑M

m=1 λm=1

Max
m
{Πgc3b(Z̃m)} ≤ Πgc3b(Z̃

∗).

C.3 An Alternate Explanation for Algorithm 1

For a given Z̃ ∈ Z̃, sort all its elements {zij |0 < zij < 1} with descending order and redefine

these elements as πm, m ∈ {1, 2, . . . ,M−1}. We can then generate one way of decomposing Z̃ into

Z̃m ∈ Z̃in such that Z̃ =
∑M

m=1 λmZ̃m where λ ∈ Λ. Let λ1 = 1−π1 and λm = πm+1−πm, ∀m > 1.

Define a function e(Z, a) where Z is a matrix and a is a single value. Then e(Z, a) returns a matrix

with the same size of Z, setting all its elements ≥ a to 1 and those < a to 0. Let Z̃1 = e(Z̃, 1) and

Z̃m = e(Z̃, πm−1), ∀m > 1. Then we can easily verify that both λ ∈ Λ and Z̃ =
∑M

m=1 λmZ̃m hold.

41

C.4 Proof of Theorem 18

Proof. Since we use the same approach to generate the piecewise approximation for the WTP

functions, it is straightforward that the same proof for Theorem 13 can also work here to prove

Πgpla∗ ≤ Πgc∗ and the optimal revenue of CBPgc2 is no more than 2I(I + 1)kβ than that of

CBPgpla. Therefore, we only need to prove that the cost is underestimated by no more than Ikβ.

When we decompose C(Z̃) to
∑M

m=0 λmC(Z̃m), each Z̃m is an extreme point on the grid box that

contains Z̃ in the I dimensional space. Therefore, |C(Z̃)− Ca(Z̃)| ≤ Ikβ.

References

Adams, W. J. and J. L. Yellen (1976). Commodity bundling and the burden of monopoly. Quart.
J. Econom 90, 475–498.

Bakos, Y. and E. Brynjolfsson (1999). Bundling information goods: Pricing profits and efficiency.
Management Science 45 (12), 1613–1630.

Chu, C., P. Leslie, and A. Sorensen (2011). Bundle-size pricing as an approximation to mixed
bundling. The American Economic Review 101 (1), 263–303.

Hanson, W. and R. Martin (1990). Optimal bundle pricing. Management Science 36 (2), 155–174.

Hitt, L. and P. Chen (2005). Bundling with customer self-selection: A simple approach to bundling
low-marginal-cost goods. Management Science 51 (10), 1481–1493.

Kannan, K. N., M. Tawarmalani, and J. Wu (2013). Cardinality bundles with constrained prices.
working paper.

McAfee, R. P., J. McMillan, and M. D. Whinston (1989). Multiproduct monopoly, commodity
bundling, and correlation of values. Quart.J.Econom. 104, 371–383.

Schrijver, A. (2003). Combinatorial optimization, polyhedra and efficiency. Springer-Verlag.

Spence, M. (1974). Competitive and optimal responses to signals: An analysis of efficiency and
distribution. J. Econ. Theory 7, 296–332.

Spence, M. (1980). Multi-product quantity-dependent prices and profitability constraints. Rev.
Econom. Stud. 47 (5), 821–841.

Stigler, G. J. (1963). United states v. loew’s inc.: A note on block booking. Supreme Court Rev.,
152–157.

Tawarmalani, M., J.-P. P. Richard, and C. Xiong (2013, 4). Explicit convex and concave envelopes
through polyhedral subdivisions. Mathematical Programming 138, 531–577.

42

Tawarmalani, M. and N. V. Sahinidis (2002). Convexification and Global Optimization in Continu-
ous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software and Applications.
Kluwer Academic Publishers.

Wu, S., L. Hitt, P. Chen, and G. Anandalingam (2008). Customized bundle pricing for information
goods: A nonlinear mixed-integer programming approach. Management Science 54 (3), 608–622.

43

	1276
	coverSheetTemplate
	bundle

	bundle

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

