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Abstract
This paper examines the feasibility of collusion in capacity constrained

duopoly supergames. In each period firms simultaneously set a price-quantity
pair specifying the price for the period and the maximum quantity the firm is
willing to sell at this price. Under price-quantity competition firms are able
to ration their output below capacity. For a wide range of capacity pairs, the
equilibrium path providing the smaller firm with its highest stationary per-
fect equilibrium payoff requires that it undercut its rival’s price and ration
demand. Furthermore, for some capacities and discount factors supporting se-
curity level punishments, price shading and rationing arise everywhere on the
set of stationary perfect equilibrium paths yielding (constrained) Pareto opti-
mal payoffs. That is, price shading may not only be consistent with successful
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1 Introduction

This paper examines the feasibility of collusion in price setting duopoly supergames

with capacity constrained firms and constant unit costs of production up to capacity.

In contrast to standard Bertrand-Edgeworth supergame models,1 following Dixon

(1992) we assume that in each period firms simultaneously set a price-quantity pair

specifying the price for the period and the maximum quantity the firm is willing to

sell at this price.2

In one-shot simultaneous move capacity constrained games, modifying Bertrand-

Edgeworth (B-E) competition to allow for simultaneous price-quantity choice is in-

nocuous. Simultaneous price-quantity games yield equilibria that are equivalent to

the B-E equilibria: firms’ equilibrium expected payoffs and distributions of prices

and sales are the same under the two game forms (assuming an equal sharing rule

when both firms price at unit cost and have capacities sufficiently large to gener-

ate the classical Bertrand equilibrium). One implication of this result is that the

equilibrium behavior of real market variables, such as quantities produced and sold,

prices, and profits in B-E and price-quantity games, is indistinguishable for any finite

number of repetitions.

Price-quantity supergames are different.3 In these games, the ability of firms to

ration their output below capacity when they are low-priced helps relax incentive

constraints in maintaining collusive behavior. Indeed, for a wide range of discount

factors and asymmetric capacity pairs, the equilibrium path providing the smaller

firm with its highest stationary perfect equilibrium payoff requires that it undercut

its rival’s price and ration consumers by setting a bound on its sales below both its

demand and capacity. In fact, for some capacities and discount factors supporting se-

curity level perfect equilibrium punishments, asymmetric pricing and rationing arise

everywhere on the set of stationary perfect equilibrium paths yielding constrained

Pareto optimal payoffs.

The price-quantity approach to modeling collusion has important implications

for business strategy and antitrust and regulatory policy. Historically, price shading

by smaller firms has often been interpreted as a signal of the breakdown of attempts

to collude (see, for instance, Stigler (1964)). Our results demonstrate that, contrary

to conventional wisdom, asymmetric pricing and endogenous rationing of consumers

by a small firm are behaviors consistent with, and sometimes required by, tacitly or

overtly collusive behavior in an intuitive non-cooperative game theoretic model of

1See, for instance, Davidson and Deneckere (1984, 1990), Brock and Scheinkman (1985), Benoit
and Krishna (1987, 1991), Lambson (1987, 1994, 1995), and Compte, Jenny and Rey (2002).

2This commitment to a quantity is made without incurring production costs. Costly production
takes place “to order,” only after the price- and ceiling-determined sales are realized.

3Capacity constrained price-quantity games differ from price setting games for other extensive
forms as well. For instance, in the case where firms move sequentially, the two are not generally
equivalent.
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long run market interaction.

Rees (1993) applies Bertrand-Edgeworth supergames to analyze data from the

Great Salt Duopoly in the UK in the 1980’s. Rees claims that the data rule out

one-shot Bertrand-Edgeworth equilibrium pricing behavior and concludes that the

discount factors prevalent in the market were sufficient to support pure strategy

collusive outcomes. However, he observes that in the Duopoly during this period the

small firm’s price was slightly below the large firm’s and the small firm had a higher

capacity utilization than the large firm.4 We provide calculations of the extent of

price dispersion in our model that are consistent with Rees’s observations. Depending

on the discount factor, on the perfect equilibrium path that maximizes the small

firm’s payoff, price dispersion can be as high as 16% of the price-cost margin. We

also show that our model can generate patterns of capacity utilization on constrained

Pareto optimal stationary perfect equilibrium paths that are consistent with Rees’s

observations and differ from those arising under Bertrand-Edgeworth competition.

For example, for a sufficiently low discount factor, even if the large firm’s capacity

is just sufficient to serve the whole market at a price equal to marginal cost, in the

price-quantity model the small firm may have a higher degree of capacity utilization

than the large firm. This is impossible under Bertrand-Edgeworth competition.

In our model, rationing arises endogenously in a tacitly collusive pure strategy

perfect equilibrium of an infinitely repeated game with complete information. This

is in contrast to the previous literature on endogenous rationing which relies upon

either incomplete information, as in Allen and Faulhaber (1991), DeGraba (1995)

and Gilbert and Klemperer (2000), or some form of power to precommit in price, as

in the sequential price setting models of Boyer and Moreaux (1988, 1989).

Our result is reminiscent of the logic of “judo economics” examined by Gelman

and Salop (1983). In that paper, a unit cost advantaged incumbent is initially

endowed with sufficient capacity to serve the entire market. A potential entrant

moves first, deciding upon the amount of capacity to install and then its price, acting

as a price leader. The incumbent then acts as a price follower. Although Gelman and

Salop do not derive the entrant’s optimal capacity choice explicitly, they do show

that it is optimal for the entrant to choose a capacity and price that will deter the

incumbent from undercutting or matching its price. The entrant remains small in

order to avoid an aggressive price response from a more efficient incumbent.

Similar behavior also arises in the model of Allen, Deneckere, Faith and Kovenock

(2000). They show that, for certain regions of cost (including regions where the

second mover in capacity is more efficient), sequential capacity choice followed by

simultaneous price setting leads to a unique perfect equilibrium in which the capacity

follower sets a relatively small capacity and the equilibrium in the price setting stage

is in non-degenerate mixed strategies. In the price setting subgame, the small firm

4In the Great Salt Duopoly, the small firm is British Salt and the large firm is ICI Weston Point.
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has a lower expected price than the large firm.

Our paper obtains a “judo” outcome without an unrealistic exogenous sequencing

of prices or use of non-degenerate mixed pricing strategies. We maintain a simul-

taneous move structure embedded in an infinitely repeated game and focus on pure

strategy equilibria. A small firm reduces price and restricts its output below capac-

ity, not as a result of preemption by a larger firm, but rather to avoid the defection

of the larger firm from a collusive agreement and its resulting punishment. That is,

judo behavior may be consistent with overtly or tacitly collusive behavior.

Our approach also addresses a potential weakness in the Bertrand-Edgeworth

supergame literature. In that literature firms can collude in price but cannot collude

(or even coordinate) in determining market shares. In much of the literature these

shares are exogenously fixed. Lambson (1994) and Compte, Jenny and Rey (2002)

relax this assumption by allowing firms to coordinate by endogenously sharing de-

mand at identical prices, (but not at different prices). This has proven useful: when

compared to exogenous sharing rules, endogenous sharing at identical prices facili-

tates both collusion along the initial path and the sustainability of symmetric price

punishment paths, by allowing market shares to vary to balance the firms’ incentives

to cheat.

Even with endogenous sharing of demand at identical prices, there is a sense in

which capacity is asked to do too much work in Bertrand-Edgeworth supergames. It

serves to allocate market share in a collusive phase (at least at asymmetric prices)

and determines the ability to punish following a deviation from that phase. Price-

quantity games separate out these two functions by allowing quantity choice to de-

termine the market sharing rule while leaving capacity as the measure of a firm’s

ability to punish. The qualitatively rich set of empirical implications of the price-

quantity model relative to the B-E model serves as an illustration of the danger of

asking a single strategic variable (in this case capacity) to do too much. This is in

stark contrast to the spirit of the Kreps-Scheinkman (1983) analysis, which shows

that a reduced form (quantity setting) may serve as an accurate proxy for a more

complicated game with multiple strategic variables.

Another weakness of the Bertrand-Edgeworth approach is its reliance on subop-

timal punishment paths to punish deviations from the collusive phase. For instance,

in their analysis of the effect of mergers on the ability to collude, Compte, Jenny

and Rey use endogenous sharing rules on symmetric price paths. However, imposing

symmetry of punishment price paths is not without loss of generality and there is

no reason to believe that such paths constitute optimal punishments. One might

expect a restriction to symmetric equilibria to substantially reduce the ability to

sustain collusion, especially in situations in which firms differ considerably in size.

Indeed, one conclusion of Compte, Jenny and Rey’s analysis is that asymmetry in

firm size reduces the ability to collude. In this paper, we examine the class of simple

penal codes having punishments with a 2-phase structure. Given such penal codes,
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security level punishments can be supported in a perfect equilibrium for a wider

range of capacities and discount factors under price-quantity competition than un-

der B-E competition. On the perfect equilibrium security level punishment paths we

construct, firms set asymmetric prices in the first period of punishment. Moreover,

when capacities are asymmetric, our 2-phase punishment paths punish deviations

at least as severely, and sometimes strictly more severely, than the 2-phase pun-

ishment paths and the proportional penal codes of Lambson (1994), the symmetric

paths of Compte, Jenny and Rey (2002) and the grim trigger strategy of reverting

to the one-shot Nash equilibrium (Davidson and Deneckere (1984, 1990), Brock and

Scheinkman (1985), Benoit and Krishna (1987, 1991)).

The formulation of our component game as one in which each firm sells at the price

it announces is equivalent to a “pay-as-bid” auction, which is currently a popular

tool in the analysis of electricity and other power markets. Our analysis therefore

has direct and immediate implications for the nature and sustainability of collusion

in “pay-as-bid” auctions in these markets. Another auction form common both in

practice and the theoretical analysis of power markets is the uniform price auction.

Although we do not analyze infinitely repeated uniform price auctions in this paper,

the usefulness of the price-quantity approach extends to uniform price auctions as

well.5

Section 2 introduces the cost and demand conditions employed in this paper

and the basic simultaneous move price-quantity model that we have developed. An

equivalence result is derived showing that for the relevant cost and demand struc-

tures the one shot equilibrium of the price-quantity game coincides with that of

a corresponding B-E game. Section 3 introduces our price-quantity supergame and

Section 4 characterizes the Pareto set within the set of stationary perfect equilibrium

paths assuming security level punishments. In Section 5, we examine the class of

simple penal codes having punishments with a 2-phase structure. We show that for

a wide range of capacities, discount factors, and unit costs, relevant for the analysis

in Section 4, perfect equilibrium 2-phase punishment paths exist and achieve the

security level for both firms. Section 6 addresses the implications of our model for

price dispersion and capacity utilization on the Pareto set of stationary perfect equi-

librium paths. Section 7 concludes by showing that all of the behaviors described in

this paper arise as subgame perfect equilibrium outcomes when there is endogenous

choice of capacity.

5Preliminary analysis of repeated uniform price-quantity auctions, which perhaps better describe
actual uniform price electricity auctions than, say, the B-E approach employed by Fabra (2002), Le
Coq (2002) and Crampes and Creti (2002), indicates that such auctions may yield higher collusive
equilibria than uniform price auctions in a B-E setting.
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2 One-period simultaneous move game

2.1 The price-quantity game

Consider a market for a homogeneous good in which two firms, 1 and 2, face a

demand curve:

D(p) =

{
M if p ≤ 1,

0 otherwise.

The firms face capacity constraints ki, i = 1, 2 with k1 ≥ k2, and each incurs a

constant unit cost of production c, 0 ≤ c ≤ 1, up to its capacity. Thus, if firm i

realizes sales si, its cost of production is ci(si) = csi for si ≤ ki. Output greater

than ki is infinitely costly. To simplify notation, we define a firm’s effective capacity,

k̂i ≡ min{ki,M}.
Assuming box demand allows us to abstract from issues related to the use of a

particular rationing rule. For example, both the efficient and proportional rationing

schemes define the same residual demand for firm i, M − k̂j.

In the component game, G(k1, k2, c), firms simultaneously set price and quantity

pairs (pi, qi) where qi is interpreted as a credible pre-commitment not to produce an

output greater than qi. Firm i’s strategy set is the set of the price-quantity pairs

Si = {(pi, qi) : pi ≤ 1 and qi ∈ [0, ki]}.6 Note that we do not a priori rule out

prices below cost but, without loss of generality, assume that no firm will ever set

a price beyond the choke price. In the continuation, let q̂i = min{qi,M} be the

effective maximum quantity ceiling of i. Let Mi denote the set of mixed strategies

(probability measures on the σ−algebra of Borel-Lebesgue measurable sets of Si).

For a given pair of pure strategies (p1, q1), (p2, q2), firm i’s sales are given by the

function si : Si × S−i → [0, ki], i = 1, 2, where

si(p1, q1, p2, q2) =





q̂i if pi < pj, pi ≤ 1,

min{q̂i,
q̂iM

q̂1+q̂2
} if pi = pj ≤ 1,

min{q̂i,M − q̂j} if 1 ≥ pi > pj,

0 otherwise.

This assumes that in the event of a tie in prices, the firms sell their quantity ceiling,

unless the sum of ceilings exceeds demand. In this case, demand is allocated in

proportion to the the effective maximum quantity ceilings q̂i, i = 1, 2. Given this

mapping from the vector of firms’ price-quantity pairs to effective sales, firm i’s profit

is:

πi(pi, qi, pj, qj) = (pi − c)si(pi, qi, pj, qj).

This profit function may be extended in a natural way to an expected profit function

on Mi ×M−i. For any triple (k1, k2, c), the component price-quantity setting game

6Because of the strict capacity constraint, the restriction qi ∈ [0, ki] also coincides with the no
bankruptcy constraint of Dixon (1992).
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is then a normal form game Γ(k1, k2, c) with players i = 1, 2, strategy sets M1, M2,

and expected payoff functions πi(µ1, µ2).

Finally, we define firm i’s minmax payoff or security level in the price-quantity

game to be:

πi = min
µj

max
µi

πi(µi, µj). (1)

It is simple to compute πi by noting that for any given strategy by firm j, firm i can

guarantee itself a payoff at least as great as (1−c)(M− k̂j) by setting (pi, qi) = (1, k̂i)

with probability one. If firm j sets pj = c and qj = kj, the most firm i can obtain is

(1− c)(M − k̂j), which is the minmax profit πi.

2.2 The simultaneous move equilibrium

In this subsection, we derive an equivalence result showing that every equilibrium of

the component price-quantity game coincides with an equilibrium of a corresponding

one-shot B-E game and vice-versa. That is, firms’ equilibrium expected profits and

distributions of prices and sales are the same under the two game forms.

Ghemawat (1986) has shown that the B-E price-setting game, GE(k1, k2, c) has

a unique equilibrium for any triple (k1, k2, c). Assuming without loss of generality

that k1 ≥ k2, if k2 ≥ M , the unique equilibrium in the game is p1 = p2 = c and

π1 = π2 = 0. By convention, demand is shared equally.7 If k1 + k2 > M > k2,

the only equilibrium exhibits non-degenerate mixed strategies and firm i’s expected

profit is πi = k̂i

k̂1
(1−c)(M−k2). If k1+k2 ≤ M , the unique equilibrium is p1 = p2 = 1

and πi = (1− c)ki, i = 1, 2.

To demonstrate the equivalence of the B-E equilibrium and the set of equilibria

in the simultaneous move price-quantity game Γ(k1, k2, c), we first develop some

notation. For any µi ∈Mi, define µp
i to be the marginal distribution of firm i’s price

associated with the strategy µi. That is µp
i is the projection of µi onto the set of

prices. Define li and ui to be the greatest lower bound and the least upper bound

of µp
i , i = 1, 2, respectively. Moreover, define γµ

i (p) = {q ∈ [0, ki]|(p, q) ∈ supp(µi)},
where supp(µi) denotes the support of the probability measure µi.

Proposition 1 For every (k1, k2, c), GE(k1, k2, c) and Γ(k1, k2, c) have identical equi-

librium distributions of profits, prices and sales.

The proof of Proposition 1, which is relegated to the Appendix, is intuitive. The price

and sales distribution of the unique equilibrium of the B-E game must clearly arise

as one possible equilibrium outcome of the price-quantity game. If both firms offer

their capacity for sale at any price they may set, then the B-E price distributions are

7Our analysis assumes that in the case in which ki ≥ M , i = 1, 2, firms share demand equally
in the B-E equilibrium, p1 = p2 = c. If this sharing rule is not employed, only equilibrium prices
and profits need coincide in this case.
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best-responses to each other for these quantities. Since no single firm can increase

its profit by offering a lower quantity, a strategy in the price-quantity game in which

the marginal price distribution is the B-E price distribution and the capacity level

is the only quantity in the support of the distribution is an equilibrium strategy for

each firm.

Moreover, in any equilibrium of the price-quantity game, a firm would always lose

sales with positive probability if its quantity at any price in its support is strictly

lower than capacity unless (i) it has a capacity ki ≥ M and qi ≥ M , or (ii) its price

is undercut by the other firm with probability 1 and its quantity qi is greater than or

equal to residual demand M − qj. Hence setting a quantity strictly below capacity

cannot be part of a best response to the other firm’s strategy unless one of these two

cases holds or the firm’s price is at or below unit cost.

Setting price below unit cost is clearly not equilibrium behavior in the price-

quantity game. From dominance arguments similar to those used in the B-E game,

unless capacities are in the classical Bertrand region (ki ≥ M , i = 1, 2), unit cost is

also not an element of the equilibrium price distribution in the price-quantity game.

An argument very similar to that for B-E competition shows that unit cost pricing is

the unique equilibrium price pair in the price-quantity game when capacities are in

the classical Bertrand region. This, however, clearly requires that qi ≥ M . Otherwise

j would have incentive to raise price above unit cost, so there is no difference between

the price-quantity equilibrium in this case and the B-E equilibrium.

Hence, the only potential source of differences in the equilibria of the B-E game

and the price-quantity game appears in cases (i) and (ii) above. However, in neither of

these cases do the relevant quantities set affect either the firms’ sales or incentives to

deviate. Since quantities set below capacity in a manner that affects sales cannot be

part of an equilibrium strategy in the price-quantity game, and quantities set below

capacity that do not affect sales also have no effect on the incentive to deviate, it

follows that for every triple of capacities and marginal cost, every equilibrium of

the price-quantity game generates the same price and sales distributions as the B-E

game.

3 The price-quantity supergame

In this section, we examine the supergame Gδ(k1, k2, c) obtained by infinitely repeat-

ing the one shot game G(k1, k2, c) and discounting payoffs with discount factor δ < 1.

In the supergame, a path τ is an infinite sequence of actions {(pt
1, q

t
1, p

t
2, q

t
2)}∞t=0. A

pure strategy σi for firm i is a sequence of functions, {σi(t)}∞t=0, such that for every t,

σi(t) : Ht → Si. Ht is the set of possible histories ht = (p0
1, q

0
1, p

0
2, q

0
2, ..., p

t−1
1 , qt−1

1 , pt−1
2 , qt−1

2 )

up to time t. A strategy profile is a vector σ = (σ1, σ2). Each strategy profile gener-

ates an infinite path τ(σ). Firm i’s normalized discounted value from period s along
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a given path τ = {(pt
1, q

t
1, p

t
2, q

t
2)}∞t=0 is given by:

Vi(τ, s) = (1− δ)
∞∑
t=s

δtπi(p
t
1, q

t
1, p

t
2, q

t
2).

We refer to Vi(τ, t) for t = 1, 2, 3 . . . as firm i’s continuation value at t. We let

Vi(τ) ≡ Vi(τ, 0) denote the payoff associated with the entire path.

Following Abreu (1988), we define a simple strategy profile σ(τ0, τ1, τ2), where τ0

is the initial path, and τi is a punishment path started if player i unilaterally deviates

from the ongoing prescribed path, i = 1, 2. A simple penal code is a vector of simple

strategy profiles (σ1(τ1, τ1, τ2), σ
2(τ2, τ1, τ2)). Letting Ṽi(σ

i(τi, τ1, τ2)) ≡ Vi(τi), an

optimal penal code is a vector of strategy profiles (σ1, σ2) such that σi is a perfect

equilibrium of the supergame and Ṽi(σ
i) = minσ{Ṽi(σ)|σ is a perfect equilibrium}.

Note that an optimal penal code may not exist. If an optimal penal code exists, then

we refer to Ṽi(σ
i) as the worst punishment value for firm i.

A security level punishment for firm i is a punishment path on which firm i

obtains the discounted sum of its minmax profit, equal to πi in normalized terms.

A security level penal code is a penal code that contains security level punishment

paths for both firms. Since the minmax payoff is the lowest payoff a firm can be held

to in the supergame, if there exists a security level penal code then it is an optimal

penal code.

4 Constrained Pareto optimal paths and collusion

In the following sections, we assume k1 ≥ k2 and focus on the area in capacity space

where k1+k2 > M . The last restriction is without loss of generality since k1+k2 ≤ M

implies that the one-shot Nash equilibrium payoffs are Pareto optimal. If an optimal

penal code exists and yields V i to firm i, then τ = {(pt
1, q

t
1, p

t
2, q

t
2)}∞t=0 is a perfect

equilibrium if and only if it is sustainable by (V 1, V 2) that is, for every i, j, i 6= j

and every t:

Vi(τ, t) ≥ (1− δ)π∗i (p
t
j, q

t
j) + δV i, (2)

where π∗i (p
t
j, q

t
j) is firm i’s optimal deviation profit when firm j charges pt

j and offers

qt
j. We have:

π∗i (p
t
j, q

t
j) = sup

(pt
i,q

t
i)

{π(pt
i, p

t
j, q

t
i , q

t
j)}.

In our model, firm i’s optimal deviation profit is obtained by either slightly under-

cutting pt
j ≤ 1 and offering its whole capacity for sale, or by charging the monopoly

price, 1, on its residual demand, M − q̂t
j.

8 Therefore, π∗i (p
t
j, q

t
j) = max{(1− c)(M −

8If pt
j > 1, firm i’s optimal deviation is to offer its capacity for sale at a price of 1. It then

obtains a payoff equivalent to what it would receive by slightly undercutting pt
j = 1. If firm j
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q̂t
j), (p

t
j − c)k̂i}. Hence there exists a set Ai such that if (pj, qj) ∈ Ai then firm i’s

optimal deviation is to slightly undercut and offer its capacity.

Ai =

{
(pj, qj) ∈ Sj|q̂j ≥ M − (pj − c)k̂i

(1− c)

}
. (3)

Let p
i

be the unique price such that (p, k̂j) /∈ Ai for all p < p
i
. p

i
is the highest

price p such that if j offers its capacity for sale at p, firm i finds it most profitable to

charge the monopoly price on its residual demand and offering any quantity between

residual demand and its capacity.

From (2), it follows that along any stationary perfect equilibrium path (SPEP)

{(p1, q1, p2, q2)} supported by perfect equilibrium security level punishment paths,

the following incentive constraints must be satisfied:9

(p1 − c)s1(p1, q1, p2, q2) ≥ (1− δ)π∗1(p2, q2) + δ(1− c)(M − k̂2), (4)

(p2 − c)s2(p1, q1, p2, q2) ≥ (1− δ)π∗2(p1, q1) + δ(1− c)(M − k̂1). (5)

(4) and (5) state that the payoff a firm obtains along a stationary path must be

larger than the one-period deviation profit plus the punishment value.

We now state several definitions and an assumption that we will use throughout

the rest of the paper.

Definition 1 (PO) A SPEP τ p is a Constrained Pareto Optimal path if there is no

SPEP τ ′ such that Vj(τ
′) ≥ Vj(τ

p) for all j and Vi(τ
′) > Vi(τ

p) for some i.

Definition 2 (C) A path τ c is a collusive path if each firm receives a payoff on τ c

that is at least as great as the discounted sum of its one-shot Nash equilibrium payoff

and at least one firm receives a strictly greater payoff.

Definition 3 (SP) A path τ sp = {(pt
1, q

t
1, p

t
2, q

t
2)} is a path exhibiting symmetric

pricing if on τ sp, pt
1 = pt

2, ∀t.

Assumption 1 (A1) There exist pure strategy perfect equilibrium security level pun-

ishment paths for both firms.

If a SPEP satisfies (C), then s2(p1, q1, p2, q2) ≥ αN
2 ≡ (M−k̂2)k̂2

k̂1
. If not, then for

every price vector, firm 2 receives a payoff lower than the discounted sum of its one-

shot Nash equilibrium payoff. Note that (PO) does not imply (C), nor does (C) imply

(PO). For example, if the stationary path {(1, q1, 1,M − q1)} is a SPEP, it satisfies

charges pt
j > 1, then it obtains a zero payoff and firm i’s deviation profit is maximized. Firm j

could also secure a zero payoff by setting qt
j = 0 and charging any price less than 1, thereby reducing

firm i’s deviation profit without affecting its payoff.
9When we focus on stationary paths, we drop the time superscript.
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(PO), but it does not satisfy (C) if q1 > M − αN
2 . If the path {(1,M − k̂2, p̃, k̂2)} is

a SPEP, it satisfies (C) as long as p̃ > p
2
, but in general, it does not satisfy (PO) if

p̃ < 1. In section 6, we show that A1 is satisfied for a wide range of parameter values

by constructing perfect equilibrium punishment paths with a 2-phase structure along

which both firms receive their security level.

Many papers note that in the classical B-E supergame, sustainable stationary

collusive price paths involve symmetric pricing because symmetric pricing minimizes

firms incentives to deviate along stationary paths (see Davidson and Deneckere, 1990,

for example). Under B-E competition, with asymmetric pricing, the sales of the

firm with the highest price are such that its discounted profit along any sustainable

asymmetric stationary path is at or below the discounted sum of its one-shot Nash

equilibrium profit. Sustainability requires that the lower price be such that the high-

priced firm has no incentives to undercut, but this requires that the low-priced firm

receives no more than the discounted sum of its Nash-equilibrium payoff. Therefore,

there are no sustainable stationary paths with asymmetric pricing yielding collusive

payoffs in the sense of (C). The ability to ration output at any price provides a

profit sharing mechanism in price-quantity supergames that is not available in B-E

supergames. The intuition behind Proposition 2 below is that it may be optimal for

a firm to lower its price below that of its rival in order to lower the rival’s deviation

profit, and at the same time, ration its output so as to limit the decrease in the

rival’s sales. However, a firm that lowers its price and rations its output should sell a

sufficiently large quantity that it does not find it profitable to raise price to slightly

undercut the high-priced firm.

As a benchmark, we provide the following lemma, which states that if A1 holds

and firms price symmetrically along a constrained Pareto optimal SPEP yielding

collusive payoffs, then the path is sustainable if and only if δ ≥ max
{

1
2
, 1− k̂2

k̂1

}
≡

δ̃. The lemma characterizes such paths. The proof of the lemma appears in the

Appendix.

Lemma 1 Suppose A1 holds. If there exists a SPEP τ s = {(p1, q1, p2, q2)} satisfying

(PO) and (SP) then q1 + q2 ≥ M and pi = 1, i = 1, 2. Such a τ s exists if and only

if δ ≥ 1
2
. Moreover, τ s also satisfies (C) if and only if δ ≥ δ̃ ≡ max

{
1
2
, 1− k̂2

k̂1

}
.

If δ ≥ 1
2
, there is a range of possible divisions of the market that can be supported

as a SPEP satisfying (PO) and (SP). The quantities αi and αi defined below provide

lower and upper bounds on firm i’s sales on SPEP’s satisfying (PO) and (SP). Define

the quantities αi(δ) and αi(δ) as follows:

αi(δ) ≡ (1− δ)k̂i + δ(M − k̂j),

αi(δ) ≡ (1− δ)(M − k̂j) + δk̂i.
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for i = 1, 2 j 6= i. For δ ≥ 1
2
, αi(δ) ≥ αi(δ), i = 1, 2. If A1 is satisfied, αi(δ) is the

minimum quantity firm i can be allocated for its incentive constraint to be satisfied

when both firms set a price equal to 1. Similarly, αi(δ) is the maximum quantity

firm 1 can be allocated for firm j’s incentive constraint to be satisfied when both

firms set a price equal to 1. It is clear that αi(δ) = M − αj(δ), i = 1, 2, i 6= j.

To simplify notation, we also define the maximum incentive compatible quantity

firm 2 can be allocated when firm 1 sets p1 = 1 and firm 2 sets p2 < 1:

α2(p2) = M − (1− δ)(p2 − c)k̂1 + δ(1− c)(M − k̂2)

1− c
. (6)

The following proposition assumes pure strategy security level punishments exist and

support a SPEP satisfying (PO), (C) and (SP) (from Lemma 1). The proposition

shows that relaxing the assumption (SP) expands the set of collusive (C) constrained

Pareto optimal (PO) SPEP’s to include paths on which the small firm undercuts

the large firm by setting a price lower than 1. In these equilibria, the small firm

endogenously rations its output below its capacity.

Proposition 2 Suppose A1 holds. For δ ≥ δ̃, τ s = {(pc
1, q

c
1, p

c
2, q

c
2)} is a SPEP

satisfying (PO) and (C) if and only if:

pc
1 = 1,

pc
2 ∈ P c

2 ≡ [min{p∗2, 1}, 1],

qc
2 = α2(p

c
2) for pc

2 ∈ [p∗2, 1),

qc
1 ∈ [M − qc

2, k1] for pc
2 ∈ [p∗2, 1),

(qc
1, q

c
2) ∈ Qc for pc

2 = 1,

where p∗2 = (1− c)
(

M−δ(M−k2)
2(1−δ)k1

)
+ c and

Qc = {(q1, q2) ∈ ×i=1,2[0, ki] |q1 + q2 ≥ M, si(1, q1, 1, q2) ≥ αi(δ), i=1,2

and s2(1, q1, 1, q2) ≥ αN
2 .}.

The proof of this proposition appears in the Appendix. Several implications are

worth emphasizing. First, note that in any SPEP described by the proposition, each

firm has sales constrained strictly below capacity. Furthermore, when δ is such that

δ < δr ≡ 2k̂1−M

2k̂1+k̂2−M
, the set P c

2 of SPEP prices for the small firm is a non-degenerate

interval.

Under B-E competition, the set of stationary Pareto optimal paths consists of

those paths along which both firms set p1 = p2 = 1. Since firms set the same price,

assuming that side-payments are not feasible, they share collusive profits according

to a given sharing rule. The intuition behind Proposition 2 is as follows. Since pricing

symmetrically at the monopoly price yields the largest industry profit, if there exists

12



a division of the market for which the monopoly price is sustainable, the resulting

payoffs are constrained Pareto optimal. However, if the large firm has a binding

incentive constraint at the monopoly price, it is necessary for the small firm to lower

its price in order to relax this constraint. For payoffs to remain on the constrained

Pareto frontier, the small firm’s sales must increase more than proportionally (to the

price cut) in order for its profit to increase. However, the small firm’s sales must

be strictly below its capacity to guarantee that the large firm’s sales are sufficient

for it to conform to the prescribed path. If the small firm’s sales are equal to its

capacity, incentive compatibility implies that the price it charges must be equal to

p
1
, i.e., the Nash equilibrium payoffs are on the constrained Pareto frontier. But

Nash equilibrium payoffs cannot be on the constrained Pareto frontier if δ ≥ δ̃, since

a SPEP exists which satisfies p1 = p2 = 1, (PO) and (C).

If δ ∈ [δ̃, δr), in the constrained Pareto optimal SPEP that provides the small firm

its maximum profit, the small firm undercuts the large firm and rations its output

below its capacity. The intuition behind the fact that only the small firm optimally

lowers its price and rations its output is simple. The small firm has an incentive to

set a price different from the large firm’s price if it can increase its profit compared

to what it obtains by charging the same price. The maximum profit the small firm

can attain on a path satisfying (SP) is V2 = (1− c)α2(δ). If the small firm undercuts

the large firm’s price by an infinitesimal amount ε, but its sales do not change, its

profit decreases by an amount equal to εα2(δ). However, the large firm’s incentive to

deviate decreases as well. The amount by which the large firm’s incentive constraint

is relaxed is equal to ε(1− δ)k̂1. Therefore, firm 2’s sales can increase by an amount

equal to ε(1−δ)k̂1

1−c
while still satisfying firm 1’s incentive constraint. If firm 2 adjusts

the quantity it offers to sell exactly α2(δ) + ε(1−δ)k̂1

1−c
when it undercuts p1 = 1 by

ε, the first order effect on its profit is ε[(1 − δ)k̂1 − α2(δ)], which is strictly greater

than zero if δ < δr. Applying the same reasoning to the large firm, we conclude

that the large firm has an incentive to undercut p2 = 1 and ration its output only if

(1− δ)k̂2 > α1(δ). However, this inequality does not hold for any δ ≥ δ̃.

We define the constrained Pareto optimal SPEP on which firm i’s profit is max-

imized by:

τ i(δ) = argmaxτ{Vi(τ)|τ stationary, (4), (5), A1, (PO) and (C) hold}.

Proposition 2 ensures that τi(δ) is well-defined for every δ ≥ δ̃. Proposition 3 follows

directly from Proposition 2.

Proposition 3 Suppose A1 holds. If δ ∈ [δ̃, δr), then on τ 2(δ), the SPEP on which

the small firm’s profit is maximized, the small firm charges a price p∗2 lower than

the monopoly price and rations its output below its capacity. The large firm charges

the monopoly price (which equals the residual monopoly price) and serves residual

13



demand. If δ ≥ max{δ̃, δr}, then any SPEP satisfying (PO) also satisfies (SP).

δ̃ < δr if and only if k̂1 > M+k̂2

2
.

Proof. Note that from Proposition 2, on every SPEP satisfying (PO) and (C),

firm 1 sets a price equal to 1. From the definition of δr, it follows from Proposi-

tion 2 that if δ ≥ max{δ̃, δr} holds, min{p∗2, 1} = 1. Therefore P c
2 = {1}, hence,

it follows from Proposition 2 that any SPEP satisfying (PO) and (C) also satisfies

(SP). Assume for now that the interval [δ̃, δr) is nonempty and that δ ∈ [δ̃, δr).

It follows that p∗2 < 1. To prove Proposition 3, we show that if δ is in [δ̃, δr),

τ 2(δ) = τ ∗2 (δ) ≡ {(1,M −α2(p
∗
2)), p

∗
2, α2(p

∗
2))}. To this effect, note that M −α2(p) is

a strictly increasing function of p. Hence, (1− c)(M − α2(p)) > (1− c)(M − α2(p
∗
2))

for all p ∈ (p∗2, 1]. We now show that τ ∗2 (δ) = τ 2(δ). Suppose to the contrary that

τ 2(δ) = τ̂ ≡ {(1, q1, p, q2)} where p ∈ (p∗2, 1]. Then by definition of τ 2(δ), V2(τ̂) ≥
V2(τ

∗
2 (δ)). But from Proposition 2, since τ̂ is a SPEP satisfying (PO) and (C),

V1(τ̂) = (1− c)s(1, q1, p, q2) ≥ (1− c)(M −α2(p)) > (1− c)(M −α2(p
∗
2)) = V1(τ

∗
2 (δ)).

Hence V2(τ̂) ≥ V2(τ
∗
2 (δ)) cannot hold, otherwise τ ∗2 (δ) does not satisfy (PO), a con-

tradiction to Proposition 2. Hence, it must be that τ ∗2 (δ) = τ(δ). This implies that

on the path τ 2(δ), firm 2 sets a price equal to p∗2, which is strictly less than 1. From

Proposition 2, it also follows that firm 1 sets a price equal to 1 and serves residual

demand. Finally, using the definitions of δr and δ̃, straightforward calculations yield

δ̃ < δr if and only if k̂1 > M+k̂2

2
. ¤

One implication of Proposition 3 is that symmetric firms (indeed, firms with

identical effective capacities) never charge different prices along constrained Pareto

optimal SPEP’s, since k̂1 = k̂2 implies k̂1 ≤ M+k̂2

2
.

Propositions 2 and 3 can be used to construct Figure 1. Figure 1 illustrates the

constrained Pareto frontier of payoffs attainable along stationary perfect equilibrium

paths for capacity pairs satisfying k̂1 > M+k̂2

2
and discount factor δ ∈ [1

2
, δr). Firm

1’s normalized supergame payoff is indicated on the horizontal axis and firm 2’s on

the vertical axis. Firm 1’s maximum payoff is attained on a path satisfying (SP)

and is equal to (1 − c)α1(δ). Firm 2’s payoff is then equal to (1 − c)α2(δ). The

slope of the constrained Pareto frontier is −1 as (SP) implies that all payoffs on that

portion of the frontier are obtained by transferring sales from one firm to the other

at p1 = p2 = 1. The point ((1− c)α1(δ), (1− c)α2(δ)) represents the maximum profit

level for firm 2 which can be supported on a SPEP satisfying (SP).

As shown in Proposition 3, if k̂1 > M+k̂2

2
and δ ∈ [1

2
, δr), firm 2 can attain

higher profit levels by undercutting firm 1. An implication is that the constrained

Pareto frontier becomes non-linear.10 Intuitively, on that portion of the frontier,

10Formally, an implication of Proposition 2 is that all (V1, V2) on the constrained Pareto frontier
such that V1 < (1 − c)α1(δ) must satisfy V1 = (1 − c)(M − α2(p2)) and V2 = (p2 − c)α2(p2)
for p2 ∈ P c

2 . Using the expression for α2(p2) given by (6) and solving for p2 as a function of V1

14



as V1 decreases, all payoffs are obtained by transferring sales from the large firm

to the small firm, but at a decreasing price for the small firm. Alternatively, note

that firm 2’s payoff on SPEP’s satisfying (PO) in which firm 2 undercuts firm 1

is a non-linear function of firm 2’s price. Moreover, it follows from Proposition 2

that for SPEP’s satisfying (PO) and on which firm 2 undercuts firm 1, the price set

by firm 2 determines each firm’s payoff uniquely. Therefore any change in firm 2’s

price consistent with firms’ payoffs remaining on the constrained Pareto frontier has

a non-linear effect on firm 2’s payoff, implying that the constrained Pareto frontier

is non-linear.

If δ < δ̃, Lemma 1 implies that there is no sustainable stationary path satisfying

both (PO) and (C) on which firms set the same price. However, if δ̃ ≤ δ < δr, there

exist constrained Pareto optimal SPEP yielding collusive payoffs on which the small

firm sets a price less than 1, and the large firm sets its price equal to 1. Proposition

4 establishes that there is a range of discount factors below δ̃ for which there exist

SPEP’s satisfying (PO) and (C) on which the small firm undercuts the large firm

and rations its output below its capacity.

Proposition 4 Suppose A1 holds. If k̂1 > M+k̂2

2
, there exists a δ̂ < δ̃, such that for

every δ ∈ (δ̂, δ̃), there exists a SPEP satisfying (PO) and (C). Furthermore on any

such SPEP the small firm charges a price lower than the monopoly price and rations

its output below its capacity. The large firm charges the monopoly price (which equals

the residual monopoly price) and serves residual demand.

Proof. From Lemma 1, the assumption δ < δ̃ implies that there exists no SPEP of

the form {(1, q1, 1, q2)} satisfying (PO). Moreover, since k̂1 > M+k̂2

2
by assumption,

it follows from Proposition 3 that δ̃ < δr. Thus, by definition of δr, if δ < δ̃, the set

[p∗2, 1) is non-empty. We show that there exists δ̂ < δ̃ such that for all δ > δ̂, there

exists a SPEP satisfying (PO) and (C) satisfying the requirements of the proposition.

If δ = δ̃, from Propositions 2 and 3, the path τ ∗2 (δ̃) = {(1, M − α2(p
∗
2), p

∗
2, α2(p

∗
2)}

satisfies (PO), (C) and maximizes firm 2’s payoff. This implies that the following

holds: V2(τ
∗
2 (δ̃)) = p∗2α2(p

∗
2) > (1− c)α2(δ̃) = (1− c) max{αN

2 , α2(δ̃)}, where the last

equality follows from the definitions of δ̃, α2(δ), α2(δ) and αN
2 . Thus by the definition

of α2(δ), if δ = δ̃, then on τ ∗2 (δ̃), (5) is not binding, that is:

V2(τ
∗
2 (δ̃)) > (1− δ̃)(1− c)k̂2 + δ̃(1− c)(M − k̂1).

Now, define the function D(d) = V2(τ
∗
2 (d))−(1−d)(1−c)k̂2−d(1−c)(M− k̂1). Note

that this function is strictly increasing in d because V2(τ
∗
2 (d)) is increasing in d and

yields p2 = V1−δ(1−c)(M−k̂2)

(1−δ)k̂1
+ c. Substituting in V2 yields V2 =

(
V1−δ(1−c)(M−k̂2)

(1−δ)k̂1

)
(M − V1

1−c ).

Differentiating and rearranging yields dV2

dV1
= (1−c)[M+δ(M−k̂2)]−2V1

(1−c)(1−δ)k̂1
, which is less than zero, greater

than −1, and decreasing in V1, for all SPEP payoffs V1 satisfying (PO) and (C).
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k̂1 + k̂2 > M . Let δ̂′ be equal to min{d ∈ R|0 < d < δ̃ and D(d) = 0} if such number

exists and to 0 otherwise. Then, if δ > δ̂′, D(δ) ≥ 0. Therefore, by definition of

D(δ), (5) holds on τ ∗2 (δ). Using the definition of M − α2(p2), it is clear that (4) also

holds on τ ∗2 (δ). It remains to show that τ ∗2 (δ) satisfies (C). A simple computation

yields p∗2α2(p
∗
2) > πN

2 if and only if δ > δ̂′′ ≡ M−2k̂2

M−k̂2
. Straightforward computations

yield δ̂′′ < δ̃ for all (k1, k2) satisfying our assumptions. Letting δ̂ ≡ max{δ̂′, δ̂′′}, for

δ ∈ (δ̂, δ̃), τ ∗2 (δ) is a SPEP that satisfies (PO) and (C). ¤

Proposition 4 states that if k̂1 > M+k̂2

2
, then there exists a SPEP τ satisfying

(PO) and (C) for δ in an interval below δ̃. Such a SPEP cannot satisfy (SP) as we

have shown in Lemma 1. The implication of Proposition 4 is that if the larger firm

is sufficiently large, then asymmetric pricing and endogenous rationing by the small

firm arise everywhere on the set of SPEP satisfying (PO) and (C). Note that such

SPEP do not exist under B-E competition, since they rely on the firms’ ability to

ration output even when their prices differ.

5 Security level penal codes

It is well understood that in price-setting games with capacity constraints, including

the price-quantity game analyzed in this paper, the grim trigger strategy of reverting

to the one-shot Nash equilibrium (in mixed strategies) does not constitute an optimal

punishment for the small firm for a wide range of discount factors and capacity pairs.

We have shown that in the region of capacities where the classical B-E equilibrium

is in non-degenerate mixed strategies, the small firm receives a payoff that strictly

exceeds its minmax payoff in the equilibrium of the one-shot game. In the symmetric

B-E supergame, Lambson (1987) shows that if there exists a worst pure strategy

perfect equilibrium punishment, then it is a security level punishment for both firms.

In the asymmetric B-E supergame, Lambson (1994) shows that if there exists a worst

pure strategy perfect equilibrium punishment, then it is a security level punishment

for the large firm.11 However, it need not be the case for the small firm. Whenever

they exist, perfect equilibrium strategies generating security level punishment paths

for both firms constitute an optimal penal code, since no firm can be held down to

a value strictly lower than its minmax payoff.

Abreu (1986) introduced the notion of a 2-phase punishment path. Following

Abreu (1986), we call a 2-phase punishment path a path which is stationary after the

first period. Despite the fact that these paths do not generally possess the optimality

11Lambson’s analysis focuses, like ours, on pure strategies only. It is clear that if one allows for
mixed strategies in the supergame, then repeating the one-shot Nash equilibrium forever achieves
the worst punishment for the large firm.
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properties in our game that they have in the Abreu analysis,12 their application here

is compelling. First, they are computationally tractable and include grim-trigger

strategies as a special case. Second, they allow for more severe punishments than,

and therefore improve upon, other punishments applied in the B-E literature (for

a wide range of parameter values). We show that for a wide range of capacities,

discount factors, and unit costs, perfect equilibrium 2-phase punishment paths exist

and achieve the security level for both firms.

For δ ≥ 1
2
, optimal punishments within the class of 2-phase punishments have

the following properties. If k2 is sufficiently large, in the first period of the small

firm’s punishment path, the small firm offers and sells its whole capacity at a low

price, possibly below unit cost. The large firm offers its capacity and sells an amount

equal to its residual demand at the highest price that does not provide the small

firm an incentive to deviate. The second phase consists of the constrained Pareto

optimal SPEP (supported by security level punishments) along which the small firm

obtains its lowest payoff. For smaller values of k2, the firms’ roles are reversed in

the first period. The large firm offers and sells its whole capacity at the lowest

price consistent with its incentive constraint being satisfied. The small firm offers its

capacity, but sells to residual demand, at a price strictly above its rival’s. From the

second period on, firms revert to a stationary path satisfying (PO) which satisfies

the following properties: the small firm obtains its security level on the entire path

and all incentive constraints are satisfied in every period.

For δ ≥ 1
2
, the large firm’s punishment path in an optimal 2-phase punishment

takes two different forms. For a given discount factor, if the small firm’s capacity is

relatively low, in the first period, the large firm sets the highest price that does not

provide the small firm an incentive to deviate, offers its capacity and sells to residual

demand. In the first period, the small firm sets a lower price than the large firm,

offers and sells its capacity. Firms then revert to a second phase in which the large

firm may obtain more than its lowest constrained Pareto optimal SPEP payoff. If

the small firm’s capacity is sufficiently large, the form of the large firm’s punishment

path is similar that of the small firm’s. In the first period, the small firm offers

its capacity at the highest price that does not provide the large firm an incentive to

deviate and sells to residual demand. The large firm sets a lower price, possibly below

unit cost, offers and sells its capacity. The second phase consists of the constrained

Pareto optimal SPEP on which the large firm obtains its lowest payoff.

We focus on stationary paths on which firms charge the same price for the second

phase. We will see that for δ ≥ 1
2
, this is without loss of generality because the

binding constraint is the large firm’s constraint along the small firm’s punishment

path. Proposition 2 implies that for SPEP’s supported by security level punishments,

12Later in this section, we construct a numerical example of a three-phase perfect equilibrium
punishment path that supports a security level punishment for the small firm when the 2-phase
path fails to achieve the security level for the small firm.
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the large firm obtains its largest profit on SPEP’s on which p1 = p2 = 1. Therefore,

a second phase along which firms charge different prices would be more difficult to

sustain.

Let δ ≥ 1
2

and let τ p ≡ {(1, q1, 1, q2)} be a constrained Pareto optimal SPEP

supported by security level punishment paths. In the first phase of its punishment,

let firm 2 charge a price ps
2 such that the following equality is satisfied:

(1− δ)(ps
2 − c)k̂2 + δ(1− c)s2(1, q2, 1, q1) = π2. (7)

Since τ p is a SPEP, s2((1, q2, 1, q1)) > M − k̂1. It follows from (7) that ps
2 < p

2
.

Therefore if the punishing firm, 1, sets p1 = p
2
, it sells to residual demand. Therefore,

the only condition that needs to be satisfied for the 2-phase path to be sustainable

is:

(1− δ)(p
2
− c)(M − k̂2) + δ(1− c)s1(1, q2, 1, q1) ≥ π1. (8)

Using this simple structure, we now show that the large firm is able to punish devi-

ations by the small firm as harshly as possible for a large set of capacity pairs. In

Proposition 5 below we characterize a sufficient condition under which the small firm

may be held down to its security level in a 2-phase perfect equilibrium punishment.

In our characterization, (8) is the binding constraint.

Note however that in the above formulation of the small firm’s punishment, we

do not a priori rule out negative or below cost pricing. While we believe that there

may be conditions under which such pricing policies are relevant, before proceeding

to Proposition 5, we first provide conditions on the parameters that insure that

punishment prices do not become negative as δ approaches 1 (and therefore for all

δ). To this effect, suppose that for δ ≥ 1
2
, s2(1, q2, 1, q1) = α2(δ) in (7). Solving for

ps
2, we obtain:

ps
2 = c +

(1− c)[(M − k̂1)− δα2(δ)]

(1− δ)k̂2

.

Taking the derivative of ps
2 with respect to δ, it is straightforward to show that ps

2 is

strictly decreasing in δ. Therefore:

inf
δ
{ps

2} = lim
δ↑1

ps
2 = −(1− c)

(
k̂2 − 2(M − k̂1)

k̂2

)
+ c.

The above limit is greater than or equal to zero if and only if:

c ≥ ĉ ≡ 1

2
− M − k̂1

2(k̂1 + k̂2 −M)
> 0.

We will maintain this assumption on unit cost in Proposition 5, although it can be

removed if we allow for negative prices. The proof of the proposition appears in the

Appendix.
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Proposition 5 Assume δ ≥ 1
2
, k1+k2 > M and c ≥ ĉ. Then if k̂1 ≥ k̂2 ≥ Ψ(k1, δ) ≡

M −min
{

k̂1,
δ2M

1−δ(1−δ)

}
, there exists a pure strategy perfect equilibrium path τ s

i along

which firm i obtains its security level, i = 1, 2.13

Our analysis of 2-phase punishment paths in price-quantity supergames generates

security level punishments for a larger range of parameters than previous treatments

of 2-phase punishment paths of B-E supergames. This arises for several reasons.

First, when compared to 2-phase punishments in B-E supergames with a fixed sharing

rule, the ability to ration output at any given price in price-quantity supergames

allows for a higher payoff for the large firm along the constrained Pareto optimal

SPEP constituting the second phase of the small firm’s punishment. This, in turn,

relaxes the large firm’s incentive constraint in the first period of the small firm’s

punishment path.

Although previous B-E supergame analyses with endogenous sharing rules apply

a second phase of punishment that coincides with that employed here, we also intro-

duce two different types of first phase of punishment not previously analyzed in the

literature. In our analysis, if the small firm’s capacity is sufficiently large, the first

phase of firm i’s punishment requires that firm j set the lowest price greater than

or equal to p
i

that satisfies j’s incentive constraint, and sell its effective capacity,

k̂j. For smaller values of firm 2’s capacity, in the first phase of firm 1’s punishment,

firm 1 sets a price equal to p
2
, firm 2 sets a price below firm 1’s price and both

firms offer their capacity. These first phases of punishment, which are also feasible in

the B-E supergame, improve upon the 2-phase punishments proposed by Lambson

(1994) and Compte, Jenny, and Rey (2002), which require that punishing firms set

price equal to unit cost.14

In our analysis, the set of capacity pairs for which perfect equilibrium security

level 2-phase punishment paths can be constructed for both firms becomes smaller

as δ decreases. This can be easily seen by noting that Ψ(k1, δ) is a non-decreasing

function of δ. For δ < 1
2
, Lemma 1 shows that the paths satisfying (SP) used in

the second phase of the punishment paths constructed in Proposition 5 cannot be

supported by security level punishment paths. However, from Proposition 4, for

δ ∈ (δ̂, 1
2
) and k̂1 > M+k̂2

2
, constrained Pareto optimal SPEP’s in which the small

firm undercuts the large firm and rations its output can be supported by security

level punishment paths. Moreover, in the limit as delta approaches 1
2

from below, the

large firm’s payoff on its most favorable such path is arbitrarily close to the payoff

it obtains on τ p
1 . Therefore, if additionally k̂2 > Ψ(k̂1, δ) holds, by using this path

in the second phase of the small firm’s punishment path, the large firm’s incentive

13We may remove the assumption c ≥ ĉ if we allow for negative prices.
14In Lambson the punished firm sets a price lower than the punishing firm, while in Compte,

Jenny and Rey all firms set a price equal to zero, which is both the unit cost and the lower bound
of the one-shot strategy space.
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constraint in the first phase of the small firm’s punishment path is satisfied. Hence,

there exists a region of capacity space for which 2-phase security level punishment

paths can be constructed for both firms in a range of discount factors below 1
2
. That

is, perfect equilibrium 2-phase security level punishment paths can be supported in

price-quantity supergames for values of the discount factor for which they fail to

exist in Bertrand-Edgeworth supergames.

In the next proposition, we show that the set of capacity pairs for which an

optimal penal code is a security level penal code for both firms can be extended

further. In Proposition 5 above, we showed that 2-phase punishment paths can be

constructed if δ ≥ 1
2

and k2 ≥ Ψ(k1, δ). One characteristic of such punishments is

that the large firm sets a higher price than the small firm in the first period and

sells to residual demand. Below, we construct 2-phase punishment paths in the first

period of which the small firm sets a higher price than the large firm. The large firm

offers and sells its whole capacity at a price that keeps the small firm from deviating.

The small firm offers its capacity but sells to residual demand only at a price that

keeps the large firm from deviating. Then firms revert to a stationary path of the

form {(1, q1, 1, q2)}, where q1 + q2 = M , in which the quantity ceilings are such that

given the first period prices, the small firm’s payoff on the entire path is equal to

its security level and no firm has an incentive to deviate. A difficulty we did not

encounter in Proposition 5 arises when constructing this type of path. When the

large firm’s capacity is close to M , a pair of first phase prices satisfying the incentive

constraints and the requirement that the small firm obtains its security level does

not exist. Such prices exist only if k1 < [1− δ(1− δ)]M .

Note also that in Proposition 6, we assume k̂2 < Ψ(k1, δ) so that the set of

capacity pairs we characterize complements the set characterized in Proposition 5.

This allows us to show straightforwardly and without additional assumption that all

prices are non-negative on the paths we construct.

Proposition 6 Assume δ ≥ 1
2

and k1 + k2 > M . If (k1, k2) satisfies the following

conditions:

(i) (1−δ)M
1−δ(1−δ)

≤ k̂1 < [1− δ(1− δ)]M,

(ii) max
{

(1−δ)k̂2
1

k̂1−(1−δ)(M−k̂1)
, (1−δ)k̂1

1−δ(1−δ)

}
≤ k̂2 < Ψ(k1, δ),

there exists a pure strategy perfect equilibrium path τ s
i along which firm i obtains its

security level, i = 1, 2.

We have shown that punishment paths that become stationary after the first pe-

riod are optimal for a large set of parameters. However, we have constructed examples

in which the 2-phase paths above are not optimal. One example constructed includes

a non-stationary constrained Pareto optimal second-phase that exhibits price shad-

ing and rationing. This suggests that paths with a simple structure in which the
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punished firm obtains a very low profit in the first period before reverting to a

constrained Pareto optimal path exist and are optimal, at least for a range of pa-

rameters.15 It also suggests that optimal punishment paths in price-quantity games

that do not have a 2-phase structure are generally not replicated by B-E punishment

paths. Characterizing such punishment paths entails characterizing the entire set of

non-stationary constrained Pareto optimal perfect equilibrium paths, which remains

a topic for future research.

6 Empirical implications

6.1 Price dispersion

Under price-quantity competition, the main departure from results obtained under

B-E competition is the possibility of price dispersion in a pure strategy collusive

equilibrium. In Proposition 2, we computed p∗2, the minimum price set by the small

firm on a constrained Pareto optimal SPEP. Since the large firm sets a price equal

to 1, we define the maximum level price dispersion on a constrained Pareto optimal

SPEP to be:

∆(δ, k1, k2) = 1−min{p∗2, 1}.
From Propositions 3 and 4, we have that ∆(δ, k1, k2) > 0 if and only if k̂1 > M+k̂2

2

and δ ∈ (δ̂, δr). Moreover, using the expression for p∗2 in Proposition 2, it is clear

that the maximum level of price dispersion increases as k2 and δ become small and as

k̂1 becomes large. Thus, price dispersion consistent with effective collusion is more

likely to be observed in markets characterized by substantial size asymmetries. Table

1 displays values of p∗2 for various values of k2 and δ.16

As an example of price shading arising on every constrained Pareto optimal SPEP,

for δ = 0.49 and k2 = 700, pc
2, the small firm’s price in a constrained Pareto optimal

SPEP must lie in the interval [0.9025, 0.9266]. The interval vanishes to a single point

as k2 increases.

Anecdotal evidence presented in Rees’s (1993) analysis of the Great Salt Duopoly

indicates that British Salt (BS), the smallest of the two firms, quoted prices per ton

15In this example, we set M = 100, k1 = 70, k2 = 200
3 , c = 0.5 and δ = 1

2 . For these parameters,
firm 1’s constraint is binding in every period of firm 2’s punishment path, τsp

2 , defined in Proposition
5. It is possible to show that a non-stationary path with (0.94, 1, 59.65, 40.35) as prices and quotas
offered in the first period and the SPEP τ1( 1

2 ) starting in the second period exists and is a perfect
equilibrium. Moreover, on this non-stationary path, firm 1’s profit is higher than on τ1( 1

2 ), the
stationary perfect equilibrium path on which firm 1’s profit is maximized if δ = 1

2 . Therefore using
this path as a second phase of firm 2’s punishment relaxes firm 1’s constraint in the first period.

16The missing values correspond to values of the parameters for which we do not construct perfect
equilibrium security level punishment paths for both firms.
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(k2, δ) 0.5 0.52 0.58 0.60 0.62 0.65

500 - - - - 0.9447 0.9785

570 - - 0.9361 0.9565 0.9790 1

670 0.9010 0.9177 0.9775 1 1 1

770 0.9310 0.9502 1 1 1 1

Table 1: p∗2 for various values of δ and k2, setting M = k̂1 = 1000 and c = 0.4.

to its large customers below those quoted by the largest firm, ICI Weston Point

(WP), by roughly 0.25%. Firms’ capacities were such that WP could supply to the

whole market at marginal cost (k1 ≥ M) except in 1980 and BS could supply to

approximately two-thirds of the market (k2 ≈ 2
3
M). In our model, these capacities

are such that price shading and endogenous rationing by the small firm arise on

constrained Pareto Optimal SPEP’s for sufficiently low discount factors (see Table

1). Moreover, despite the slight price difference, BS never operated at full capacity

over the period of time examined by Rees, as is consistent with our endogenous

rationing result.

6.2 Capacity utilization

Rees (1993) and Lambson and Richardson (1994) use firm-level data and a Bertrand-

Edgeworth supergame approach to study the ability to collude in two different in-

dustries. They both provide data regarding the degree of capacity utilization during

collusive periods. In Rees’s study of the Great Salt Duopoly, the small firm used a

significantly greater percentage of its capacity in collusive periods than did the large

firm. In Lambson and Richardson’s study of the US passenger car market, the large

firm had a higher rate of capacity utilization than the small firm during the collusive

periods.

For some values of the parameters, our model has implications regarding capacity

utilization that differ from those obtained under standard B-E competition. For the

B-E supergame, Lambson (1994) shows that if each firm’s incentive constraint is

binding along a collusive SPEP satisfying (SP) supported by optimal penal codes

and the large firm’s capacity is less than demand at the common price, the large firm

must have a higher capacity utilization than the small firm.

In Lemma 3 in section 8.6 in the Appendix, we show that for δ ≥ δ̃, if the large

firm’s capacity is not sufficient to serve the whole market, the large firm always has

a higher capacity utilization than the small firm along the path that maximizes the

large firm’s payoff. However, the analogous statement for firm 2 is true only for a

subset of discount factors. We show that if firm 1 is large relative to firm 2, but not

necessarily larger than the market size, the small firm has a higher capacity utilization
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on the SPEP that maximizes its profit for values of the discount factor close to 1

or close to δ̃. The intuition is outlined below and illustrated in Figure 2. Figure

2 shows the range of firm 1’s sales on stationary constrained Pareto optimal SPEP

also satisfying (C) when M+k2

2
< k1 ≤ min{2k2, M} and A1 is satisfied. For such

capacity pairs, δ̃ = 1
2

< δr holds. That is, there exists a range of discount factors for

which constrained Pareto optimal SPEP include endogenous rationing. The figure

is drawn showing firm 1’s sales. The corresponding figure for firm 2 is obtained by

noting that s2 = M − s1. For discount factors close to 1, the worst sustainable

constrained Pareto optimal path for the large firm, {(1, α1(δ), 1,M −α1(δ))} is such

that it sells an amount close to residual demand after the small firm has sold its

capacity. In this case, the small firm uses almost 100% of its capacity and has higher

capacity utilization than the large firm. As the discount factor decreases, α1(δ)

increases so that eventually, the large firm has higher capacity utilization than the

small firm. Since the conditions in Proposition 3 are satisfied, for discount factors

in the interval [δ̃, δr), on the constrained Pareto optimal SPEP that maximizes its

payoff, the small firm undercuts the large firm. For such discount factors, the small

firm’s sales increase as the discount factor decreases. If firm 1 is sufficiently large,

but not necessarily larger than M , there exists a level of δ below which the small

firm has a higher capacity utilization than the large firm.

An implication of the above is that in price-quantity supergames, if the large firm

is large enough, but not necessarily larger than the market size, at the critical value

of the discount factor for which each firm’s incentive constraint is binding, the small

firm has a higher capacity utilization than the large firm. For that value of δ, on all

constrained Pareto optimal SPEP’s, the small firm sets a lower price than the large

firm and rations its output below capacity. Thus, such paths are not feasible under

B-E competition.

7 Conclusion

In contrast to the previous literature on collusion, this paper shows that price shading

by a small firm may not only be consistent with successful collusion, it may be

required. In the context of a capacity constrained price-quantity supergame, we

show that collusion may be characterized by endogenous rationing and stable price

dispersion.

Our analysis has been carried out taking capacities parametrically. A natural

question arising in this context is whether the capacity pairs that are applied in our

analysis arise endogenously in a game of simultaneous or sequential capacity choice

followed by our capacity-contingent price-quantity supergame.

Consider first the dynamic game in which firms simultaneously build capacities.

Following Benoit and Krishna’s (1991) analysis of a dynamic Bertrand-Edgeworth
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duopoly, assume that firms do not randomize in the supergame except possibly to

play the one-shot Nash equilibrium. Suppose also that the discount factor is in the

range δ ≥ δ̃. Then, for capacity pairs satisfying the conditions of Propositions 5 or 6,

the worst subgame equilibrium for firm i is one in which it obtains its security level.

On the other hand, since δ ≥ δ̃, Proposition 2 implies that for such capacity pairs

there exists a stationary perfect equilibrium path (SPEP) satisfying (PO) and (C).

Furthermore, for capacity pairs that do not satisfy the conditions in either Proposi-

tion 5 or 6, the worst equilibrium yields a payoff no greater than the discounted sum

of the one-shot Nash equilibrium payoff.

We claim that if δ ≥ δ̃, (k∗1, k
∗
2) is a capacity pair that satisfies the conditions in

either Proposition 5 or 6, and the cost of capacity is zero or is negligible, the following

strategy forms a subgame perfect equilibrium of the dynamic game: “Set (k∗1, k
∗
2) in

the first stage and play a SPEP that satisfies (PO) and (C) in the price-quantity

supergame. If firm i deviates at the capacity stage to set kd
i 6= k∗i , revert to the

path τ s
i , on which firm i obtains its security level if such a path exists for capacities

(kd
i , k

∗
−i). Otherwise, revert to the one-shot Nash equilibrium strategies forever.” It

is simple to check that all unilateral deviations in capacity from the above strategy

yield a payoff in the overall game that is strictly less than the payoff from conforming

to (k∗1, k
∗
2).

17

Note also that the result holds whether the choice of capacity is made simultane-

ously or sequentially. It relies solely on firms’ ability to punish deviations from the

equilibrium capacity pair (k∗1, k
∗
2) by imposing a payoff for the deviating firm that

is less than or equal to the discounted sum of the one-shot Nash equilibrium payoff

evaluated at (k∗1, k
∗
2).

Proposition 7 Assume that the unit cost of capacity is zero or is negligible. If

δ ≥ δ̃, every capacity pair for which there exist pure strategy perfect equilibrium

security level punishment paths for both firms can be supported in a subgame perfect

equilibrium of the dynamic game of either simultaneous or sequential capacity choice

followed by the capacity constrained price-quantity supergame.

The implication of this result is immediate. All of the behaviors described in this

paper arise in some subgame perfect equilibrium when there is endogenous choice of

capacity.

17First, kd
i must be such that kd

i + k∗−i ≥ M , otherwise, firm i could increase its payoff by
increasing kd

i slightly. Then, firm i’s optimal deviation yields a payoff equal to either the security
level, which is independent of firm i’s capacity and is thus the same at (k∗i , k∗−i) and (kd

i , k∗−i), or the
discounted sum of πN

i evaluated at (kd
i , k∗−i), where kd

i < k∗i . Since the payoff from conforming is
greater than or equal to both the security level and the discounted sum of πN

i evaluated at (k∗i , k∗−i),
it follows from the fact that the security level and πN

i are non-decreasing in ki that the payoff from
conforming is greater than the payoff from deviating.
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8 Appendix

8.1 Proof of Proposition 1

Let (Φ∗
1, Φ

∗
2) be a B-E equilibrium in GE(k1, k2, c). We will demonstrate that (µ∗1, µ

∗
2)

satisfying µ∗p1 = Φ∗
1, µ∗p2 = Φ∗

2 and γ
µ∗i
i (p) = ki, ∀p ∈ supp(µ∗pi ), i = 1, 2, is an

equilibrium of the price-quantity game.

Suppose µ∗j satisfies µ∗pj = Φ∗
j and γ

µ∗j
j (p) = kj ∀p ∈ supp(µ∗pj ). Suppose µ′i is

a best-response for firm i, j 6= i in the game Γ(k1, k2, c). Clearly, for any p ≥ c,

firm i’s expected payoff setting γ
µ′i
i (p) = ki is at least as great as the expected payoff

from setting γ
µ′i
i (p) = qi < ki. To see this, note that for any realization of pj,

si(pi, pj, ki, qj) ≥ si(pi, pj, qi, qj). Hence, for any pi ∈ supp(µ′i), setting γ
µ′i
i (p) = ki

cannot lower firm i’s expected profit. However, since (Φ∗
1, Φ

∗
2) is a B-E equilibrium,

a strategy µi such that µp
i = Φ∗

i and γµi

i (p) = ki ∀p ∈ supp(µp
i ) i = 1, 2, provides

an expected payoff to firm i that is at least as great as any other distribution µ̃i

such that γµ̃i

i (p) = ki ∀p ∈ supp(µ̃i). Hence, µi satisfying µp
i = Φ∗

i and γµi

i (p) = ki

∀p ∈ supp(µi) is a best-response to µ∗j and the underlying distributions over sales

and prices are identical to those of the B-E equilibrium (Φ∗
1, Φ

∗
2).

Suppose (µ∗1, µ
∗
2) is an equilibrium of the price-quantity game Γ(k1, k2, c). We will

break down the analysis for different regions of the capacity space.

Suppose first that k1 + k2 > M > k1. By examination, it is clear that for every

pi, pj, qj and qi < ki, si(pi, ki, pj, qj) ≥ si(pi, qi, pj, qj) with equality only if pi > pj

and M − qj ≤ qi. Hence for any price pi, firm i would strictly increase its expected

profit πi by increasing its quantity from qi to ki unless pi ≤ c, or pi > pj almost

everywhere with respect to µj and M − qj ≤ qi almost everywhere with respect to

µj. A strict dominance argument rules out pi ≤ c in the support of µi. If there

exists a p̂i ∈ supp(µ∗pi ), such that ∃qi ∈ γ
µ∗i
i (p̂i) with qi < ki and satisfying p̂i > pj,

a.e. µj, and M − qj ≤ qi, a.e. µj, then let µ̃i be an element of Mi such that µ̃i

coincides with µ∗i for all prices p 6= p̂i and γµ̃i

i (p̂i) = ki. µ̃i achieves the same expected

payoff and distribution of sales as µ∗i against µ∗j . Furthermore, µ∗j remains a best

response against µ̃i since only the incentives to set prices pj ≥ p̂i have been altered,

and the payoff from these prices has decreased. Similarly, firm j’s expected payoff

and distribution of sales are unaltered against µ̃i. This demonstrates that µ̃i is a

best response to µ∗j and µ∗j is a best response to µ̃i. A similar argument demonstrates

that if γ
µ∗j
j (p) 6= kj, ∀p ∈ supp(µ∗j), then we may construct a measure µ̃j coinciding

with µ∗j for all prices except possibly some p̂j defined analogously to p̂i. Such a µ̃j

remains a best response to µ̃i and achieves the same expected payoff and distribution

of sales as µ∗j . Furthermore, µ̃i remains a best response against µ̃j. Since γµ̃i

i (p) = ki,

∀p ∈ supp(µ̃p
i ), i = 1, 2, and (µ̃1, µ̃2) are best responses, (µ̃p

1, µ̃
p
2) must be the (unique)

B-E equilibrium price distributions. Hence, (µ∗1, µ
∗
2) generate the same equilibrium

payoffs, and price and sales distributions as the unique equilibrium of GE(k1, k2, c).
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Arguments for the range of capacities k1 ≥ M > k2 are similar to those above,

except that quantities qi such that k1 ≥ q1 ≥ M are payoff and distributionaly

equivalent to k1.

The case k1 + k2 ≤ M is trivial since in the price-quantity game, (pi, qi) = (1, ki)

is a strictly dominant strategy.

Suppose k1 ≥ k2 ≥ M . From the above arguments, if qi ∈ γ
µ∗i
i (p), then qi ≥ M

except possibly for p ≤ c or some p = p̂i such that p̂ is undercut with certainty by

firm j. Suppose c ∈ supp(µ∗pj ). Then π∗j = 0, which implies that Prµ∗i (pi ≤ p) = 1,

∀p > c. But this implies that ui = c and therefore uj ≤ c, since otherwise there would

exist a p > c such that Eµ∗j πi(p, qi, pj, qj) > 0. Hence c ∈ supp(µ∗pj ) implies ui, uj ≤ c.

It is obvious that li = lj = c since, otherwise, one firm would either sell a positive

amount at prices less than c or sell nothing at these prices (qi = 0). Selling a positive

amount at prices less than c is clearly not equilibrium behavior. Setting prices below

c with positive probability but selling nothing would imply that the rival could sell to

a positive residual demand at a price above c with positive probability, contradicting

ui ≤ c, i = 1, 2. Hence c ∈ supp(µ∗pj ) implies u1 = u2 = l1 = l2 = c, which yields the

immediate conclusion that every qi ∈ γ
µ∗i
i (c) satisfies qi ≥ M , i = 1, 2, which is the

B-E result.

Suppose c /∈ supp(µ∗pj ), j = 1, 2. By arguments similar to those above, we can

rule out either firm pricing below c with positive probability. (Clearly setting (pi, qi)

such that pi < c and qi > 0 is not part of equilibrium behavior. If firm i sets

prices below c with positive probability but sets qi = 0, then firm j has positive

residual demand with positive probability, and hence will set prices bounded above

c. This would allow firm i to undercut j’s support and earn a positive profit, again

a contradiction.) Hence li, lj > c. But by our previous argument, this implies that

qi ∈ γ
µ∗i
i (p), which implies that qi ≥ M , except possibly for some p̂ such that p̂ is

undercut with probability 1 by j 6= i. Suppose ui = uj = u. Clearly, both firms firms

cannot place positive mass at u since this would imply that every qi ∈ γ
µ∗i
i (u) satisfies

qi ≥ M , i = 1, 2, and there would be incentive to undercut u slightly. If only one firm

has positive mass at u, that firm is undercut with certainty at u and faces zero residual

demand there. It therefore earns zero equilibrium expected profit, which contradicts

li, lj > 0. Hence neither firm can place mass on {u} × [0, ki]. But this implies that

qi ≥ M , ∀qi ∈ γ
µ∗i
i (p) and ∀p ∈ supp(µ∗i ) implying that limpj↑uj

πj(pj, γ
µ∗j
j (pj), µ

∗
i ) = 0,

again a contradiction to lj > 0.

If ui > uj, i 6= j, it is clear that the above considerations imply that π∗i = 0, again,

a contradiction to li > 0. Hence we cannot have an equilibrium with c /∈ supp(µ∗j)
for some j. ¤
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8.2 Proof of Lemma 1

We first demonstrate that if there exists a SPEP τ s = {(p1, q1, p2, q2)} satisfying (PO)

and (SP), then q1 + q2 ≥ M and pi = 1, i = 1, 2. First, (SP) implies p1 = p2 = p̃ for

some p̃. There are three possible cases: (i) (p̃, qj) ∈ Ai for i = 1, 2, (ii) (p̃, qj) /∈ Ai

for one and only one i, and (iii) (p̃, qj) /∈ Ai for i = 1, 2.

In case (i), since A1 holds, the incentive constraints (4) and (5) may be written

as follows:18

(p̃− c)[si(p̃, p̃, q1, q2)− (1− δ)k̂i] ≥ δ(1− c)(M − k̂−i), i = 1, 2. (9)

We first show that within the class of pricing policies satisfying (SP), the incentive

constraints are never tightened by setting p1 = p2 = 1. From δ(1−c)(M− k̂j) ≥ 0, it

follows that if si− (1−δ)k̂i < 0, either (9) does not hold or p̃ < c, both contradicting

SPEP. If i is such that si− (1− δ)ki = 0, (9) implies that k−i ≥ M . If k−i ≥ M and

ki < M then for j 6= i, δ(1−c)(M−k−j) > 0. But then, (9) implies sj−(1−δ)kj > 0,

so that the LHS of (9) is strictly increasing in p̃. Therefore setting p̃ = 1 relaxes

firm j’s incentive constraint without affecting firm i’s. If k−i ≥ M i = 1, 2, and

si − (1 − δ)ki = 0, then setting p̃ = 1 does not affect the incentive constraint of

any firm. Finally, si − (1 − δ)ki > 0 i = 1, 2 implies that the LHS of (9) is strictly

increasing in p̃, so that setting p̃ = 1 relaxes each firm’s incentive constraint. Since

setting p1 = p2 = 1 never tightens the incentive constraints, it is easy to see that in

all cases setting p̃ < 1 contradicts (PO).

In case (ii), let firm n be this firm for which (p̃, q−n) /∈ An. Since A1 holds, firm

n’s incentive constraint may be written as follows:

(p̃− c)sn − (1− δ)(1− c)(M − q̂−n) ≤ δ(1− c)(M − k̂−n). (10)

Using the same type of arguments as for case (i), (p̃− c)sn− (1− δ)(1− c)(M − q̂−n)

contradicts the fact that τ s is a SPEP. If (p̃ − c)sn − (1 − δ)(1 − c)(M − q̂−n) = 0,

then (10) implies k−n ≥ M . Since the LHS of (10) is strictly increasing in p̃, setting

p̃ = 1 relaxes (10). Arguments developed for case (i) show that setting p̃ = 1 relaxes

the other firm’s incentive constraint, given by (9) for i 6= n, as well. Again, setting

p̃ < 1 would contradict (PO).

The proof for case (iii) follows directly from case (ii). This completes the proof

that if τ s is SPEP satisfying (PO) and (SP), then p1 = p2 = 1.

We now show that p1 = p2 = p̃ = 1 on a SPEP τ s implies that (1, qj) ∈ Ai i = 1, 2

j 6= i. Suppose (1, qj) 6= Ai for some i, j. Then it follows from (3), the definition of

Ai, that qj < M − k̂i, from which it follows that πj(1, 1, qi, qj) < πj, a contradiction

to SPEP.

18Where no confusion is possible, we drop the argument out of si(p̃, p̃, q1, q2) for notational
convenience.
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Next we show that if τ s satisfies (PO) and (SP), it must be the case that q1+q2 ≥
M . Suppose {(1, q1, 1, q2)} satisfies (PO) and q1 + q2 < M . Then firm i’s profit is

πi = (1− c)qi. However, setting q′i = M − qj, firm i obtains π′i = (1− c)(M − qj) >

(1− c)qi and firm j’s profit is unaffected, contradicting (PO).

Now we show that there exists a path τ s = {1, 1, q1, q2} satisfying (PO) and (SP)

if and only if δ ≥ 1
2
. There exists such a τ s if and only if the following conditions are

satisfied:

(1− c)s1 ≥ (1− δ)(1− c)k̂1 + δ(1− c)(M − k̂2), (11)

(1− c)s2 ≥ (1− δ)(1− c)k̂2 + δ(1− c)(M − k̂1), (12)

s1 ≥ M − k̂2, (13)

s2 ≥ M − k̂1. (14)

From q1 + q2 ≥ M , we have s2 = M − s1. Substituting for M − s1 in (12) and

rewriting (12) and (13) yields:

δ ≥ δ′(s1) ≡ k̂1 − s1

k̂1 + k̂2 −M
, (15)

δ ≥ δ′′(s1) ≡ k̂2 −M + s1

k̂1 + k̂2 −M
. (16)

For a given quantity sold by firm 1, δ′(s1) and δ′′(s1) define lower bounds on the

discount factor for the existence of a SPEP τ s satisfying (PO) and (SP). Therefore,

if firm 1’s sales are given by s1, then τ s is a SPEP satisfying (PO) and (SP) only if

δ ≥ max{δ′, δ′′}. Since δ′ decreases linearly with s1 and δ′′ increases linearly with s1,

we can define s∗1 such that δ′(s∗1) = δ′′(s∗1). It follows that if δ < δ′(s∗1), there does not

exist s1 such that (11) and (12) are satisfied. Therefore, if δ < δ′(s∗1), there does not

exist a SPEP satisfying (PO) and (SP). Solving for s∗1, we obtain s∗1 = 1
2
(k̂1+M−k̂2).

Substituting for s∗1 in δ′, we obtain δ′(s∗1) = 1
2
. Consider the path τ ∗ = {(1, 1, s∗1, s∗2)}.

For every δ ≥ 1
2
, τ ∗ is a SPEP that satisfies (PO) and (SP). The proof that there

exists a SPEP satisfying (PO) and (SP) if, and only if δ ≥ 1
2

is now complete.

We now show that τ s also satisfies (C) if, and only if δ ≥ δ̃. We strengthen (14)

to:

s2 ≥ (M − k̂2)k̂2

k̂1

. (17)

From (13) and (17), τ s satisfies (C) only if additionally M−k̂2 ≤ s1 ≤ M−
(

M−k̂2

k̂1

)
k̂2,

with at least one strict inequality. It remains to establish that δ ≥ δ̃ is necessary

and sufficient for some τ s satisfying (PO) and (SP) to also satisfy (C). We have

s∗1 > M − k̂2, however, using (17), we obtain s∗1 ≤ M −
(

M−k̂2

k̂1

)
k̂2 if, and only if

k̂2 ≥ 1
2
k̂1. So, k̂2 < 1

2
k̂1 implies that τ ∗ does not satisfy (C). In this case, δ′(M −
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(
M−k̂2

k̂1

)
k̂2) > δ′′(M−

(
M−k̂2

k̂1

)
k̂2). Simple algebra yields δ′(M−

(
M−k̂2

k̂1

)
k̂2) = 1− k̂2

k̂1
.

For every δ ≥ 1 − k̂2

k̂1
, the path {(1, 1, M −

(
M−k̂2

k̂1

)
k̂2,

(
M−k̂2

k̂1

)
k̂2)} is a SPEP that

satisfies (PO), (C) and (SP). ¤

8.3 Proof of Proposition 2

Assuming A1, τ s = {(pc
1, p

c
2, q

c
1, q

c
2)} is a SPEP satisfying (PO) and (C) if and only if

(pc
1, p

c
2, q

c
1, q

c
2) solves the following problem:

max
{p1,p2,q1,q2}

(p2 − c)s2(p1, q1, p2, q2) (18)

subject to (p1 − c)s1(p1, q1, p2, q2) ≥ π, (19)

s2(p1, q1, p2, q2) ≥ αN
2 , (4) and (5),

where (1− c)(M −αN
2 ) ≥ π ≥ (1− c)(M − k̂2). First, we show that if π is such that

when firms’ sales are given by s1 = π
1−c

and s2 = M − π
1−c

and firms set p1 = p2 = 1

neither (4) nor (5) are binding, the vector (1, q1, 1, q2) such that s1(1, q1, 1, q2) = π
1−c

and s2(1, q1, 1, q2) = M− π
1−c

solves (18). Note that given any p1, p2 > c, it is optimal

to set q1 + q2 ≥ M , since if q2 < M − q1, the objective can be increased without

affecting firm 1’s sales and profit and neither firm’s incentive constraints. Therefore,

(PO) implies s2(p1, q1, p2, q2) = M − s1(p1, q1, p2, q2). We solve for s1 from (19)

satisfied with equality and substitute for M−s1 in the objective function. Maximizing

with respect to p1 and p2 yields the unique solution p1 = p2 = 1. Therefore, using

(19), we obtain s1(1, q1, 1, q2) = π
1−c

, which implies that for such π, (1, q1, 1, q2) solves

(18) if and only if q1 + q2 ≥ M , s1(1, q1, 1, q2) = π
1−c

and s2(1, q1, 1, q2) = M − π
1−c

.

Second, we examine the case in which π ≤ π′, where π′ is such that if firms set

p1 = p2 = 1 and sell s1 = π′
1−c

and s2 = M − π′
1−c

, then (4) is binding. By definition of

α1(δ), π′ ≡ (1− c)α1(δ). Furthermore for π < π′, (4) does not hold on any path on

which firms set p1 = p2 = 1 and sell s1 = π
1−c

and s2 = M − π
1−c

. This implies that

if π < π′, (4) must be binding at a solution to (18). An argument similar to that

used above establishes that for all π ≤ π′, (PO) implies q1 + q2 ≥ M , in which case

s1 + s2 = M . For given prices and quantities, both firms’ sales are then uniquely

defined by (4) satisfied with equality and s1 + s2 = M . Suppose (p′1, q
′
1, p

′
2, q

′
2) solves

(18) and (p′2, q
′
2) ∈ A1 (we show below that the latter does hold). Solving for s1 from

(4), setting s2 = M − s1 and substituting for s2 in the objective of (18), it must be

the case that (p′1, q
′
1, p

′
2, q

′
2) solves the following problem:

max{p1,p2} (p2 − c)

(
M − (1− δ)(p2 − c)k̂1 + δ(1− c)(M − k̂2)

(p1 − c)

)
(20)

subject to (1− δ)(p2 − c)k̂1 + δ(1− c)(M − k̂2) ≥ π and (5).
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Note that the objective function is strictly increasing in p1. We now show that p′1 = 1

must hold. Suppose p′1 < 1, then, since the objective function is strictly increasing

in p1, it must the case that (5) is binding at p′1, that is:

(p′2 − c)s2 = (1− δ)π∗2(p
′
1, q

′
1) + δ(M − k̂1). (21)

However, we have shown above that {(1,M − α2(δ), 1, α2(δ))} is a SPEP on which

π1(1,M − α2(δ), 1, α2(δ)) ≥ π and:

π2(1,M − α2(δ), 1, α2(δ)) ≥ (1− δ)(1− c)k2 + δ(1− c)(M − k̂1) > (p′2 − c)s2,

where the last inequality follows from (21). But this contradicts the fact that

(p′1, q
′
1, p

′
2, q

′
2) solves (18). Hence, p′1 = 1, implying that s2(p

′
1, q

′
1, p

′
2, q

′
2) = α2(p

′
2)

and π1(p
′
1, q

′
1, p

′
2, q

′
2) = (1 − c)(M − α2(p

′
2)), by definition of α2(p2). Therefore, the

only constraint left is (1 − δ)(p′2 − c)k̂1 + δ(1 − c)(M − k̂2) ≥ π. If π is such that

the latter constraint is binding, p′2 is uniquely defined by (1 − c)(M − α2(p
′
2)) = π.

From the latter inequality, it is easy to see that p′2 decreases as π decreases since

M −α2(p2) is increasing in p2. We now determine the lowest such p′2 firm 2 ever sets

on a SPEP satisfying (PO). This price, which we denote by p∗2 is the solution to the

first order condition to (20) assuming (5) and the remaining constraint hold:

(1− c)M − 2(1− δ)(p∗2 − c)k̂1 − δ(1− c)(M − k̂2) = 0. (22)

which yields p∗2 = (1−c)(M−δ(M−k̂2))

2(1−δ)k̂1
+ c.19 If there is no interior solution for which

p∗2 ≤ 1, then the solution is a corner solution at p∗2 = 1. We have thus shown that

if δ ≥ δ̃, there exists p∗2 such that for all pc
2 ∈ [min{p∗2, 1}, 1], there exists a path

τ c = {(1,M − α2(p
c
2), p

c
2, α2(p

c
2)} that satisfies (PO) and (C).

It remains to show that (pc
2, α2(p

c
2)) ∈ A1, ∀pc

2 ∈ P c
2 . If min{p∗2, 1} = 1, this is obvi-

ous. Suppose min{p∗2, 1} = p∗2 < 1. Consider the path {(1,M − α2(p
c
2)), p

c
2, α2(p

c
2))},

pc
2 ∈ P c

2 . Suppose, to obtain a contradiction that (pc
2, α2(p

c
2)) /∈ A1. By definition of

α2(p
c
2):

(1− c)(M − α2(p
c
2)) = (1− δ)(pc

2 − c)k1 + δ(1− c)(M − k̂2). (23)

By the definition of A1, if (pc
2, α2(p

c
2)) /∈ A1:

(1− c)(M − α2(p
c
2)) > (pc

2 − c)k̂1.

Thus, from (23) and the fact that δ ∈ (0, 1), it follows that:

(pc
2 − c)k̂1 < (1− c)(M − k̂2).

Hence, using the definition of p
1
, pc

2 < p
1

< 1 must hold. Thus p
1
∈ P c

2 . We show

that this is is impossible. From p∗2 ≤ pc
2 < 1 and the fact that for [p∗2, 1], p2α2(p2)

19The second order condition is −2(1− δ)k̂1 < 0.

32



increases as p2 decreases, we have (p∗2 − c)α2(p
∗
2) ≥ (p2 − c)α2(p2) > (1 − c)α2(δ) ≥

πN
2 = (p

1
− c)k̂2 for every p2 ∈ P c

2 . Thus, at every p2 ∈ [p∗2, 1), firm 2 obtains a

payoff strictly greater than the maximum it can obtain by setting p
1
. Firm 1 obtains

a payoff (1 − c)(M − α2(p2)) that is no less than (1 − c)(M − k̂2), the maximum

payoff it can obtain when firm 2 sells its capacity at p
1
. Hence, by (PO), p

1
/∈ P c

2 , a

contradiction. Therefore, if pc
2 ∈ P c

2 , (pc
2, α2(p

c
2)) ∈ A1.

Therefore, for δ ≥ δ̃, we have established that for all values of firm 1’s payoffs

in an interval, π ∈ [(1− c)(M − α2(min{p∗2, 1}), (1− c)(M −max{αN
2 , α2(δ)}], there

exists a unique pc
2 in an interval P c

2 ≡ [min{p∗2, 1}, 1], such that (1, qc
1, p

c
2, q

c
2) solves

(18) if and only if qc
1 + qc

2 ≥ M , and sales satisfy s1(1, p
c
2, q

c
1, q

c
2) = M − α2(p

c
2)

and s2(1, p
c
2, q

c
1, q

c
2) = α2(p

c
2) for pc

2 ∈ [p∗2, 1), and s2(1, p
c
2, q

c
1, q

c
2) ≥ max{αN

2 , α2(δ)}
and s1(1, p

c
2, q

c
1, q

c
2) ≥ α1(δ) for pc

2 = 1. Therefore, there exists a unique SPEP that

achieves payoffs (π, V2), where V2 is the value of the objective function at a solution

to (18) given π ∈ [(1− c)(M −α2(min{p∗2, 1}), (1− c)(M −max{αN
2 , α2(δ)}]. Hence,

all such SPEP satisfy (PO). Moreover, note that firm 2’s minimum payoff on such

SPEP is (1 − c)αN
2 = πN

2 and firm 1’s payoff is strictly greater than πN
1 . Thus all

such SPEP satisfy (C) as well.

To complete the proof of the proposition, we must show that firm 1 cannot obtain

a payoff greater than (1 − c)α1(δ) on a SPEP that satisfies (PO) and (C). To this

effect, suppose π′′ is such that (5) is binding at (1, q′1, 1, q
′
2) when s1(1, q

′
1, 1, q

′
2) = π′′

1−c

and s2(1, q
′
1, 1, q

′
2) = M − π′′

1−c
. This clearly implies π′′ ≡ (1− c)α1(δ), by definition of

α1(δ). Thus it follows that if π > π′′, (5) does not hold on any path {(1, q′1, 1, q′2)} for

which s1(1, q1, 1, q2) = π
1−c

and s2(1, q1, 1, q2) = M − π
1−c

. Therefore, for all π > π′′,
in any solution to (18), it must be the case that p1 < 1. Indeed, let π > π′′ and

suppose p1 = 1, then s2 = M− α1(δ)
p1−c

, and p1 = 1 imply that (p2−c)s2 is maximized at

p2 = 1, where s2 = α2(δ), contradicting the fact that (19) holds. We now show that

π′′ = (1− c)α1(δ) is the maximum profit attainable by firm 1 on a SPEP satisfying

(PO). If this is not the case, then there exists a SPEP {(p1, q1, p2, q2)} satisfying (PO)

for which p1 < 1 and (p1−c)s1 > π′′ = (1−δ)α1(δ) = δ(1−c)k̂1+(1−δ)(1−c)(M−k̂2).

Suppose such a SPEP exists. It is clear that on a SPEP, if firms set prices p1 > c

and p2 > c, the maximum amount of sales s1 firm 1 can obtain is M − s2, where s2

is the solution in s2 to firm 2’s incentive compatibility constraint (5) satisfied with

equality when firm 2’s optimal deviation is to undercut firm 1’s price:

s2 =
1

(p2 − c)
[(1− δ)(p1 − c)k̂2 + δ(1− c)(M − k̂1)].

Thus, s1 is strictly increasing in p2. Therefore, to maximize firm 1’s sales, set p2 = 1.

Now, maximizing (p1−c)s1 with respect to p1 yields the first order condition, satisfied

at an interior solution p∗1 < 1:

(1− c)M − 2(1− δ)(p∗1 − c)k̂2 − δ(1− c)(M − k̂1) = 0 (24)
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But from δ ≥ δ̃, it follows that the LHS of (24) is always strictly positive, so that the

solution is rather a corner solution, p∗1 = 1, thus yielding a contradiction. But then,

(p∗1 − c)s1 = (1 − c)α1(δ). Since firm 1 cannot obtain a greater profit on a path on

which both p1 < 1 and p2 < 1, we have shown that firm 1’s profit on a SPEP that

satisfies (PO) and (C) is less than or equal to (1− c)α1(δ), which is what we had to

prove. ¤

8.4 Proof of Proposition 5

Consider the case k̂1 = k̂2 = M . By Proposition 1, Γ(k1, k2, c) and GE(k1, k2, c)

have identical distributions of prices and sales and it is straightforward to show that

setting p1 = p2 = c and q1 = q2 = M is a pure strategy equilibrium in the one-shot

game providing each firm its security level, πi(c, c, M, M) = 0, i = 1, 2. Repeating

this one-shot equilibrium provides the desired path.

Suppose k2 < M . We begin by showing that if there exists a pure strategy two-

phase perfect equilibrium punishment path that forces the large firm down to its

security level, then there also exists a pure strategy two-phase perfect equilibrium

security level punishment for the small firm. Then we show that such a two-phase

perfect equilibrium security level punishment indeed exists for the large firm.

Consider the following punishment path τ s
2 for the small firm. In the first period,

firm 1 sets a price equal to p
2

and a quantity ceiling equal to k̂1. Firm 2 sets a price

ps
2 satisfying

(1− δ)(ps
2 − c)k̂2 + δ(1− c)α2(δ) = π2 (25)

and 0≤ ps
2 < p

2
, and a quantity ceiling equal to k̂2. We show below that such a

price ps
2 exists. After the first period and assuming no deviation, firms revert to

the stationary path {(1, 1, α1(δ), α2(δ))} from period 2 on. Firm 2’s deviations are

punished by restarting τ s
2 . We assume that there exists a perfect equilibrium security

level punishment path for firm 1. We show that under the stated assumptions, the

path τ s
2 is a security level perfect equilibrium punishment path for the small firm.

We first show that there exists a unique price ps
2 satisfying (25) and 0≤ ps

2 < p
2
.

Since k̂2 > 0, the price ps
2 defined by (25) is unique. Furthermore, since α2(δ) >

M − k̂1 and (p
2
− c)k̂2 ≡ (1− c)(M − k̂1) = π2, ps

2 < p
2
. Finally, ps

2 ≥ 0 follows from

the assumption c ≥ ĉ.

Next, we show that firms’ incentive constraints are satisfied in the first period of

τ s
2 . First, note that firm 2’s incentive constraint in the first period is given by (25)

and is therefore satisfied by definition of ps
2. Second, since we assumed that there

exists a security level perfect equilibrium punishment path for firm 1, its incentive

constraint in the first period of τ s
2 is given by:

(1− δ)(p
2
− c)(M − k̂2) + δ(1− c)α1(δ) ≥ π1. (26)
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Solving for k̂2 in (26), we obtain that (26) is satisfied if and only if:

k̂2 ≥ M −min

{
k̂1,

δ2M

1− δ(1− δ)

}
. (27)

We now show that on τ s
2 , both firms’ incentive constraints are satisfied from

period 2 on. Since firm 2’s deviations are punished by restarting τ s
2 , using (25), firm

2’s incentive constraint in any period of the stationary path {(1, 1, α1(δ), α2(δ))} is:

(1− c)α2(δ) ≥ (1− δ)(1− c)k̂2 + δπ2.

Since π2 = (1− c)(M − k̂1), for δ ≥ 1
2
, the above incentive constraint is satisfied by

definition of α2(δ).

Since firm 1 is punished down to its security level if it deviates, firm 1’s incentive

constraint in any period of the stationary path {(1, 1, α1(δ), α2(δ))} is:

(1− c)α1(δ) ≥ (1− δ)(1− c)k̂1 + δπ1.

Since π1 = (1− c)(M − k̂2), for δ ≥ 1
2
, the above incentive constraint is satisfied by

definition of α1(δ).

Thus we have established that under the stated assumptions, all incentive con-

straints are satisfied on the path τ s
2 . Thus τ s

2 is a 2-phase perfect equilibrium security

level punishment path for the small firm.

We now turn to the large firm’s punishment. Consider the following path, τ s′
1 ,

constructed in a manner similar to firm 2’s punishment above. In the first period,

firm 2 sets a price equal to p
1

and a quantity ceiling equal to k̂2. Firm 1 sets ps
1

satisfying

(1− δ)(ps
1 − c)k̂1 + δ(1− c)α1(δ) = π1, (28)

and 0 ≤ ps
1 ≤ p

2
, and a quantity ceiling equal to k̂1. We show below that such

a price ps
1 exists. From the second period on, firms revert to the stationary path

{(1, 1, α1(δ), α2(δ))}. We assume that firm 1’s deviations are punished by restarting

τ s′
1 in the first period and that firm 2’s deviations are punished by reverting to τ s

2 .

We show below that if k̂2 ≥ max
{

k̂1

1+δ
, Ψ(k1, δ)

}
, then τ s′

1 is a 2-phase perfect

equilibrium security level punishment path for firm 1.

We begin by deriving a condition under which there exists a unique price ps
1

satisfying (28) and 0 ≤ ps
1 < p

2
. First, since k̂1 > 0, if such a price ps

1 exists, it is

unique. Second, it is simple to check that if c ≥ ĉ, ps
1 solving (28) satisfies ps

1 ≥ 0.

Finally, straightforward computations yield that ps
1 solving (28) also satisfies ps

1 ≤ p
2

if and only if k̂2 ≥ k̂1/(1 + δ), with equality in one of these inequalities if and only if

there is equality in the other.

We now show that firm 2’s incentive constraint is satisfied in the first period

of τ s′
1 . Since firm 2’s deviations are punished by reverting to τ s

2 , firm 2’s incentive
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constraint in the first period of τ s′
1 is:

(1− δ)(p
1
− c)(M − k̂1) + δ(1− c)α2(δ) ≥ π2, (29)

which, after solving for k̂1, is equivalent to:

k̂1 ≥ M −min

{
k̂2,

δ2M

1− δ(1− δ)

}
. (30)

If the minimum in the bracketed expression in (30) is obtained at k̂2, the inequality

holds from the assumption k1 +k2 > M . If the minimum in the bracketed expression

in (30) is not obtained at k̂2, the inequality holds since by assumption k̂1 ≥ k̂2 ≥
Ψ(k1, δ). Furthermore, firm 1’s constraint in the first period is given by (28) and is

therefore satisfied by definition of ps
1.

Finally, we show that on τ s′
1 , both firms’ incentive constraints are satisfied from

period 2 on. Since firm 2’s deviations are punished by restarting τ s
2 , firm 2’s incentive

constraint in any period of the stationary path {(1, 1, α1(δ), α2(δ))} is:

(1− c)α2(δ) ≥ (1− δ)(1− c)k̂2 + δπ2.

Since π2 = (1− c)(M − k̂1), for δ ≥ 1
2
, the above incentive constraint is satisfied by

definition of α2(δ).

Since firm 1’s deviations are punished by restarting τ s′
1 in the first period, firm

1’s incentive constraint in any period of the stationary path {(1, 1, α1(δ), α2(δ))} is:

(1− c)α1(δ) ≥ (1− δ)(1− c)k̂1 + δπ1.

Since π1 = (1− c)(M − k̂2), for δ ≥ 1
2
, the above incentive constraint is satisfied by

definition of α1(δ).

Thus if k̂2 ≥ max
{

k̂1

1+δ
, Ψ(k1, δ)

}
, we have constructed a perfect equilibrium

punishment path on which the large firm obtains its security level.

To complete the proof that under the assumptions of the proposition, there exists

a 2-phase perfect equilibrium punishment that drives the large firm down to its

security level, suppose k̂2 ∈
[
Ψ(k1, δ),

k̂1

1+δ

]
.

We will show that the following path τ s′′
1 is a 2-phase perfect equilibrium security

level punishment path for the large firm. In the first period, firm 1 sets a price equal

to p
2

and a quantity ceiling equal to k̂1 (but sells to residual demand only). From

the second period on, firm 1 sets a price equal to 1 and a quantity ceiling equal to

qs
1 ∈ [α1(δ), α1(δ)], where qs

1 is defined below. In the first period, firm 2 sets a price

pp
2 satisfying

(1− δ)(pp
2 − c)k̂2 + δ(1− c)(M − qs

1) ≥ π2, (31)

and 0 ≤ pp
2 < p

2
, and a quantity ceiling equal to k̂2. From the second period on, firm

2 sets a price equal to 1 and a quantity ceiling equal to M − qs
1. Firm 1’s deviations
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are punished by restarting τ s′′
1 in the first period and firm 2’s deviations are punished

by reverting to τ s
2 .

To demonstrate that the path τ s′′
1 satisfies the required conditions, we first show

that there exists a quantity ceiling qs
1 such that if on τ s′′

1 , firm 1 sells to residual

demand at p
2

in the first period, and from the second period on, firms revert to the

stationary path {(1, 1, qs
1,M − qs

1)}, firm 1 obtains the payoff π1. From the argument

following (28), note first that if k̂2 = k̂1

1+δ
,

(1− δ)(p
2
− c)k̂1 + δ(1− c)α1 = π1.

It follows that if k̂2 ≤ k̂1

1+δ
:

(1− δ)(p
2
− c)(M − k̂2) + δ(1− c)α1 ≤ π1. (32)

with equality if and only if k̂2 = k̂1

1+δ
and p

2
= c. Moreover, by definition of Ψ(k1, δ),

we have

(1− δ)(p
2
− c)(M − k̂2) + δ(1− c)α1 ≥ π1,

Thus it follows from the strict monotonicity and continuity of the left-hand side

of (32) in firm 1’s sales in the second phase, that there exists qs
1 ∈ [α1(δ), α1(δ)]

satisfying

(1− δ)(p
2
− c)(M − k̂2) + δ(1− c)qs

1 = π1.

This is the required quantity ceiling.

Now we show that there exists pp
2 satisfying (31) and 0 ≤ pp

2 ≤ p
2
. Let pr

2 be the

unique solution to

(1− δ)(p2 − c)k̂2 + δ(1− c)(M − qs
1) = π2,

By definition pr
2 satisfies (31) and since qs

1 < k̂1 and (p
2
−c)k̂2 ≡ (1−c)(M− k̂1) = π2,

we have pr
2 < p

2
. Thus letting pp

2 = pr
2, pp

2 satisfies (31) and pp
2 < p

2
. If pp

2 so defined

satisfies pp
2 ≥ 0, we are finished. If not, then pr

2 < 0. It then follows from the

definition of pr
2 and the fact that k̂2 is strictly greater than zero that:

(1− δ)(0− c)k̂2 + δ(1− c)(M − qs
1) > π2.

Hence, it follows from 0 < ĉ ≤ c ≤ p
2
, that setting pp

2 = 0, pp
2 satisfies (31) and

0 ≤ pp
2 < p

2
. Therefore we have shown that there exists a price pp

2 satisfying (31)

and 0 ≤ pp
2 < p

2
.

Finally, we show that on τ s′′
1 , both firms’ incentive constraints are satisfied from

period 2 on. Since firm 2’s deviations are punished by reverting to τ s
2 , firm 2’s

incentive constraint in any period of the stationary path {(1, 1, qs
1, M − qs

1)} is:

(1− c)(M − qs
1) ≥ (1− δ)(1− c)k̂2 + δ(1− c)(M − k̂1).
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To show that the above constraint is satisfied, note that since qs
1 ≤ α1(δ), M − qs

1 ≥
M − α1(δ) = α2(δ). Thus

(1− c)(M − qs
1) ≥ (1− c)α2(δ) = (1− δ)(1− c)k̂2 + δ(1− c)(M − k̂1),

where the last inequality follows from the definition of α2(δ). Therefore, firm 2’s

incentive constraint is satisfied.

Since firm 1’s deviations are punished by restarting τ s′′
1 in the first period, firm

1’s incentive constraint in any period of the stationary path {(1, 1, qs
1,M − qs

1)} is:

(1− c)qs
1 ≥ (1− δ)(1− c)k̂1 + δ(1− c)(M − k̂2).

To show that the above constraint is satisfied, note that since qs
1 ≥ α1(δ):

(1− c)qs
1 ≥ (1− c)α1(δ) = (1− δ)(1− c)k̂1 + δ(1− c)(M − k̂2),

where the last inequality follows from the definition of α1(δ). Therefore, firm 1’s

incentive constraint is satisfied.

Hence, we have shown that all incentive constraints hold by construction in every

period of the path τ s′′
1 . Therefore τ s′′

1 is a pure strategy 2-phase perfect equilibrium

security level punishment path for firm 1.

Letting τ s
1 = τ s′

1 if k̂2 ≥ max
{

k̂1

1+δ
, Ψ(k1, δ)

}
and τ s

1 = τ s′′
1 if k̂2 ∈

[
Ψ(k1, δ),

k̂1

1+δ

]
,

we have shown that under the stated assumptions, there exists a pure strategy 2-

phase perfect equilibrium security level punishment path τ s
1 for the large firm.

Thus, under the assumptions of the proposition, there exist pure strategy perfect

equilibrium punishment paths for both firms. ¤

8.5 Proof of Proposition 6

The proof is by construction. We construct a single perfect equilibrium path τ s on

which both firms obtain their security level. We construct τ s in the following way:

in the first period, firm 1 sets a price ps
1 satisfying 0 ≤ ps

1 ≤ p
2

and offers its capacity.

From the second period on, firm 1 sets its price equal to 1 and offers qs
1, where qs

1

satisfies:

(1− δ)(ps
1 − c)k̂1 + δ(1− c)qs

1 = (1− c)(M − k2) = π1. (33)

and qs
1 ∈ [α1(δ), α1(δ)]. We show below that such ps

1 and qs
1 exist.

In the first period of τ s, firm 2 sets a price ps
2, and offers its capacity. From the

second period on, firm 2 sets its price equal to 1 and offers qs
2 = M − qs

1. Suppose

k1 < M and let ps
2 be given by

(1− δ)(ps
2 − c)(M − k̂1) + δ(1− c)qs

2 = (1− c)(M − k̂1) = π2, (34)
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and ps
1 < ps

2 ≤ p
1
. We show below that such ps

2 exists. Assume that unilateral

deviations from τ s are punished by restarting τ s in the first period. We now show

that τ s is a perfect equilibrium path.

First, define pu
1 to be the unique solution in p1 to:

(1− δ)(p1 − c)k̂1 + δ(1− c)α1(δ) = π1.

The assumption k2 < Ψ(k1, δ), (26) and (27) imply that pu
1 ≥ 0.

Second, let k1 < M , and define pu
2 to be the unique solution in p2 to:

(1− δ)(p2 − c)(M − k̂1) + δ(1− c)(M − α1(δ)) = π2. (35)

Substituting for the value of α1(δ) in both equations and solving for pu
1 and pu

2 , we

obtain after some computations:

pu
1 < pu

2 ⇐⇒ k1 < [1− δ(1− δ)]M < M.

Next we show that pu
1 ≤ p

2
and pu

2 ≤ p
1
. Straightforward computations yield:

pu
1 ≤ p

2
⇐⇒ k2 ≥ (1− δ)M

1− δ(1− δ)
,

and

pu
2 ≤ p

1
⇐⇒ M > k1 ≥ M

1 + δ
. (36)

Thus, for [1−δ(1−δ)]M > k1 ≥ M/(1+δ) and Ψ(k1, δ) > k2 ≥ (1−δ)M/[1−δ(1−δ)],

let ps
1 = pu

1 , ps
2 = pu

2 and qs
1 = α1(δ). From the properties of ps

1 and ps
2, we obtain that

each firm’s incentive constraint is satisfied in period 1. Furthermore, using arguments

similar to those used for the second phase of paths described in Proposition 5, δ ≥ 1
2

and the definition of α1(δ) imply that both firms’ incentive constraints are satisfied

from period 2 on. Thus for the set of capacity pairs described above, τ s is a security

level perfect equilibrium path for both firms.

To complete the proof of the proposition, suppose k1 < M/(1 + δ) in addition to

the assumptions of the proposition. To construct τ s for such capacity pairs, first let

q̂2 be the solution in q2 to the following equation:

(1− δ)(p
1
− c)(M − k1) + δ(1− c)q2 = π2.

Since k1 < M/(1 + δ) by assumption, it follows from (35) and (36) that

(1− δ)(p
1
− c)(M − k1) + δ(1− c)(M − α1(δ)) < π2,

and from k1 ≥ (1− δ)M/[1− δ(1− δ)], (29) and (30), it follows that:

(1− δ)(p
1
− c)(M − k1) + δ(1− c)α2(δ) ≥ π2.
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Since M − α1(δ) = α2(δ), we have that q̂2 ∈ [α2(δ), α2(δ)]. Solving for q̂2 explicitly,

we obtain

q̂2 = (M − k1)

[
k1 − (1− δ)(M − k2)

δk1

]
.

Moreover, tedious but straightforward computations show that the following holds

(1− δ)(p
2
− c)k1 + δ(1− c)(M − q̂2) ≥ π1

if and only if

k2 ≥ (1− δ)k̂2
1

k̂1 − (1− δ)(M − k̂1)
.

Hence, from the assumptions in the statement of Proposition 6 and the above argu-

ment, if p′1 satisfies

(1− δ)(p′1 − c)k1 + δ(1− c)(M − q̂2) = π1,

then p′1 is such that 0 ≤ p
′
1 ≤ p

2
. Therefore, if Ψ(k1, δ) > k2 ≥ [(1− δ)k̂2

1]/[k̂1 − (1−
δ)(M − k̂1)] and M/(1 + δ) > k1 ≥ (1 − δ)M/[(1 − δ(1 − δ)] hold, letting ps

1 = p′1,
ps

2 = p
1

and qs
1 = M − q̂2, the triple (ps

1, p
s
2, q

s
1) satisfies all the required properties.

For both firms, incentive constraints are satisfied in period 1. Moreover, from δ ≥ 1
2

and qs
1 ∈ [α1(δ), α1(δ)], we obtain that incentive constraints are also satisfied from

period 2 on.

Therefore, letting τ s
i = τ s for i = 1, 2, we have shown that under the assumptions

of the proposition, there exists a perfect equilibrium security level punishment path

τ s
i for i = 1, 2. ¤

8.6 Capacity Utilization

In this section of the Appendix, we characterize the pattern of capacity utilization,

Ui ≡ si

ki
, i = 1, 2, on constrained Pareto optimal collusive SPEP’s.

Lemma 2 Suppose A1 holds. Let τ s be a SPEP satisfying (PO). For every δ such

that δ ≥ 1
2
, the small firm has a higher capacity utilization than the large firm on τ s

if and only if s2 ≥ k2M
k1+k2

.

Proof. From Proposition 2, we have that if τ s satisfies (PO), then on τ s, s1+s2 = M .

Therefore, U1 ≤ U2 if and only if M−s2

k1
≤ s2

k2
. Rearranging this inequality yields

s2 ≥ k2M
k1+k2

, which proves the lemma. ¤

Lemma 3 Suppose A1 holds. For every δ such that δ ≥ δ̃,
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(i) On the SPEP τ 1(δ), U1 < U2 if and only if one of the following conditions

holds:

k1 ≥ k2 ≥ M and δ < k1

k1+k2
,

k2 < M and k1 > M +
k2
2

M−k2
,

k2 ∈ [1
2
M, M), k1 ∈ [2M − k2,M +

k2
2

M−k2
] and δ < 1− M

k1+k2
,

(ii) On the SPEP τ 2(δ), U2 < U1 if and only if one of the following conditions

holds:

k2 < M , k1 < M − (M−k2)2

M+k2
and δ < k̂1

k1+k2
,

k2 < M , k1 ≥ M − (M−k2)2

M+k2
and δ ∈ (δc, k̂1

k1+k2
),

where δc ≡
(

k1−k2

k1+k2

)(
M

M−k2

)
.

Proof. From Lemma 1 and Proposition 2, we have τ 1(δ) = {(1, 1, α1(δ), α2(δ))} if

δ̃ = 1
2

and 1
2
≤ δ ≤ k2

k̂1
, τ 1(δ) = {(1, 1,M − αN

2 , αN
2 )} if δ ≥ k2

k̂1
. If δ̃ = 1 − k2

k̂1
,

τ 1(δ) = {(1, 1,M − αN
2 , αN

2 )} for all δ ≥ δ̃.

To prove the first statement in (i), note that k̂1 = k̂2 = M implies δ̃ = 1
2

and
k2

k̂1
= 1. Therefore τ1(δ) = {(1, 1, α1(δ), α2(δ)} and s2 = α2(δ). Using the definition

of α2(δ) yields α2(δ) = (1 − δ)M = s2 > k2M
k1+k2

if and only if δ < k1

k1+k2
(> 1

2
). The

first part of (i) then follows from Lemma 2.

We now prove the second statement in (i). First note that since τ 1(δ) satisfies

(C), for every δ ≥ δ̃, on τ 1(δ), s2 ≥ αN
2 . Straightforward computations yield

αN
2 >

k2M

k1 + k2

⇐⇒ k1 > M +
k2

2

M − k2

> M.

Thus if k1 > M +
k2
2

M−k2
, the fact that s2 ≥ αN

2 , the above equation and Lemma 2

imply that on τ 1(δ), U1 < U2. This proves the second statement.

To prove the third statement, assume M ≤ k1 ≤ M +
k2
2

M−k2
. From the second

statement, we obtain that if δ ≥ k2

k̂1
= k2

M
, then U1 ≥ U2 since in this case, s2 = αN

2 .

Therefore, if U1 < U2 occurs on τ 1(δ) for the capacity pairs described in the third

statement, it must be the case that s2 = α2(δ). If k2 < 1
2
M , then δ̃ = 1 − k2

k̂1
,

thus, on τ 1(δ), for every δ ≥ δ̃, s2 = αN
2 . It then follows immediately that U1 ≥

U2. To complete the proof of the statement, assume k2 ≥ 1
2
M . Straightforward

computations yield

α2(δ) >
k2M

k1 + k2

⇐⇒ δ <
k2(k1 + k2 −M)

(k̂1 + k2 −M)(k1 + k2)
. (37)

Substituting for k̂1 = M in (37) and using Lemma 2, we obtain that U1 < U2 on

τ 1(δ) if and only if δ̃ ≤ δ < 1 − M
k1+k2

holds. We now find conditions under which

1 − M
k1+k2

> δ̃. Since k2 ≥ 1
2
M , δ̃ = 1

2
. We have 1 − M

k1+k2
> 1

2
= δ̃ if and only
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if k1 > 2M − k2 > M . Thus, on τ 1(δ), if M > k2 ≥ 1
2
M , U1 < U2 if and only if

k1 > 2M − k2 and δ̃ ≤ δ < 1 − M
k1+k2

hold. This completes the proof of the third

statement of (i).

We now prove (ii). To this effect, we consider two cases depending on the value

of δ: δ ≥ δr and δ̃ ≤ δ < δr. First, if δ ≥ δr, it follows from Propositions 2 and

3 that τ 2(δ) = {(1, 1, α1(δ), α2(δ))}. Using the definition of α2(δ), straightforward

computations yield:

α2(δ) <
k2M

k1 + k2

⇐⇒ δ <
k̂1(k1 + k2)− k1M

(k̂1 + k2 −M)(k1 + k2)
. (38)

The second inequality in (38) reduces to δ < M
k1+k2

= k̂1

k1+k2
if k̂1 = M and δ <

k1

k1+k2
= k̂1

k1+k2
if k̂1 < M . Using Proposition 3, if k̂1 ≤ M+k̂2

2
, then δ ≥ δ̃ implies

δ ≥ δr. Straightforward computations yield k1

k1+k2
(> δ̃) if and only if k1 > M − k2,

which holds by assumption. Therefore, it follows from the above argument that if

(a) k̂1 ≤ M+k̂2

2
, then on τ2(δ), U2 < U1 if and only if δ < k1

k1+k2
(> δ̃) holds.

Now assume k̂1 > M+k̂2

2
. From Proposition 3, δr > δ̃ holds. If δ ≥ δr, from

Propositions 2 and 3, τ 2(δ) = {(1, 1, α1(δ), α2(δ))}. Hence, arguments developed

above for the case k̂1 ≤ M+k̂2

2
apply. Furthermore, straightforward computations

yield that δr < k1

k1+k2
if and only if k1 > M − k2, which holds by assumption. It

follows that if (b) k̂1 > M+k̂2

2
and δ ≥ δr, then on τ 2(δ), U2 < U1 if and only if

δ < k1

k1+k2
holds.

Finally, consider the case δ̃ ≤ δ < δr. From Propositions 2 and 3, τ 2(δ) =

{(1, p∗2, qc
1, α2(p

∗
2))}. Therefore on τ 2(δ), s2 = α2(p

∗
2) and s1 = M −α2(p

∗
2). Using the

definitions for α2(p
∗
2) and p∗2 yields s2 = M−δ(M−k2)

2
. We have:

M − δ(M − k2)

2
<

k2M

k1 + k2

⇐⇒ δ >

(
k1 − k2

k1 + k2

) (
M

M − k2

)
= δc. (39)

If δc < δ̃, we are finished. We derive conditions under which δc ≥ δ̃ holds. First,

straightforward computations show that 1 − k2

k̂1
≤ δc < δr for every capacity pair.

Thus, if δ̃ = 1 − k2

k̂1
> 1

2
, δc ≥ δ̃ holds. Second, suppose δ̃ = 1

2
≥ 1 − k2

k̂1
holds. Note

that since k̂1 > M
2

, this implies k2 > 1
3
M . Moreover, δc ≥ 1

2
if and only if:

k1 ≥ max{M − (M − k2)
2

M + k2

,M − k2}.

Straightforward computations yield max{M− (M−k2)2

M+k2
,M−k2} = M− (M−k2)2

M+k2
if and

only if k2 ≥ 1
3
M . Therefore, we have shown that if (c) k1 > M+k̂2

2
and δ̃ ≤ δ < δr,

then on τ 2(δ), U2 < U1 if and only if either k1 < M − (M−k2)2

M+k2
or k1 ≥ M − (M−k2)2

M+k2

and δ ∈ (δc, δr) hold. Finally, it is simple to show that for k1 > M − k2, which holds

by assumption, M − (M−k2)2

M+k2
> M+k2

2
.
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Therefore, if k1 < M − (M−k2)2

M+k2
, it follows from (a), (b) and (c) that on τ 2(δ),

U2 < U1 if and only if δ < k1

k1+k2
. Finally, from (b) and (c), it follows that on τ 2(δ),

if k1 ≥ M − (M−k2)2

M+k2
, U2 < U1 if and only if δ ∈ (δc, k1

k1+k2
). This completes the proof

of (ii). ¤
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Figure 1: Frontier of payoffs attainable on constrained Pareto optimal SPEP for

some δ ∈ [δ̃, δr) and M+k̂2

2
< k̂1 ≤ 2k̂2.
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Figure 2: Firm 1’s range of sales on constrained Pareto optimal SPEP for different

values of δ and M+k̂2

2
< k̂1 ≤ 2k̂2.

45


