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Abstract

The competitive market model is paradoxical. In perfect competition, agents cannot influence price: they

only select an output quantity. Such passive behavior doesn’t conform to the intuitive notion of competi-

tion. This paper describes an experiment which demonstrates that near or even at a competitive equilibrium

price, competition is undiminished. A substantial difference between the performance of sellers and buyers

frequently results from this vigorous competition, even with low price variability and approximate efficiency.

In double auction experiment sessions conducted with both automated and human agents, exogenous varia-

tion of the pace of asks and bids of automated agents demonstrates that the performance difference between

sellers and buyers results primarily from a difference between the pace of asks and bids. If the buyers’ pace is

slower than sellers’ pace, buyers make price concessions less frequently than sellers so that prices move below

the equilibrium price. Then more buyers become active and fewer sellers remain active. Prices stabilize

when changes to the numbers of active buyers and sellers offset the superior bargaining capability of one side

or the other. In competitive equilibrium, to a first approximation agents are price takers, but that doesn’t

preclude vigorous competition: competitive behavior moves to the dimension of bargaining pace.
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1 Introduction 1

The competitive market model is paradoxical. In perfect competition, sellers and buyers are

unable to influence price: their strategic behavior is reduced to selection of an output quantity. Such

passive behavior doesn’t conform to the intuitive notion of competition. This paper demonstrates

that in the double auction – which is a robustly efficient market institution – the competitive market

paradox can be resolved through a close examination of the bargaining process.

In the double auction, sellers and buyers can submit offer prices at any time during a trading

period. When prices settle near the competitive equilibrium price, there is not much latitude

for strategic behavior along the dimension of price alone. Strategic behavior then moves to the

dimension of bargaining pace. When the pace of buyers’ bids is slower than the pace of sellers’

asks, then price concessions by sellers are more frequent than concessions by buyers. These price

concessions by sellers lead to successively lower prices. Ultimately price concessions have a moderate

effect on the average trade price, and a small effect on market efficiency, but they have a large effect

on the split of surplus between buyers and sellers.
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Figure 1: Consumers’ surplus (CS) and producers’ surplus (PS) out of equilibrium.

Figure 1 illustrates the relationship between the efficiency loss and the ratio of buyers’ to

sellers’ surplus when price differs from the equilibrium price. If the price and quantity exchanged

are indicated by the dashed lines, then extracted surplus is 99% of the equilibrium surplus, but the

ratio of buyers’ to sellers’ surplus is thirteen ninths, whereas at the competitive equilibrium price

p∗ = 60 that ratio is one.1 Clearly, if one side of the market produces such a price movement away

from equilibrium, agents on that side of the market benefit.

1 The efficiency level shown in the figure is slightly below efficiency levels from the experiment sessions reported

in this paper. In the fifty-eight sessions reported in Section 4, the average efficiency level is 99.5%.
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This paper reports a double auction experiment which demonstrates that price variability is

low and allocations are almost fully efficient in all experiment sessions. Yet moderate differences

between the average price and the equilibrium price and large differences between the performance

of sellers and buyers are typical. The pace of sellers’ asks and buyers’ bids explains a large portion of

these differences. These results are demonstrated with a novel experiment technique that combines

automated sellers and buyers with human sellers and buyers in the double auction. This technique

is a crucial element of the experiment design: the pace of asks by automated sellers and the pace

of bids by automated buyers are varied by the experimenter, which produces observed effects on

the average price and on the relative performance of sellers and buyers.

Among models of bargaining in the double auction – which include Wilson [1987], Friedman

[1991], Gode and Sunder [1993],2, Easley and Ledyard [1993], and Gjerstad and Dickhaut [1998] –

the models by Wilson, by Friedman, and by Gjerstad and Dickhaut all include an explicit formu-

lation of agents’ timing decisions. The model by Gjerstad and Dickhaut is the only one of these

three models though that has been simulated in continuous time, so their model is best suited for

an examination of the impact of pace.

In the model of automated sellers and buyers by Gjerstad and Dickhaut, a seller forms a belief

that his ask will be accepted by some buyer. He bases his belief on observed market data, including

frequencies of asks, bids, accepted asks, and accepted bids. Then he chooses an ask that maximizes

his expected surplus. A seller submits his ask at a random time, with an exponential distribution

that depends on both his expected surplus and on the fraction of time remaining in the period.

The belief of a buyer, the buyer’s bid choice, and the timing of her bid are similar.3 Simulations

of this model demonstrate that sellers’ asks and buyers’ bids lead to efficient outcomes and stable

prices, as in experiment sessions with human subjects. Buyers and sellers in the model base their

decisions on the same information as human buyers and sellers, so automated agents can interact

with human subjects.

The experiment includes five sessions with only human subjects (baseline sessions), twenty-

three sessions with direct interaction between instances of the model and human subjects (hybrid

sessions), and thirty simulations. Data from these sessions clearly show that prices converge and

that allocations are almost fully efficient. Yet buyers frequently outperform sellers even when in

equilibrium they earn equal surplus. The cause of this difference in relative performance is evaluated

2 Cason and Friedman [1996] thoroughly assess the models by Wilson, by Friedman, and by Gode and Sunder.

3 Beliefs and decision rules of sellers and buyers in the model by Gjerstad and Dickhaut are symmetric. Frequently

throughout this paper the description of a seller’s or a buyer’s behavior is detailed while the analogous statement for

the opposite side of the market is less detailed when the symmetric description is obvious.
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with a statistical model that treats the relative performance of sellers and buyers in a session as

a function of the combination of types present in the session. Exogenous variation of the timing

distribution parameter for the asks and bids by automated agents identifies the impact of bargaining

pace on performance. Automated agent types are patient automated sellers, impatient automated

sellers, patient automated buyers, and impatient automated buyers.4 The analysis shows clearly

that the relative performance of sellers and buyers is significantly affected by a difference between

the pace of asks and the pace of bids, with an advantage to the more patient side of the market.5

Persistent vigorous negotiation, even at or near a competitive equilibrium, differs substantially

from the conception of price adjustment as a restorative force that only affects the price in a market

out of equilibrium. If pace and other aspects of bargaining skill pull prices below equilibrium, the

number of active sellers in the market declines, and the number of active buyers increases. As

more buyers become active, they outbid one another more frequently, which creates an upward

pressure on prices. Similarly, a decrease in the number of active sellers reduces competition among

sellers. When the superior bargaining skill of buyers is balanced by the increased number of active

buyers and decreased number of active sellers, prices stabilize.6 Changes to the numbers of active

sellers and buyers balance the market price, while the competitive forces from bargaining are always

present. This form of strategic behavior and price adjustment substantially resolves the competitive

market paradox: once prices have collapsed to two adjacent prices in the bid-ask spread, timing

of asks and bids becomes the dominant expression of competitive behavior. Competitive forces

balance when the number of active buyers and sellers adjust to offset these differences in pace.

This paper is organized as follows. Section 2 describes the economic environment used in the

experiment. Section 2 also describes the double auction mechanism and provides a summary of the

Heuristic Belief Learning (HBL) model of seller and buyer behavior used in hybrid sessions and

simulations. The experiment design is described in Section 3. Experiment results are reported in

Section 4. Conclusions are drawn in the final section.

4 The designations “patient” and “impatient” are relative, although the analysis in Section 4.5 benchmarks per-

formance of the four types of automated sellers and buyers relative to human sellers and buyers.

5 Differences across agents between the frequency and magnitude of price concessions in this model result from

differences in agents’ strategies, rather than from a difference in preferences. Rubinstein [1982] examines bilateral

bargaining between agents with different discount factors, and finds that the agent who discounts the future less

obtains a larger fraction of the surplus. In his model, agents employ identical subgame perfect equilibrium strategies,

but have heterogeneous preferences. In the model studied in this paper, agents have symmetric preferences and

symmetrically defined beliefs, but the strategies of patient and impatient agents differ.

6 An analogous argument applies if sellers pull the price above the equilibrium price, but the number of active

buyers then decreases while the number of active sellers increases.
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2 The microeconomic system

Smith [1982] conceptually separates double auction experiments into (1) the induced economic

environment, (2) the double auction mechanism, and (3) the behavior of sellers and buyers. This

section describes these three elements, except human behavior, which is evaluated in Section 4 with

the analysis of experimental data.

2.1 The economic environment

Sessions include a set of agents I partitioned into sets I
S

of six sellers and I
B

of six buyers. Sellers

have unit costs and buyers have unit values for an abstract “commodity,” as in table 1. Units that

can trade profitably (for both the seller and buyer) at the midpoint of the equilibrium price set

{95, 96, 97} are in bold type in the table. All sessions have similar symmetric supply and demand

conditions, although six variant conditions differ by constants added to all unit values and costs.7

1 2 3 4 5 6 7 8 9 10 11 12

Sellers 1 & 4 54 66 78 90 102 114 126 138 150 162 174

Sellers 2 & 5 65 70 75 80 85 90 95 100 105 110

Sellers 3 & 6 61 69 77 85 93 101 109 117 125 133 141 149

Buyers 1 & 4 138 126 114 102 90 78 66 54 42 30 18

Buyers 2 & 5 127 122 117 112 107 102 97 92 87 82

Buyers 3 & 6 131 123 115 107 99 91 83 75 67 59 51 43

Table 1: Sellers’ unit cost and buyers’ unit value schedules for eight sessions.

A seller incurs the cost for a unit each time that he completes a trade with a buyer; he receives

units of experiment “currency” from the buyer equal to the negotiated price. His profit is the price

received from the buyer minus the unit cost, summed over all units sold. Each buyer has a currency

endowment in each period that is no less than the sum of her unit values, in order that she can

purchase all units for which she has a positive unit value, if she chooses to do so. This currency

endowment is subtracted from the buyer’s payoff at the end of the period, so that earnings result

from the difference between value and price, summed over each unit purchased.

A seller sees his costs at the beginning of the period, but knows nothing about the costs of other

sellers or the buyers’ values. The cost schedule of a seller remains fixed from period to period, but

he only learns his schedule in a new period when the period begins. A buyer’s value schedule is

also stationary, and her information is analogous to a seller’s.

7 These shifts reduce the possibility that subjects obtain information about the typical market price from partic-

ipants in earlier sessions.
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2.2 The double auction mechanism

The double auction is operationally simple, robustly efficient, and leads to stable transaction prices.

In this mechanism, a seller may submit an ask at any time during a trading period in the area

labeled “Enter Ask” (shown in figure 2). A seller’s ask is his current report of the lowest price that

he will accept for a unit of the commodity. Similarly, at any time a buyer may submit a bid, which

is her current report of the highest price that she will pay for a unit. An ask placed at or below the

current high bid results in a trade at the bid price. A bid that meets or exceeds the current low

ask results in a trade at the ask price. A seller may make any number of asks, and may trade any

number of units that is consistent with his commodity endowment. A buyer may make any number

of bids, and may trade any number of units that is consistent with her currency endowment.

Figure 2: A seller’s screen with elements of market the institution.

Several specific rules are implemented in this version of the double auction. The most important

is the “spread reduction rule,” which requires that a new ask is below the current low ask and a

new bid exceeds the current high bid. A seller has the option to remove his current ask. Each seller
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is permitted a single ask in the market queue at any time and any new ask by a seller replaces his

current ask if he has one in the queue. Each ask is the unit price offered by the seller for a single

unit: multiple unit trades are not permitted. Similar rules apply to a buyer’s bids.

The “Market Queue” displays current asks and bids. When a seller enters an ask into the queue,

he receives a confirmation in the “Messages” area. This ask also appears in the “Unit Ask” row

of the “Trade Summary” table, in the column that corresponds to the unit the seller has offered

for sale. Similarly, a buyer receives a confirmation message when she enters a bid into the bid

queue, and the appropriate cell in her Trade Summary table is updated. When a seller and buyer

complete a trade, they both receive a confirmation message, the “Unit Price” and “Unit Profit”

are recorded in the Trade Summary tables for seller and buyer, and the price is displayed in the

“Market Transaction Prices” graph. The length of each trading period is known to each seller and

to each buyer: a clock on the screen of each seller and buyer shows the time remaining in the period.

Subjects’ instructions explain the double auction mechanism. Appendix C outlines the sequence of

steps through a seller’s instructions. A buyer’s instructions are analogous to a seller’s.

2.3 Heuristic Belief Learning

The Heuristic Belief Learning (HBL) model has three elements: a heuristic belief function, maxi-

mization of expected surplus relative to this belief, and the timing of an ask or a bid. Empirical

acceptance frequencies motivate the definition of heuristic belief functions. Descriptions of ex-

pected surplus maximization and the timing of asks and bids follow the discussion of heuristic

belief functions.

2.3.1 Empirical acceptance frequencies

For each ask a in the history maintained by seller i ∈ I
S
, the empirical acceptance frequency for

a is p̌i(a) = TA(a)/A(a), where A(a) is the number of asks at a and TA(a) is the number of asks

at a accepted (or taken) by some buyer. The empirical acceptance frequency for buyer i ∈ I
B

is q̌i(b) = TB(b)/B(b), where B(b) is the number of bids at b and TB(b) is the number of those

accepted (or taken) by a seller. Figure 3 (a) shows the empirical frequencies of asks and accepted

asks (as the shaded area) during period 1 of baseline session 1. Figure 3 (b) shows the frequencies

of bids and accepted bids from the same period.

The empirical acceptance frequencies p̌i(a) and q̌i(b) are intuitively appealing as beliefs, but they

have limitations. Empirical acceptance frequencies are irregular after a small number of trades. In

the case of figure 3 (a), after 35 asks there are intervals on which p̌i(a) is undefined. Also, the
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(a) Seller’s empirical frequency (b) Buyer’s empirical frequency

55 60 65 70 75 80 85 90 95 100 105 110 115 120 125
Ask

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Frequency

55 60 65 70 75 80 85 90 95 100 105 110 115 120 125
Ask

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Frequency

55 60 65 70 75 80 85 90 95 100 105 110 115 120 125
Ask

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Frequency

45 50 55 60 65 70 75 80 85 90 95 100 105 110
Bid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Frequency

45 50 55 60 65 70 75 80 85 90 95 100 105 110
Bid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Frequency

45 50 55 60 65 70 75 80 85 90 95 100 105 110
Bid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Frequency

Figure 3: Panel (a) shows all asks (as the outlined area) and all accepted asks (as the shaded

area) from period 1 of baseline session 1. Panel (b) shows bids (outlined) and accepted bids

(shaded) for the same period.

frequency is not necessarily monotonic, which is undesirable because a buyer is more likely to

accept a lower ask. Similar considerations apply to the acceptance frequency of each buyer.

2.3.2 Heuristic belief functions

In order to address these issues, data that generate sellers’ and buyers’ empirical acceptance fre-

quencies are transformed into heuristic belief functions pi(a) and qi(b) which are monotonic, and

are defined for any number of asks, bids, and trades. This construction is described in Appendix A.

Gjerstad and Dickhaut show that a seller’s belief function pi(a) is monotonically decreasing,

and a buyer’s belief function qi(b) is monotonically increasing. Figures 4 (a) and (c) show examples

of a seller’s and a buyer’s belief. In simulations and hybrid sessions, beliefs are formed from asks,

bids, and acceptances that lead up to the last 12 trades (m = 12 in the notation of Appendix A).8

The heuristic belief function pi(a) in figure 4 (a) is constructed from data in figures 4 (b) and (d)

using equation (A.1). Comparison of figures 4 (a) and 4 (b) indicates that the transformation of the

data generates a monotonic belief function that is similar to the empirical acceptance frequency.

2.3.3 Expected surplus maximization

The expected surplus of seller i for ask a is E[Si(a)] = (a − c k
i ) pi(a), where c k

i is the cost of his

kth unit. The ask a∗i = arg maxE[Si(a)] maximizes his expected surplus. The maximum expected

surplus is S∗
i ≡ E[Si(a

∗
i )] = (a∗i − c k

i ) pi(a
∗
i ). For each buyer i ∈ I

B
the expected surplus function,

8 At the beginning of a new period (other than the first period), the history of asks, bids, and trades used to form

beliefs includes some data from the previous period until the twelfth trade had occurs in the new period.
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(a) Seller’s belief (c) Buyer’s belief

(b) Seller’s empirical frequency (d) Buyer’s empirical frequency
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Figure 4: Beliefs and empirical acceptance frequencies at end of period 1 in baseline session 1.

the expected surplus maximizing bid, and the maximum expected surplus are defined similarly. In

the original HBL model, the seller is too aggressive, because the ask a∗i is treated as his last trade

opportunity. Appendix B.1 develops a modification to the belief that addresses this issue.

2.3.4 Timing of asks and bids

Agents’ asks and bids occur randomly according to exponential distributions. After the κth ask or

bid seller i ∈ I
S

recalculates his expected surplus maximizing ask, as well as the length of time that

he will wait before he makes the ask. His wait time is tκi+1 − tκ. Similarly, each buyer calculates

a new bid and wait time. For each agent i ∈ I, the cumulative distribution function for the wait

time tκi+1 − tκ is

Pr[tκi+1 − tκ < τ ] = 1 − e−τ/λi . (1)

The parameter λi depends on the seller’s (or buyer’s) current maximum expected surplus S∗
i , on

the time tκ that has elapsed in the trading period, and on the total time T in the trading period.

With this specification, the wait time until the next ask or bid by some seller or buyer is the

minimum of these wait times: tκ+1 − tκ = min{tκi+1 − tκ}i∈I . The minimum of n independent
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exponential random variables with parameters {λi}i∈I is an exponential random variable with

parameter λ−1 =
∑

i∈I λ−1
i .

The specification of λi in the original HBL model is λi(S
∗
i , tκ, T ) = βi (1−αi tκ/T )/S∗

i . For this

specification of λi(·), the mean time until agent i with the CDF in equation (1) places his ask or bid

is λi. The mean time decreases in S∗
i : an agent with greater maximum expected surplus is more

anxious to trade. The length of each period is T = 180 seconds. The factor αi, which is αi = 0.95

for all sessions, increases the pace of a seller’s ask or a buyer’s bid as the period progresses.9 The

scale factor βi is fixed for each session, but it is varied across sessions in order to determine the

effect of timing decisions on performance.

In the original HBL model, the timing specification is too aggressive once the standing bid has

reached the level of recent trade prices. Appendix B.2 describes a modification to the timing that

reduces the pace of bids once the standing bid reaches the mean of recent trade prices.

3 Experiment design

The experiment design includes two factors: (1) the pace of asks and bids by automated sellers

buyers (described in the previous section), and (2) the fractions of human sellers and of human

buyers. Variation of the fractions of automated sellers and buyers produces two conditions. In

the balanced condition, half of the sellers and half of the buyers were instances of the modified

HBL model, and the other half on each side of the market were human subjects. Performance of

automated agents and human agents are directly comparable because there are three schedules of

unit costs for sellers, with schedule 1 assigned to sellers 1 and 4, schedule 2 assigned to sellers 2

and 5, and schedule 3 assigned to sellers 3 and 6. In the balanced treatment sellers 1 - 3 are human

agents and sellers 4 - 6 are automated agents. Buyers also have three schedules, assigned similarly.

In the “unbalanced” condition, either all of the sellers or all of the buyers were HBL model

instances: human subjects filled all roles on the side of the market opposite the HBL model. This

condition provides a robust test of the strategic capability of automated agents.

3.1 Experiment sessions

The experiment consists of five baseline sessions, twenty-three hybrid sessions, and thirty simu-

lations. Table 2 lists the baseline and hybrid sessions chronologically, and also lists the thirty

9 When t = 0, 1 − αi t/T = 1, and as t → T , 1 − αi t/T → 1 − αi. Surplus on units sold late in the trading

period is typically much lower than it is early in the trading period. The factor 1− αi t/T balances the effect of this

difference by decreasing the wait time as the period progresses.
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simulations. For each session, the table includes the midpoint of the equilibrium price range, the

numbers of human buyer groups (HB), impatient automated buyer groups (IAB), patient auto-

mated buyer groups (PAB), human seller groups (HS), impatient automated seller groups (IAS),

and patient automated seller groups (PAS). The site is reported for sessions with human subjects.

Session pe HB IAB PAB HS IAS PAS Site

1 96 2 2 UK

2 83 1 1 1 1 NY

3 105 2 2 NY

4 96 2 2 AZ

5 96 2 2 AZ

6 108 2 2 AZ

7 108 1 1 1 1 AZ

8 108 1 1 1 1 AZ

9 120 1 1 1 1 AZ

10 108 2 2 AZ

11 108 2 2 AZ

12 120 2 2 AZ

13 96 1 1 1 1 AZ

14 96 1 1 1 1 AZ

15 120 1 1 1 1 AZ

16 120 1 1 1 1 AZ

17 136 2 2 AZ

18 108 1 1 1 1 AZ

19 96 2 2 AZ

20 120 2 2 AZ

21 120 2 2 AZ

22 136 2 2 AZ

23 136 2 2 AZ

24 108 1 1 1 1 AZ

25 108 1 1 1 1 AZ

26 108 1 1 1 1 AZ

27 96 1 1 1 1 AZ

28 96 1 1 1 1 AZ

29 - 38 96 2 2

39 - 48 96 2 2

49 - 58 96 2 2

Table 2: Summary of baseline, hybrid, and simulation sessions.

3.2 Experiment subjects and payments

One baseline session was conducted in June 2001 at the University of York in the United Kingdom.

Two hybrid sessions were conducted in August 2001 at IBM Research in Yorktown Heights, New

York with 12 graduate students in engineering and computer science who were at IBM Research
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for a summer internship program. Four baseline sessions and 21 hybrid sessions were conducted

with undergraduate students at the University of Arizona in November 2001 and March 2002.

Equilibrium earnings for all subjects were between 1425 and 1680 units. Subjects at the Uni-

versity of York received an exchange rate of £0.015 per unit of experiment currency, and a payment

of £3 for appearing on time for the session. At the Watson Research Center the exchange rate

was $0.012 per unit of experiment currency and there was no show-up payment. At the University

of Arizona the exchange rate was $0.015 and the show-up payment was $5. Payments in York

ranged from £22.60 to £31.60 and averaged £25.28. Payments at Watson ranged from $5.00 to

$21.00 with a mean of $16.08. At the University of Arizona payments ranged from $11.50 to $37.75

with a mean of $26.18. Sessions lasted between 90 and 110 minutes, with 52.5 minutes for the

fifteen periods, each with a 180 second trading phase and a 30 second review phase. Seating and

instructions lasted between 30 and 50 minutes and payment required about 10 minutes per session.

4 Data analysis

As in previous double auction experiments and HBL model simulations, approximate price conver-

gence and convergence of allocations to efficient outcomes typically occur in all sessions. In view

of this convergence, it is surprising though that the ratio of sellers’ realized surplus earnings to

the buyers’ realized surplus earnings (as fractions of their equilibrium earnings) differs significantly

from one. Moreover, the ratio of an individual seller’s earnings to his equilibrium earnings is highly

correlated with the average ratio of the earnings of other sellers to their equilibrium earnings. This

correlation justifies a statistical model that treats the relative performance of sellers and buyers as a

function of the seller and buyer types present in each session. This performance analysis establishes

the main result of the paper by regressing the ratio of sellers’ to buyers’ performance in each session

on the composition of types present in the session. Types are human sellers, patient automated

sellers (βi = 400), impatient automated sellers (βi = 250), human buyers, patient automated buyers

(βi = 400), and impatient automated buyers (βi = 250). This analysis establishes that (1) patient

automated sellers and buyers outperform impatient automated sellers and buyers, (2) impatient

automated buyers and human buyers have similar performance, and (3) human buyers outperform

human sellers.10 Since impatient automated buyers and human buyers have similar performance,

10 Fifteen price errors have been corrected in the twenty-three hybrid sessions, and three price errors have been

corrected in the five baseline sessions. Most errors are due to an extra digit in the bid (e.g., a bid of 1115 rather than

115), or a missing digit in an ask (e.g., an ask of 9 rather than an ask of 94). In twenty-eight sessions, there were

12, 962 trades, so these eighteen price errors represent less that one error per 720 trades. Four errors were between a
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and since patient automated buyers outperform impatient automated buyers, it follows that buyer

performance is enhanced by a reduction to the pace of bids, at least locally in the vicinity of the

pace of human buyers.

4.1 Price convergence

Price convergence is estimated with the model s(n) = an−b η(n), where s(n) is the period n

standard deviation of prices and the random variables η(n) are independent and lognormally dis-

tributed. This can be expressed as the linear model ln s(n) = ln a−b ln n+ ǫ(n). Since E[s(1)] = a,

â estimates the period 1 price standard deviation; b̂ estimates the rate at which prices converge.

Treatment â b̂ p-value (b̂) R2 F ŝ(15)

Simulation 2.195 0.181 0.0002 0.092 14.9 1.34

Balanced (patient) 4.215 0.508 0.0000 0.420 107.3 1.06

Balanced (impatient) 4.995 0.525 0.0000 0.523 63.7 1.21

Unbalanced (automated buyers) 5.357 0.489 0.0000 0.250 19.3 1.42

Unbalanced (automated sellers) 4.670 0.581 0.0000 0.420 52.8 0.97

Baseline (all human) 13.019 0.928 0.0000 0.638 128.5 1.05

Table 3: Price convergence in simulations, hybrid sessions, and baseline sessions.

Table 3 reports parameter estimates and tests of the hypotheses that α̂ > 0 and β̂ > 0 for each

session type. Bold type in table 3 (and in all subsequent tables in Section 4) indicates coefficients

that differ from zero at levels p = 0.05 or below. Reported p-values are for the estimates b̂ ; all

p-values for estimates â are less than 10−10.

Prices initially vary less in the HBL model than in baseline sessions: much of the convergence

in simulations occurs in the first period. Although estimates b̂ show a convergence trend for all

regressions at the level p = 0.05 or less, price variability declines less across periods in simulations

than in baseline sessions. Each hybrid treatment produces estimates of â and b̂ between those

from simulations and those from baseline sessions. This is natural, since hybrid sessions include six

human subjects and six instances of the HBL model. Most importantly though, prices stabilize by

period 15 for all session types. Estimates of final period price variability, ŝ(15), are all near one,

whereas the range from the highest value to the lowest cost is 84.

human seller and a human buyer, and fourteen errors were made by a human seller or buyer with an automated buyer

or seller, so the argument that automated sellers and buyers outperform human sellers and buyers would also hold,

with greater estimates of the advantage to the automated sellers and buyers, if the price errors were not changed.
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4.2 Efficiency

Efficiency is also modeled with exponential convergence. If efficiency in period n is e(n), and if

foregone surplus declines exponentially across periods, then 1−e(n) = an−b η(n). This is equivalent

to the linear model ln(1 − e(n)) = ln a − b n + ǫ(n). Table 4 summarizes regression results for all

experiment session types.

Treatment ā b̂ p-value (b̂) R2 F ê(15)

Simulation 0.0057 0.0201 0.7855 0.0005 0.074 0.995

Balanced (patient) 0.0377 0.7575 0.0000 0.2594 41.3 0.995

Balanced (impatient) 0.0847 1.2624 0.0000 0.5499 70.8 0.997

Unbalanced (automated buyers) 0.0165 0.6325 0.0005 0.1921 13.7 0.997

Unbalanced (automated sellers) 0.0877 1.0552 0.0000 0.3569 40.5 0.995

Baseline (all human) 0.0686 0.7806 0.0000 0.3251 35.2 0.992

Table 4: Efficiency in simulations, hybrid sessions, and baseline sessions.

All estimates â of the initial level of inefficiency 1 − ê(n) differ from zero with a p-value less

than 10−10. Significant convergence trends, measured by estimates b̂, occur in baseline sessions

and in all hybrid sessions. Simulations do not demonstrate a trend of convergence to efficiency

across periods, yet the estimate of the efficiency level in the final period of the simulations, 99.5%,

is similar to the estimated efficiency attained in hybrid sessions and baseline sessions by period 15.

4.3 Surplus split

In the benchmark case in figure 1, all trades occur at one price and efficiency is high, yet the surplus

split is highly uneven. When all trades occur at a single price pα = α p
1
+(1−α) pe, where p

1
is the

highest price at which supply is zero and pe is the equilibrium price, the fraction of surplus lost is

only α2, but the ratio of surplus earned by buyers to surplus earned by sellers is R(α) = 1 + 4 α
1−α .

For example, if the fractional difference of the price from equilibrium is α = 0.07, then the surplus

loss is only 0.49%, and price variability is zero, but the ratio of buyers’ surplus to sellers’ surplus

is 1.301. The value and cost schedules from table 1 – which were the basis for all value and cost

schedules used in the experiment – are approximately linear, so the relationship between price

deviations and surplus split is similar to the benchmark case, as table 5 demonstrates.

Figure 5 shows sellers’ surplus relative to buyers’ surplus as a function of the difference between

the market price (pα) and the equilibrium price (p
e
). Relative performance r in this context is de-

fined as r ≡ e
S
/e

B
where e

S
is the surplus attained by sellers divided by the equilibrium surplus of

sellers, and e
B

is defined similarly. The figure shows this relationship for three types of simulations.
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Buyer Seller Total Surplus

pα − pe Surplus Surplus Surplus Ratio (e
S
/e

B
) ln(e

S
/e

B
) Efficiency

4 476 720 1196 1.513 0.414 98.7%

3 504 704 1208 1.397 0.334 99.7%

2 534 674 1208 1.262 0.233 99.7%

1 574 638 1212 1.111 0.106 100.0%

0 606 606 1212 1.000 0.000 100.0%

−1 638 574 1212 0.900 −0.106 100.0%

−2 674 534 1208 0.792 −0.232 99.7%

−3 704 504 1208 0.716 −0.334 99.7%

−4 720 476 1196 0.661 −0.414 98.7%

Table 5: Surplus and efficiency as a function of price deviation from equilibrium.

pα − pe

ln(e
S
/e

B
)

– Human sellers vs. human buyers

– Impatient sellers vs. patient buyers

– Patient sellers vs. patient buyers

– Patient sellers vs. impatient buyers

-6 -4 -2 2 4 6

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 5: Surplus ratio and price difference from equilibrium in simulations.

The triangles on the upper right show observations from ten simulations with patient sellers and

impatient buyers. In each of these simulations, pα − p
e

> 0 and ln(e
S
/e

B
) > 0: the mean price is

above the equilibrium price and patient automated sellers outperform impatient automated buyers.

The ten squares in the center of the figure are from simulations with patient sellers and buyers.

These are distributed fairly evenly around the equilibrium price and the equilibrium surplus split.

The ten observations on the lower left in the figure are from simulations with impatient sellers and

patient buyers. The curve in figure 5 traces out the logarithm of the theoretical surplus split (from

column 6 of table 5) as a function of pα − p
e
. A difference between the pace of asks and bids has a

pronounced effect on the relative performance of sellers and buyers in these simulations. Figure 5

also shows the ratio of sellers’ to buyers’ surplus as a function of price differences from equilibrium
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pα − pe

ln(e
S
/e

B
)

– Patient sellers vs. human buyers

– Impatient sellers vs. human buyers

– ‘Balanced’ treatment

– Human sellers vs. impatient buyers

– Human sellers vs. patient buyers
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Figure 6: Surplus ratio and price difference for each hybrid session.

in the five baseline sessions. In four of five baseline sessions, human buyers outperform human

sellers.

Performance differences between sellers and buyers are also typical in hybrid sessions, as shown

in figure 6. In all five hybrid sessions with automated sellers and human buyers the average price is

above the equilibrium price and automated sellers outperform human buyers. In four hybrid markets

with human sellers and automated buyers the average price is at or below the equilibrium price

and automated buyers outperform human sellers. These two observations suggest that automated

sellers outperform human buyers and automated buyers outperform human sellers.

Balanced hybrid sessions are shown in figure 6 as squares. Thirteen of fourteen balanced hybrid

sessions resulted in an average price at or below the equilibrium price. Sellers outperformed buyers

in only one of fourteen balanced sessions. Since automated sellers and automated buyers are

specified symmetrically, the performance advantage of buyers in balanced hybrid sessions most

likely results from the superior performance of human buyers to human sellers in these sessions.11

Performance ratio statistics from baseline sessions and hybrid sessions do not have the degree

of regularity observed in the simulations, yet a consistent pattern emerges between the composition

of types in a session and the division of surplus between sellers and buyers. A statistical model, de-

11 Smith and Williams [1982, p. 20] and Williams and Smith [1984, p. 111] also observed a tendency for buyers

to outperform sellers. They describe this tendency as the “weak seller hypothesis.” There is no clear reason for this

tendency, though a referee suggests that it may be due to the frequency with which most people engage in transactions

as buyers and the relative infrequency with which most people act as sellers.



THE COMPETITIVE MARKET PARADOX 16

veloped in Section 4.5, explains these patterns of relative performance in terms of the types present

in each session. Coefficients for each type are interpreted as contributions to the performance of

sellers relative to buyers. In order to carry out this analysis, it is important to demonstrate that

the performance of sellers is positively correlated with one another, as is the performance of buyers.

High correlation of performance within each side of the market justifies statistical analysis in which

the performance of each side of the market is modeled as dependent on the profile of types included

in a session. The next subsection demonstrates this performance correlation.

4.4 Performance correlation

Let ei be the ratio of the surplus earned by seller i to his equilibrium surplus. The average of ej

for sellers other than i is e−i = 1

5

∑
j 6=i ej . If the coefficient α

1
is close to one in the regression

ei − 1 = α
0
+ α

1
(e−i − 1) + ǫi then the average performance of all other sellers is a good predictor

of the performance of an individual seller.

The null hypothesis is that the performance of each agent is independent. This implies that

if the normalized performance of other sellers is e−i − 1, the expected performance for seller i is

E[ei − 1] = −5/7 (e−i − 1). An intuitive argument for this is that, if the market is efficient, then

an increase to the performance of the other five sellers must be compensated by a decrease in the

performance of seller i and the six buyers.

The argument can be made more formally as well. Assume that surplus for each agent in

equilibrium is s∗. Assume also that the market is efficient. (The first of these assumptions holds

approximately for the economic environment of the experiment; the second holds approximately

for the experiment data.) Then average efficiency is 1

12

∑
12
i=1 ei = 1

12

∑
12
i=1 si/s

∗. Since equilibrium

surplus for each agent is si = s∗, 1

12

∑
12
i=1 ei = 1. So independence of agents’ performance measures

implies that
∑

12
i=1(ei − 1) = 0. This in turn implies that they are independent and identically

distributed on the set {e :
∑

12
i=1(ei − 1) = 0}, so E[ei − 1] = −

∑
i′ ∈ (I

S
\{i})∪I

B

E[ei′ − 1]. If the

average of the normalized performance measures for all sellers other than seller i is e−i − 1 then

E[ei − 1] = −5 (e−i − 1) −
∑

i′∈I
B

E[ei′ − 1]. Under the null hypothesis, E[ei − 1] = E[ei′ − 1] for

all i′ ∈ I
B

so E[ei − 1] = −5/7 (e−i − 1) is the expectation of the normalized performance measure

of seller i.

Table 6 shows regression results for each design treatment. Since all estimated slope coefficients

α
1

are closer to one than to −5

7
, it is appropriate to model relative performance of sellers to that

of buyers as a function of the distribution of types in a session.

To a large extent, performance correlation within each side of the market results from the bid

improvement rule. In a market with several buyers and sellers, each of whom has multiple units to
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Treatment Type α0 α1 R2 F

Baseline Sellers -0.0259 1.1479 0.3506 238.6

Buyers 0.0005 0.7812 0.3066 195.4

Balanced Sellers -0.0072 0.9230 0.6578 2083

Buyers 0.0113 0.8267 0.4072 744.6

Automated Sellers 0.0016 0.9763 0.8725 3066

Sellers Buyers -0.0470 0.6186 0.1547 81.9

Automated Sellers -0.0188 0.8685 0.5194 386.9

Buyers Buyers 0.0090 0.9345 0.6913 801.6

Table 6: Performance correlation among sellers and among buyers.

transact, a narrow bid-ask spread is typical. Prices are therefore bounded by the bid-ask spread.

As a consequence, traders who are strategically weak can make price concessions, but a weak buyer

can pay no more than the standing ask and a weak seller can accept no less than the standing bid.

Although there is some variation in performance within each side of the market, the effect of

the pace variables could be identified even if there were no variation within each side of the market.

Suppose that every seller has the same performance, but the performance of the sellers is affected by

the composition of types in the market, such as human sellers or impatient automated sellers. The

simple hypothetical experiment in table 7 would identify the pace of human buyers (HB) relative

to human sellers (HS) and to patient automated sellers (PAS), since the average price varies with

the composition of the agent types in the session, and the midpoint of the equilibrium price range

is 96. The next section develops this idea to evaluate performance.

HS IAS PAS HB IAB PAB p̄

2 2 95

2 2 97

Table 7: A simplified hypothetical experiment design and the price for each session

4.5 Relative performance model

This section develops and estimates a model of the relative performance of sellers and buyers. The

model treats relative performance as a function of the profile of types present in each session, where

relative performance r is r ≡ e
S
/e

B
as in Section 4.3.

Assume that relative performance is a random function r(X) from IR+ to IR+ where X is a

random variable that measures the pace of asks relative to bids. Relative performance r(X) should

treat sellers and buyers symmetrically. If relative pace is inverted, relative performance should be

inverted: r(X−1) = r(X)−1. Functions of the form r(X) = Xγ have this property for any γ ∈ IR.
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Assume that the relative pace variable X has a lognormal distribution where X = eY and

Y ∼ N(µ, σ). Let S = {s1, s2} and B = {b1, b2} denote the two seller and two buyer groups. Assume

that for each seller group there is a random variable Ysj
that measures the pace of seller group j

for j = 1, 2 and for each buyer group there is a random variable Ybj
. Let Y =

∑
2

j=1 Ybj
−
∑

2
j=1 Ysj

.

The underlying assumption in this model is that the random variable X = eY is a function of

contributions from each of the two seller groups and each of the two buyer groups. Note that if Ysj

and Ybj
have a common expectation, then the expected value of Y is zero, so that E[X] = 1, in

which case the relative performance of sellers and buyers is equal in expectation.

The numbers in columns three through eight in table 2, with the last three rows (for the three

types of simulations) repeated ten times, represent the design matrix for the relative performance

model. Since there are two groups of sellers with identical costs and two groups of buyers with

identical values in each session, the numbers in columns three through five sum to two in each

row, as do the entries in columns six through eight. The column rank of the design matrix is four,

so the regressions estimate type contributions to relative performance with pairwise comparisons,

first between human subjects and patient automated sellers and buyers, and then between human

subjects and impatient automated sellers and buyers.

The regression model is

ln r(Xk) = α0 + αh sh,k + αp sp,k − βh bh,k − βp bp,k + ǫk (2)

where Xk is the relative pace of sellers to buyers in session k. The variables sh,k and sp,k indicate

the number of human seller groups and the number of patient automated seller groups included in

session k, where each of these variables takes the value 0, 1, or 2 and sh,k + sp,k ≤ 2. (The number

of impatient automated seller groups in a session is si,k = 2 − sh,k − sp,k.) Similarly, bh,k and bp,k

are the number of human buyer and patient automated buyer groups in session k. The negative

signs on the buyer terms in regression equation (2) have been chosen so that the strength of seller

and buyer coefficients can be compared directly, since the negative signs adjust for the fact that

strong buyers have the opposite impact from strong sellers on the ratio of seller performance to

buyer performance. With this specification of the model, a higher value for any of the estimates

(α̂h, α̂p β̂h, β̂p) indicates better performance for the group associated with that parameter estimate.

Table 8 reports coefficient estimates, standard errors, and p-values for tests of the hypotheses

that all coefficients differ from zero. The R2 statistic for this model is 0.6979: the model explains

a large fraction of the variability in relative performance. The F statistic is 30.6, which has

significance at a level less than 10−12.

A constant term that differs significantly from zero indicates an experiment design that favors

either the sellers or the buyers, independently of the composition of seller and buyer types. This
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α̂0 α̂h α̂p β̂h β̂p

Estimate -0.003 -0.116 0.142 -0.001 0.157

SE 0.066 0.036 0.028 0.034 0.028

p-value 0.962 0.002 0.000 0.986 0.000

Table 8: Estimates for humans versus patient automated sellers and buyers.

hypothesis is decisively rejected. Pace coefficients can be interpreted as contributions to the relative

performance of sellers and buyers. The presence of human sellers in a session k (sh,k > 0) has a

detrimental effect on the ratio of seller surplus to buyer surplus in that session, since the estimate α̂h

is significantly negative. Human buyers have a neutral effect on the relative performance statistic

(since β̂h is not significantly different from zero); relatively then, human buyers are stronger than

human sellers. Patient automated buyers and patient automated sellers have comparable effects on

performance. Finally, both human sellers and human buyers are weaker than patient automated

sellers or buyers, since both α̂p and β̂p differ significantly from zero and are similar in magnitude.

Patient automated sellers have a significant positive impact on the relative performance of sellers.

Patient automated buyers contribute negatively to the relative performance of sellers. Consequently,

patient automated buyers are stronger than human buyers.

These relations can be summarized with an ordering ≺ over the six types in the experiment.

These types are human sellers and buyers (HS and HB), impatient automated sellers and buyers

(IAS and IAB), and patient automated sellers and buyers (PAS and PAB). Results of the regression

in table 8 can be summarized as

HS ≺ HB ≺ PAB ∼ PAS. (3)

In order to assess the impact of impatient automated sellers and buyers, the regression equation

is presented in the alternative form

ln r(Xk) = α0 + αh sh,k + αi si,k − βh bh,k − βi bi,k + ǫk (4)

where si,k and bi,k are the numbers of impatient automated seller and impatient automated buyer

groups in session k. As a result of the collinearity in the design matrix, regression equation (4)

has the same explanatory power as regression equation (2), so that the R2 and F statistics are

identical, but it produces different coefficient estimates. Coefficients for the alternative formulation

in equation (4) are shown in table 9.

The most important additional comparison in table 9 is between human buyers and impatient

automated buyers. These coefficients are similar, and both have small standard errors. Conse-

quently, the timing specification for impatient automated buyers yields performance that is similar
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α̂0 α̂h α̂i β̂h β̂i

Estimate -0.028 -0.258 -0.142 -0.158 -0.157

SE 0.041 0.032 0.028 0.032 0.028

p-value 0.497 0.000 0.000 0.000 0.000

Table 9: Estimates for humans versus impatient automated sellers and buyers.

to human performance. These results can also be summarized with the order ≺ used in (3). The

regression results in table 9 can be summarized as

HS ≺ HB ∼ IAB ∼ IAS. (5)

Combining the results in (3) and (5) results in

HS ≺ HB ∼ IAB ∼ IAS ≺ PAB ∼ PAS. (6)

These regressions demonstrate that, aggregated across sessions, a substantial proportion of

the difference between the performance of sellers and buyers is explained by the types present in

the market. An alternative regression, which utilizes only the relative performance from the final

trading period, produces similar results. This is important, since one possible scenario is that

strategic behavior is important along the path to a competitive equilibrium, but its importance

diminishes once prices stabilize and the opportunity to influence price reduces. All of the qualitative

results noted above for the full data set are obtained in the final period as well, and the coefficients

are similar: pace remains an important factor even after prices and allocations converge to an

approximate equilibrium.

5 Conclusions

This paper demonstrates that a substantial deviation from equilibrium earnings is consistent with

the price stability and approximate efficiency that are typical in double auction experiments. De-

viation from equilibrium earnings is driven to a large extent by a difference between the pace of

sellers’ asks and buyers’ bids. Strategic interaction among sellers and buyers is a crucial element

of the price discovery process, but it is surprising that strategic considerations figure prominently

in the interactions of market participants after low levels of price variability are attained. Once

prices stabilize, there is frequently a clearly established bid-ask spread. Sellers and buyers vie with

each other to influence the market price, and consequently to improve relative performance. If,

for example, sellers are more likely to yield and accept the standing bid rather than wait until a

buyer accepts the standing ask, then the average price will decline. The cumulative effect of these
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concessions has a considerable effect on relative performance, as demonstrated by the statistical

model in Section 4.5. Consequently, price taking behavior – which is virtually synonymous with

competitive equilibrium – is not implied by price stability and approximate efficiency, that is, by

approximate competitive equilibrium. There is a substantial role for strategic behavior even under

competitive outcomes: the pace of sellers’ asks and buyers’ bids is a key element of such strategic

behavior in the temporally unstructured bargaining of the double auction.
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Appendix A

Construction of belief functions

Step 1 The initial belief of agent i ∈ I is defined on the set [0, Mi]. Buyer i ∈ I
B

believes that a bid at

zero will be accepted with probability zero and a bid at or above Mi will be accepted with probability

one; seller i ∈ I
S

believes that an ask at zero will be accepted with probability one and an ask at Mi will

be accepted with probability zero.

In simulations and hybrid sessions, for seller i ∈ I
S

with the vector of unit costs {c k
i }

Ki

k=1, the bound

Mi is Mi ≡ 2 2+ [ log
2
(maxk{c k

i
})]. For buyer i ∈ I

B
with unit values {v k

i }
Ki

k=1, the bound Mi is Mi ≡

2 1+ [ log
2
(maxk{v k

i
})] where [log2(maxk{v

k
i })] is the greatest integer less than or equal to log2(maxk{v

k
i }).

Step 2 Each agent i ∈ I has finite memory length mi. Each new ask is adjoined to a set A of asks that

have previously occurred; each new bid is adjoined to a set of bids B. Define Ami
⊆ A as the set of asks

that have been made during the negotiations leading to the last mi trades. Define Bmi
⊆ B similarly and

let Dm, i ≡ Ami
∪ Bmi

∪ {0, Mi}. The belief of seller i ∈ I
S

is defined at each possible ask a ∈ Dm,i as

p̂i(a) =

∑
d≥a TA(d) +

∑
d≥a B(d)

∑
d≥a TA(d) +

∑
d≥a B(d) +

∑
d≤a RA(d)

,

where TA(·) and B(·) are as defined in the description of the empirical acceptance frequencies and

RA(d) ≡ A(d) − TA(d) counts rejected asks at d. Similarly, the belief of buyer i ∈ I
B

is defined at each

possible bid b ∈ Dm,i as

q̂i(b) =

∑
d≤b TB(d) +

∑
d≤b A(d)

∑
d≤b TB(d) +

∑
d≤b A(d) +

∑
d≥b RB(d)

.

The rationale for the definition of a seller’s belief function p̂i(a) is that any ask at or above a that has

been accepted reinforces the seller’s belief that an ask at a will be accepted, as does any bid at or above

a. Any ask at a value at or below a that has not been accepted decreases the seller’s belief that a will be

accepted. The rationale for the definition of a buyer’s belief function q̂i(b) is analogous.

Step 3 In markets that include the spread reduction rule, which requires that any new ask is placed at

a value below the current low ask (or ‘standing ask’) sa and any new bid is above the current high bid

sb, beliefs are modified to account for this restriction. This is accomplished by setting p̂i(d) = 0 for all

d ≥ sa and setting q̂i(d) = 0 for all d ≤ sb.

Step 4 The beliefs p̂i(a) and q̂i(b) are extended from Dm,i to [0, Mi] by cubic spline interpolation. For each

dk ∈ Dm,i, define pi(a) on [dk, dk+1) by pi(a) = β0 + β1 a + β2 a2 + β3 a3, where four conditions uniquely

determine the coefficients (β0, β1, β2, β3) on the interval [dk, dk+1). These conditions are pi(dk) = p̂i(dk),

pi(dk+1) = p̂i(dk+1), p
′

i (dk) = 0, and p
′

i (dk+1) = 0. The extension of beliefs q̂i(b) for buyer i to [0, Mi]

is identical.
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Appendix B

B.1 Modification to decision rule

Human buyers realize that a bid below recent trade prices can be made at low cost, since bids can be

replaced. Consequently, human buyers often make bids below recent trade prices, and bids progress up

toward recent trade prices. Figure 3 (b) in Section 2.3.1 shows all bids in period 1 of baseline session 1.

Twenty-two of twenty-eight bids were below the average price (p̄ = 92.8) during the period shown in the

figure (and only five of those twenty-two bids were accepted). Five of the six bids placed at values above

the mean price were accepted. The figure demonstrates that human subjects frequently place bids that are

below prices where trades have occurred.

In the HBL model, a buyer’s belief qi(b) represents the buyer’s assessment of the probability that a bid

at b will be accepted by some seller. Maximization of expected surplus relative to this belief is too aggressive,

in the sense that it ignores the option to replace bids that are not accepted. Formulation of a continuation

value for the decision problem would be desirable, but a number of obstacles present themselves. Among

these obstacles are the non-stationarity of beliefs, the fact that buyers typically purchase multiple units, and

the unknown number of bidding opportunities for a buyer in a trading period. If none of these problems

were present, a buyer with n remaining opportunities to place a bid b would have the continuation value

E[Si(b)] = (v − b) {q(b) + (1 − q(b)) q(b) + · · · + (1 − q(b))n−1 q(b)}

= (v − b) (1 − (1 − q(b))n). (B.1)

The purpose of the decision rule modification is to decrease the expected surplus maximizing bid.

Proposition 1 shows that the bid that maximizes expected surplus is lower when the surplus function is

S̃i(b) = (v − b) q(b)1/n. The model has been tested with this modification.12

Proposition 1 Let b∗k be the argmax of S(b) = (v − b) q(b) on [dk, dk+1), and let b̃ ∗
k be the argmax of

S̃(b) = (v − b) q(b)
1

n on [dk, dk+1). Then (1) on each interval [dk, dk+1) the argmax b̃ ∗
k of S̃(b) is less than

the argmax b ∗
k of S(b), and (2) if S̃(b̃ ∗

k ) > S̃(b̃ ∗
k−1) then S(b ∗

k ) > S(b ∗
k−1).

Proof The idea of the proof of proposition 1 is straightforward: assertion (1) states that the local argmax

of S̃(b) on each interval [dk, dk+1) is less than the local argmax of S(b). Assertion (2) guarantees that the

global argmax of S̃(b) lies in either the same interval [dk, dk+1) as the global argmax of S(b), or it lies in an

interval to the left of the one where the global argmax of S(b) occurs. Consequently, b̃ ∗ < b ∗.

If the slope of S̃(b) is negative at b ∗
k then S̃(b) is increasing to the left of b ∗

k . Differentiate S̃(b) to get

S̃
′

(b) = (v−b) 1
nq(b)

1

n
−1 q ′(b)− q(b)

1

n . From the definition of b ∗
k , S

′

(b ∗
k ) = 0. Since S

′

(b) = (v−b) q
′

(b)−q(b)

it follows that (v − b ∗
k ) q

′

(b ∗
k ) = q(b ∗

k ). Substitute this expression for (v − b ∗
k ) q

′

(b ∗
k ) into S̃

′

(b) evaluated at

b ∗
k to get

12 The function S̃(b) has been used as the alternative objective function. This form for the objective was selected

prior to formulation of the continuation value argument described above and characterized in equation (B.1).
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S̃
′

(b ∗
k ) = (v − b ∗

k )
1

n
q(b ∗

k )
1

n
−1 q

′

(b ∗
k ) − q(b ∗

k )
1

n

=
(

1
n − 1

)
q(b ∗

k )
1

n .

For all n > 1, this expression is negative, so assertion (1) holds.

Next consider assertion (2). The problem is to show that when S̃(b̃ ∗
k ) > S̃(b̃ ∗

k−1) then S(b ∗
k ) > S(b ∗

k−1).

From the definition of S̃(b̃ ∗
k ), the first condition is (v − b̃ ∗

k ) q(b̃ ∗
k )

1

n > (v − b̃ ∗
k−1) q(b̃ ∗

k−1)
1

n . Since b̃ ∗
k−1

maximizes S̃(b) on [dk−1, dk), it follows that

(v − b̃ ∗
k ) q(b̃ ∗

k )
1

n > (v − b̃ ∗
k−1) q(b̃ ∗

k−1)
1

n > (v − b ∗
k−1) q(b ∗

k−1)
1

n .

If the first and last terms in this inequality are raised to the power n the result is

(v − b̃ ∗
k )n q(b̃ ∗

k ) > (v − b ∗
k−1)

n q(b ∗
k−1),

which is equivalent to (v− b̃ ∗
k )n−1 (v− b̃ ∗

k ) q(b̃ ∗
k ) > (v−b ∗

k−1)
n−1 (v−b ∗

k−1) q(b ∗
k−1). The product of the second

and third terms on both sides of this inequality are expressions for expected surplus under the original belief

function, so the last inequality can be written as (v − b̃ ∗
k )n−1 S(b̃ ∗

k ) > (v − b ∗
k−1)

n−1 S(b ∗
k−1). Two short

steps complete the proof. Write this last inequality as

(
v − b̃ ∗

k

v − b ∗
k−1

)n−1

S(b̃ ∗
k ) > S(b ∗

k−1).

Finally, multiply the left side of the inequality by S(b ∗
k )/S(b ∗

k ) to get

(
v − b̃ ∗

k

v − b ∗
k−1

)n−1
S(b̃ ∗

k )

S(b ∗
k )

S(b ∗
k ) > S(b ∗

k−1).

Since v − b̃ ∗
k < v − b ∗

k−1 and S(b̃ ∗
k ) < S(b ∗

k ), it follows that S(b ∗
k ) > S(b ∗

k−1).

B.2 Modification to timing

The second problem with the original HBL model is that bids frequently exceed recent prices. This is

also addressed with a simple modification: the expected time until a buyer submits her bid is decreased

when current maximum expected surplus for the buyer exceeds the expected surplus that the buyer would

attain at the average of recent prices. In the modified definition of the random variable that governs

the timing of bids, let p̄m be the average price over the last m trades, and let S̄i ≡ max{0, E[S̃i(p̄m)]} =

max{0, (vi− p̄m) q(p̄m)1/n}. The timing modification is implemented by taking one plus the expected surplus

at the average price, 1+ S̄i divided by one plus the current maximum expected surplus 1+ S̃∗
i for the buyer,

and raising this ratio to a positive power c. The modified specification of λi(S̃
∗
i , tκ−1, T ) is

λ̃i(S̃
∗
i , S̄i, tκ, T ) =





βi (T − αi tκ)/(S̃∗

i T ) × ((S̄i + 1)/(S̃∗
i + 1))c, if S̄i > 0,

βi (T − αi tκ)/(S̃∗
i T ), if S̄i ≤ 0,

(B.2)

where αi ∈ [0, 1), βi > 0, and S̃∗
i is the maximum expected surplus of agent i.
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If the current standing bid sb is greater than or equal to p̄m then S̄i > S̃∗
i , so ((S̄i + 1)/(S̃∗

i + 1))c > 1.

Consequently λ̃i > λi in this case: the mean time until a bid increases once the high bid reaches the mean

of recent prices.

If the current standing ask sa is less than p̄m then a bid b = sa results in a trade with probability one,

so S̃∗
i ≥ v − sa > v − p̄m ≥ (v − p̄m) q(p̄m) = S̄i. Consequently λ̃i < λi: the mean time until a bid decreases

when the low ask is below the mean of recent prices.

B.3 Assessment of modifications

These two features of human behavior in the double auction – initial bids below equilibrium and reluc-

tance to increment bids above recent prices – lead to a difference in the original HBL model between the

mean price of trades initiated by sellers (p̄a) and the mean price for trades initiated by buyers (p̄b) . This is

because asks by human sellers are typically decreased to values just above or at the mean of recent trades,

and bids by human buyers are increased to prices just below or at the mean of recent trade prices. A trade

between a human seller and human buyer occurs when either the buyer accepts the seller’s ask (which is

typically no lower than the mean of recent trade prices) or a seller accepts the buyer’s bid (which, similarly,

is typically no higher than the mean of recent trade prices). Consequently, on average trades between human

sellers and human buyers that are initiated by sellers occur at higher prices than trades initiated by buyers.

c = 0 c = 3 c = 5 c = 7 c = 8

Myopic objective -2.29 -1.21 -0.89 -1.02 -1.04

Modified objective -1.44 -0.45 -0.27 -0.15 -0.04

Table 10: Difference between sellers’ and buyers’ accepted price proposals (p̄a − p̄b).

As a result of bids that frequently exceed recent prices and asks below recent prices, this statistic is

reversed in the model. The two modifications above are intended to address this problem. Examination of

the price difference between trades initiated by sellers and those initiated by buyers gives a measure of the

extent to which the issue has been resolved. Table 10 shows the effects of these two modifications on the

difference between prices initiated by sellers and those initiated by buyers for groups of ten simulations in

each of the ten cells of the table. In all cells except the two with c = 7 and c = 8 and the modified objective,

it is possible to reject the hypothesis that the mean difference is positive. Across five baseline sessions with

human subjects the mean of this statistic was 0.45, and for these baseline sessions, it is not possible to

reject the hypothesis that the mean difference is positive. It is clear from this table that the model mimics

this aspect of human behavior more effectively as a result of the combination of the modifications described

above, and that either of these two modifications independently does not resolve this discrepancy between

model and human performance. In simulations and hybrid sessions, c = 5.
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Appendix C

Before trading begins, a seller goes through an instruction set that describes elements of the seller screen

and their operations. These elements include: (1) the seller’s endowment and allocation of currency and

commodity; (2) the seller’s induced unit costs; (3) input that the seller provides during the session; (4)

processing of input (by the double auction mechanism) from the seller, as well as from other sellers and

from buyers; and (5) the determination of profits for the seller. Buyers’ instructions are analogous to sellers’

instructions. The most important principle adhered to in our implementation of instructions is that inputs

of asks by sellers and bids by buyers are initiated by subjects, in order to avoid creation of a reference point

that would influence asks or bids once the session begins.

Each seller and each buyer views a total of 27 screens, and makes inputs on five of these screens. There

are six questions that each seller and each buyer must answer correctly in order to proceed. Most of the

screen space is devoted to the actual screen display the subject will use during the experiment session: a

text box describes this screen display. The total length of the instructions is 2898 words, which is equivalent

to approximately six pages of text. Subjects typically complete instructions in 15 to 35 minutes.

The instruction summary below refers frequently to elements of the seller’s screen, which is shown in

figure 2. The instructions for a buyer are exactly analogous. Direct experimenter interaction with subjects

was kept to a minimum whenever possible, including sign-in, seating, and payment.

Screen 1: The subject’s earnings are based on subject’s decisions and the decisions of other participants.

Screen 2: The subject will be a seller throughout an experiment session that lasts 15 trading periods.

Screen 3: The subject should not communicate with or distract others. The subject’s data is anonymous.

Screen 4: Payment will be made at an exchange rate of $0.015 per unit of experiment currency accumulated.

(This rate was £0.015 at the University of York and $0.012 at the IBM Research Center.) Payment will

be made anonymously at the conclusion of the experiment.

Screen 5: There is a set of interactive instructions that follow this screen. Subject will know that they

either have or have not completed instructions based on the status message at the top of their screen.

Screen 6: Each period of the session consists of a “Trading Phase” of 180 seconds and a “Review Phase”

of 30 seconds. A clock at the top of the screen ticks down to the end of each phase.

Screen 7: The seller begins the period with currency and commodity. The current balance of each is shown

on the seller’s screen.

Screen 8: The seller has a list of unit costs, one for each of the units that the seller can offer for sale. The

cost for a unit is incurred only if the unit is sold. Unit profit is calculated as the difference between the

sale price for the unit and the cost of the unit.

Screen 9: Total profit is the sum of the profit earned on individual units. Payment at the end of the session

is proportional to the total profit earned. Unit costs are initialized at the beginning of each period; unsold

units are not carried over to the next period. If a unit is sold at a price below its cost, a loss is incurred

on that unit. (Gains are shown in black type; losses are shown in red type.)
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Screen 10: An ask is entered in the “Enter Ask” area of the seller screen. The subject enters an ask at

this point.

Screen 11: The ask entered by the subject appears in the Unit Ask row of the Trade Summary display.

Commodity Holding remains unchanged, but Commodity Available is reduced by one unit. The ask also

appears in the “Your Asks” display area.

Screen 12: Asks by all sellers and bids by all buyers appear in the “Market Queue” display.

Screen 13: A new ask is generated randomly to simulate an ask by another seller. The simulated ask is

higher than the subject’s own ask, to illustrate the Ask Improvement rule. (The new ask is generated

randomly from one to ten above the seller’s own ask, though the subject is not informed of the process

that generates the new ask.) The subject is also informed that if he makes a new ask at this point, the

new ask will replace his current ask.

Question 1: The subject has a quiz question appear at this point. The subject, after seeing a description

of the Ask Improvement rule, is prompted to state what is the highest ask that can be submitted at this

point.

Question 2: After the subject answers Question 1 correctly, he is asked to state the number of asks that

will be in the Market Queue if he submits a new ask (to test comprehension of the ask replacement rule).

Screen 14: The subject is asked to enter a new ask that improves on the ask submitted by the simulated

seller.

Screen 15: The new ask replaces the seller’s previous ask. The Messages and Trade Summary displays are

updated.

Screen 16: The subject is prompted to remove his ask by double clicking on the ask in the “Your Asks”

display. Changes to the seller screen are described, including updates to the Commodity Available, Your

Asks, Market Queue, Trade Summary, and Messages displays.

Screen 17: The seller is prompted to enter a new ask.

Screen 18: Updates to the seller’s screen that result from the new ask are reviewed.

Screen 19: A trade occurs when a seller’s ask is at or below the current best bid, or a buyer’s bid meets

or exceeds the best ask. A bid from a simulated buyer is generated that meets the seller’s ask, so that

the seller trades with the simulated buyer.

Screen 20: Unit Price and Unit Profit entries in the Trade Summary table are described. Changes to the

Currency Holdings and Commodity Holdings areas are described. The Market Transaction Prices graph

update is described.

Screen 21: The price determination rule is reviewed and subject is informed that after two questions, a

bid will be simulated that results in a trade with the current low ask.

Question 3: The subject is asked whether a trade will result if a buyer submits a bid below the current

low ask.
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Question 4: The subject is asked what the trade price will be if a bid is submitted that meets or exceeds

the current low ask.

Screen 22: A bid is simulated that generates another trade. (This trade is between a simulated seller and

a simulated buyer, so the subject only sees public information regarding the trade, i.e., its price on the

Market Transaction Prices graph.)

Screen 23: A new simulated bid appears in the Market Queue. The price determination rule is reviewed

once more and the subject is asked two more questions.

Question 5: The seller is asked whether a trade will result if he submits an ask that exceeds the current

high bid.

Question 6: The seller is asked what the trade price will be if he submits an ask that is below the current

high bid.

Screen 24: The subject is prompted to enter an ask that is at or below the current high bid, in order to

produce a new trade.

Screen 25: Changes to the Current Allocation, Trade Summary, and other screen displays that result from

the most recent trade are reviewed.

Screen 26: Seller is informed of the Vote to End Period option, and the unanimity rule that triggers an

early end to the trading phase of the current period.

Screen 26: A Period Profit window appears during the review phase of each period.

Screen 27: Subjects are cautioned that the ask by another seller and the bids by other buyers in the

instructions were simulated and that these may not be similar to the responses by buyers and by other

sellers during the experiment. The subject is informed that he has now completed the instructions and

trading will begin when all subjects have completed their instructions.


