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1 Introduction

Final success or final failure often results not from a single strike, but from
a series of battles. Players often compete in a sequence of battles and final
victory is often awarded as a function of the numbers of battle victories that
the players accumulated. If two players compete in a series of battles, each
player may receive one ’victory point’ for winning a battle, and the player
whose number of victory points first reaches some given minimum number,
(which may vary across players), is awarded the prize for final victory. We
call this structure a multi-battle contest or a race.
Obvious examples of such races can be found in many contexts, for in-

stance, in sports, politics, warfare, and R&D competition. A tennis match,
for instance, consists of a series of single battles. To be victorious, a player
needs to win a certain number of sets before his or her competitor does. In a
chess tournament between two players, the victorious player is the one who
arrives at a certain number of victory points prior to his opponent. Simi-
larly, in Formula I races or team leagues, teams collect winning points and
the team that wins the largest number of points becomes the champion of
the year. Examples exist in many other areas of sports competition.1

In politics, elections are won as the outcome of election campaigns and
the candidate wins who wins the majority of votes. In some contexts the
decision making of the members of the voting group is sequential. Klumpp
and Polborn (2005) address this issue in the context of primaries in the US
presidential elections.
In the context of conventional warfare, military conflict generally occurs

in series of battles, typically called campaigns. The military adversaries
typically start in some status quo in which each is in command of a number
of soldiers, guns, armies, cities, countries, fortresses, military production
capacity or other resources that can be turned into means of warfare. They
fight each other in battles. In the sequence of successes and failures the
potential for military conflict is weakened up to the point where one of the
adversaries’ military power is completely destroyed or sufficiently weakened
to make him give up. Final victory becomes therefore a function of the

1For a survey on the theory of contests in sports see Szymanski (2003). The fact that
many different battles interact in sports is acknowledged in this context. The particular
micro structure of annual championships or simple matches has not been studied in this
context, however.
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sequence of outcomes of these battles.2

Another important application in which multi-battle contests have re-
ceived considerable attention already is the area of R&D competition. Harris
and Vickers (1987) described a multi-battle contest for a patent and called
it a patent race: two players expend efforts on R&D in a sequence of single
component contests. In each component contest one of the players wins, and
the winner is determined as a stochastic function of the players’ efforts in the
respective component contest. The player who is first to win a given number
of component contests wins the patent.
Our analysis will relate to the R&D literature on races and will answer

some questions that have been left open in this literature, but the results
obtained hold more generally to races in the context of sports, warfare or
politics as well. When considering the single battles, we will assume that
these are described by all-pay auctions with fully informed players. This
reduced form description of the patent race traces back to Dasgupta (1986),
who modeled such a race as a one-shot all-pay auction. It is natural to con-
sider the patent race as a dynamic process which consists of a sequence of
such all-pay auctions. Fudenberg, Gilbert, Stiglitz and Tirole (1983), Harris
and Vickers (1985, 1987), Leininger (1991), and Budd, Harris and Vickers
(1993) looked at the dynamics of patent races. Fudenberg, Gilbert, Stiglitz
and Tirole (1983) consider a race in which the set of possible action choices at
each stage is limited to three discrete values, and in which these effort choices
add over time and determine the contestants’ performance status. Harris and
Vickers (1985) allow for a continuum of effort levels at each stage of the race,
but make the contestants move sequentially. Harris and Vickers (1987) look
both at the race and the tug-of-war with simultaneous effort choices at each
stage. Similar to our framework, period efforts translate into probabilities of
winning the period battle at the respective stage, and the number of battle
wins over time determine the overall outcome. One difference between their
analysis and our approach is the type of contest. They consider contest suc-

2Alternatively, if an adversary who wins the battle for a fortress or fortified city does not
destroy it, but conquers and uses it himself, a ruler wins only once he possesses all n1+n2
fortified places. Hence, in this case the lead in victories is decisive for final victory. We
call such a conflict a tug-of-war. Starting with n1 and n2 fortresses under their respective
control, ruler 1 needs a lead of n2 more battle wins than ruler 2 for final victory, and
similarly, ruler 2 needs a lead of n1 more victories than ruler 2 to reach final success. In
this paper we consider a formal model of a race. The analysis of a tug-of-war is addressed
in a companion paper (Konrad and Kovenock, 2005).
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cess functions with exogenous noise, whereas we consider contest success as
the outcome of an all-pay auction without noise. Leininger (1991) considers a
framework in which the contestants’ expenditures are sunk and period efforts
accumulate, and where the prize is allocated to the contestant who makes
the largest overall effort. Finite and given total expenditure budgets allow
for a recursive structure and solution of the problem. Finally, Budd, Harris
and Vickers (1993) turn to a tug-of-war in continuous time that follows a
stochastic law of motion. They also need sufficient exogenous noise for the
existence of a pure strategy equilibrium.
We address the multi-stage race as in Harris and Vickers (1987), but give

a complete analytical characterization of the equilibrium in a context with
all-pay auction component contests. The absence of exogenous noise will re-
quire the battle equilibria to be in mixed strategies. Uncertainty in the race
is then not being assumed exogenously, but being derived endogenously. One
further notable difference in our analysis of racing that is particularly impor-
tant is the role of an intermediate prize that is obtained by the winner of a
component contest, apart from the benefit a victory in a component contest
has for winning the overall multi-battle game. Empirically, the counterpart
of this additional benefit in R&D races could be an information spillover or
the cost reduction in other production processes that winning a component
contest in the development of a patentable product may have. Such inter-
mediate prizes have important consequences for the equilibrium outcome. In
many models of R&D races a player who gains a sufficient lead wins the re-
maining battles, sometimes without further effort, because the player who is
lagging behind gives up. If intermediate prizes are awarded for winning com-
ponent contests, the player who is lagging far behind may catch up, and does
catch up with a considerable probability in the equilibrium. The strategic
advantage even of a considerable lead in the R&D race is diminished.
Our results extend to the other examples of races discussed above and

have their empirical counterparts there. In sports contests intermediate
prizes that are awarded in single matches of a game or in single tourna-
ments in a series of tournaments that determines the annual championship
make sure that players who are lagging behind will not simply give up. They
expend effort and catch up with a considerable probability in the equilib-
rium, and may even become the leader again. Suspense is sustained by the
existence of intermediate prizes, even if the sequence of battle victories is not
very balanced for some rounds. As suspense is one of the desirable features of
sports events (see, e.g., Hoehn and Szymanski 1999), this result may explain
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why such intermediate prizes are frequently observed in races which are care-
fully designed. In Formula I races, for instance, each Grand Prix generates
some benefits to the winner, apart from the championship points that count
for the overall championship that is awarded on an annual basis. Similarly,
the PGA tour has large purses of prize money in the various tournaments,
but each victory also contributes to the grand prize which is awarded at the
end of the tour.
Finally, a property of the equilibrium outcome of the race we consider

may explain why warfare and other types of multi-battle contests appear to
be extremely wasteful in the sense that, overall, the players expend more
effort than the value of the prize that is at stake. In particular, political
scientists considered the question why so many resources are expended and
so much wealth is destroyed in a war, and why war may continue for so long.3

We show that the resources that are expended in a multi-battle contest may,
for some realizations of the sequence of battle victories, sum up to amounts
that exceed the value of the prize, even by a factor that is proportional to
the maximum number of battles that is consistent with the overall contest.

2 The multi-battle race

Consider two players A and B. The players take part in a race which is
comprised of a sequence of one shot simultaneous move component contests
("battles"). The series of component contests awards a prize to the winner
of the race, and this prize is valued at ZA and ZB by these players. We
assume that ZA ≥ ZB > 0. In order to win the prize, player A must win
n of these component contests before player B wins m component contests,
with (n,m)À 0. Similarly, B receives the prize ZB for winning the race if he
winsm component contests before A wins n contests. In addition to the final
prize ZA or ZB, additional intermediate prizes are awarded to the winner of
each component contest. We assume here that each of these intermediate
prizes is valued at ∆ ≥ 0 by both contestants.

3This literature also came up with a number of good answers, concentrating on issues
such as asymmetric information, learning, limits to what can be enforced in a contract, and
dynamic games with multiple equilibria. See, for instance, Fearon (1995) for an overview
and Powell (2004a, 2004b), Garfinkel and Skaperdas (2000) and Slantchev (2003) for recent
contributions that consider different effects. The overdissipation result in this paper adds
to these explanations.
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Starting from the initial state (n,m) the first contest, Cnm, is played. If
player A wins the contest, he receives the intermediate prize ∆ ≥ 0 and the
state moves to (n− 1,m), indicating that in order to win the race player A
then only needs to win n−1 component contests before B winsm component
contests. If player B wins the first contest, B receives the intermediate prize
∆ and the state moves to (n,m − 1), indicating that player B only needs
to win m − 1 more contests in order to win the race. The outcome of each
component contest becomes public information at its conclusion. In each
state, the players simultaneously decide upon their expenditures in the next
contest. The solution concept that we will use is subgame perfect equilibrium.
In each state (i, j) we shall denote by vA(i, j) and vB(i, j) the subgame perfect
equilibrium continuation values of players A and B, respectively, which is the
value the player attributes to starting the race at this state. We argue below
that these continuation values are well-defined.
Since a player wins the race if he is the first to reach a position with no

component contests left to win, we may set

vA(0, j) = ZA and vB(0, j) = 0 for all j > 0
vB(i, 0) = ZB and vA(i, 0) = 0 for all i > 0

(1)

At any (i, j) that is not such an end state, a component contest takes place.
Each of the component contests, Cij, is described as follows. Players simul-
taneously choose efforts, denoted a ≥ 0 and b ≥ 0, respectively. A player
who expends a strictly higher effort than his opponent wins the component
contest. If the players expend the same effort, for simplicity we assume that
player A wins the contest at (i, j) if vA(i− 1, j) > vB(i, j − 1) and player B
wins the contest if the inequality is reversed. In the event players expend the
same effort and vA(i− 1, j) = vB(i, j − 1) we assume that the winner of the
component contest is chosen by a fair randomizing device.4

Figure 1 illustrates a race for n = 6 andm = 4. Players start at (6, 4), can
reach any of the dark states (i, j) with i ≤ 6 and j ≤ 4, and will finally end
on the upper or right boundary. One of the issues we address is whether the
race is pervasive in the sense that, starting from any (i0, j0), all states (i , j)
with i ≤ i0and j ≤ j0 are reached with positive probability in the subgame

4Our tie breaking rule is chosen to avoid the notational diffculties in having to carry out
the analysis for a finite grid and then taking the mesh of the grid to zero. The practical
implication of the assumption is to avoid having a player with a positive continuation
value outbid by "an epsilon" a player with zero continuation value who bids zero. This tie
breaking rule only affects equilibrium behavior when ∆ = 0.
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  (6,4)

Figure 1:

perfect equilibrium. This is in contrast to some models of patent races where
a sufficient lead by one contestant leads the other contestant to give up.
Starting or continuing from the state (n,m) = (1, 1), which we will term

the "decisive state," this contest is just a standard all-pay auction with com-
plete information with prizes zA(1, 1) ≡ ZA + ∆ and zB(1, 1) ≡ ZB + ∆.
It is now well known (see Hillman and Riley (1989) and Baye, Kovenock,
and de Vries (1993,1996)) that the two player all-pay auction has a unique
equilibrium in mixed strategies. The following proposition characterizes the
unique equilibrium in the all-pay auction between two contestants with these
valuations.

Proposition 1 (Hillman and Riley, 1989) Let Γ(zA, zB) be a two-player first
price all-pay auction with prize values zA and zB, where zA ≥ zB > 0.
Γ(zA, zB) has a unique Nash equilibrium in mixed strategies. In this equilib-
rium players’ efforts (bids) are chosen randomly according to the cumulative
distribution functions

FA(a) =

½
a
zB

for a ∈ [0, zB]
1 for a > zB

(2)

and

GB(b) =

½ zA−zB
zA

+ b
zA

for b ∈ [0, zB]
1 for b > zB.

(3)
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Equilibrium payoffs are u∗A = zA−zB and u∗B = 0. In equilibrium, the expected
sum of the efforts is E(a + b) = 1

2
zB[1 +

zB
zA
] and the probability of winning

the prize is pA = 1− zB
2zA

and pB = zB
2zA
, for players A and B respectively.

According to this proposition, the player who attributes a higher value to
winning has a payoff equal to the difference between his own and his rival’s
value of winning, and the other player has an equilibrium payoff that is equal
to zero. This determines the values that the players attribute to being at the
state (1, 1) as

vA(1, 1) = max[zA(1, 1)− zB(1, 1), 0] (4)

= [(vA(0, 1)− vA(1, 0)) +∆]− [(vB(1, 0)− vB(0, 1)) +∆]

= ZA − ZB,

and similarly,
vB(1, 1) = 0. (5)

Note that the size of the intermediate prize ∆ does not affect the con-
tinuation values vA(1, 1) and vB(1, 1). It does, however, affect the equi-
librium distribution of efforts and the respective probabilities of winning
the contest C11. From Proposition 1 the expected sum of the efforts in
C11 is 1

2
(ZB +∆)[1 + ZB+∆

ZA+∆
] and the respective probabilities of winning are

pA = 1− ZB+∆
2(ZA+∆)

and pB =
ZB+∆
2(ZA+∆)

.

Define Σ(k) = {(i, j) >> 0 : i + j = k}. Now that the continuation
values at (1, 1), (2, 0) and (0, 2) are uniquely defined, we can consider the
states in Σ(3), (2, 1) and (1, 2). The contest C21 can either lead to (1, 1) or
to (2, 0), and the value of winning this component contest is equal to the
intermediate prize ∆ plus the absolute value of the difference in the respec-
tive contestant’s continuation values at (1, 1) and (2, 0), which are uniquely
determined. Hence, using subgame perfection, C21 reduces to a problem
that is equivalent to a standard all-pay auction with complete information,
which again has a unique equilibrium which is determined analogously to the
equilibrium for C11, and which uniquely determines the continuation values
vA(2, 1) and vB(2, 1). Similar reasoning applies for C12, and the continuation
values for the end states (0, 3) and (3, 0) are also well defined by (1). More
generally, in any component contest Cij the value of the "prize" of winning
the contest is equal to ∆ plus the absolute value of the difference in the re-
spective player’s continuation values in states (i−1, j) and (i, j−1) Formally,
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in Cij players play an all-pay auction with prizes

zA(i, j) = vA(i− 1, j)− vA(i, j − 1) +∆ and (6)

zB(i, j) = vB(i, j − 1)− vB(i− 1, j) +∆.

This illustrates how unique continuation values for all states (n,m) can be
calculated recursively.
More generally, in order to characterize the nature of the subgame perfect

equilibrium in the multi-battle contest we first define the set of "separating
states."

Definition 2 Suppose ZA ≥ ZB > 0 and consider the set of states (i, k−i) ∈
Σ(k) for k ≥ 2. We define a state (ik, k− ik) to be a separating state if it has
the following separating property:

vA(i, k − i) = ZA and vB(i, k − i) = 0 for all i < ik
vA(i, k − i) = 0 and vB(i, k − i) = ZB for all i > ik (7)

The separating property provides some structure to the state space and
has implications for the continuation values of the separating states them-
selves. One implication is that there can be at most two separating states for
each Σ(k). This follows by contradiction: suppose (ik, k− ik), (jk, k−jk) and
(lk, k − lk) are separating states in Σ(k), and let ik > jk > lk. Then, by the
separating property of ik, vA(jk, k−jk) = ZA and by the separating property
of lk, vA(jk, k− jk) = 0; hence, a contradiction. When there are two separat-
ing states (i, j) and (i0, j0) with i > i0 in Σ(k), they must be neighboring in
the sense that i = i0 + 1, and the continuation values at these states need to
be vA(i, j) = 0, vB(i, j) = ZB, vA(i0, j0) = ZA, vB(i

0, j0) = 0. This structure
and the neighboring property are useful in proving the main proposition of
the paper.

Proposition 3 (i) For every k ≥ 2 there exist one or two separating states
in Σ(k). (ii) The state (i, j) >> 0 is a separating state if and only if j−1

i
≤

ZB
ZA
≤ j

i−1 . Hence, if there exists an (i, j) ∈ Σ(k) such that j−1
i

< ZB
ZA

< j
i−1

then (i, j) is the unique separating state in Σ(k). (iii) (i, j +1) and (i+ 1, j)
comprise the set of separating states in Σ(k) if and only if ZB

ZA
= j

i
for (i, j) ∈

Σ(k − 1). (iv) For any (i, j), vA(i, j) = min(ZA,max(0, jZA − iZB)) and
vB(i, j) = min(ZB,max(0, iZB − jZA)). If (ik, jk) is a separating state then
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vA(ik, jk) = max(0, jkZA − ikZB) ≤ ZA and vB(ik, jk) = max(0, ikZB −
jkZA) ≤ ZB. (v) An immediate consequence is that vA(i, j) > 0 if and only
if ZB

ZA
< j

i
and vB(i, j) > 0 if and only if ZB

ZA
> j

i
.

The proof of Proposition 3 is relegated to the Appendix. Figure 2 illus-
trates the structure of the problem, with (ik, k−ik) a unique separating state
in Σ(k).

( ) ( )( )11,1 +−++ kk iki

( )( )kk iki −+1,

( )kk iki −,

,0=Av
BB Zv =

,AA Zv =
0=Bv

States with

States with

Figure 2:

Most non-separating states in the set Σ(k + 1) simply inherit their con-
tinuation values from the fact that the component contest in this state leads
to two possible states which do not differ in the continuation values for play-
ers. Accordingly, the component contest in such a state is symmetric, and is
essentially about the intermediate prize ∆ only. The situation for separating
states and for states next to separating states is more complex. If (ik, k− ik)
is a unique separating state in Σ(k), then the separating state in Σ(k+1) is
either the state to the left of (ik, k − ik) or the state right below (ik, k − ik),
or both. The latter happens in the non-generic case in which the separating
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state (ik, k− ik) is located right on the line through (0, 0) with slope ZB/ZA.
If Σ(k) has two separating states, then the state in Σ(k + 1) that is located
next to these two states is the (unique) separating state in Σ(k + 1).
To facilitate our analysis of the equilibrium distributions define a non-

trivial component contest as a component contest in which both contestants
expend positive effort with positive probability, and a trivial component con-
test as a contest which both contestants expend zero contest effort with
probability one. 5

3 No Intermediate Prizes (∆=0)

The special case with terminal prizes, ZA and ZB, but no intermediate prizes,
∆ = 0, is of particular interest. All of the results in Proposition 3 hold for
this special case. Indeed, for ∆ = 0 the equilibrium distributions take a
very simple form. The following corollary summarizes the characterization
of these distributions in this special case:

Corollary 4 Suppose ZA ≥ ZB > 0 and ∆ = 0. A non-trivial component
contest occurs at (i, j) if and only if vA(i − 1, j) > 0 and vB(i, j − 1) > 0,
which holds if and only if j−1

i
< ZB

ZA
< j

i−1 . If
ZB
ZA
≤ j−1

i
then, starting in

state (i, j), player A is able to win the remaining contests with no effort.
If ZB

ZA
≥ j

i−1 then starting in (i, j), player B is able to win the remaining
contests with no effort.

Note that one implication of the corollary is the following: Since for a
given k the sets {[k−i−1

i
, k−i
i−1), i = 1, ..., k − 1} partition the interval [0,∞)

and for each of the states (i, j) ∈ Σ(k), j
i
lies in exactly one interval, at

most one such state generates a non-trivial contest. That is, the inequalities
j−1
i

< ZB
ZA

< j
i−1 can jointly hold for at most one such state. However, it

is possible that the inequalities do not jointly hold for any such state. This
occurs when there are two separating states in Σ(k). That is, ZB

ZA
takes the

value of one of the non-zero endpoints of these intervals: ZB
ZA

= k−i−1
i

, for

5It is straightforward to show that, given the continuous strategy space and the
tiebreaking rule that we employ, it cannot be equilibrium behavior for one contestant
to expend positive effort with positive probability and the other to expend positive effort
with probability zero.
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ji =

A

B

(13,0) (12,0) (11,0) (10,0) (9,0) (8,0) (7,0) (6,0) (5,0) (4,0) (3,0) (2,0) (1,0) (0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(0,6)

(0,7)

(0,8)

(3,1)

(3,2)

(2,1) (1,1)

(6,3) (5,3)

(8,4) (7,4)

(11,5) (10,5) (9,5)

(13,6) (12,6)

(4,2)

(5,2)

(7,3)

(9,4)

ijZZ AB =

Figure 3:

some i ∈ 1, .., k − 2. In this case, for i0 ≤ i, player A wins at (i0, k − i0)
without having to expend any further effort and for i0 > i, player B wins at
(i0, k − i0) without having to expend any further effort. Both (i, k − i) and
(i+1, k−1− i) are separating states in Σ(k). Note that this guarantees that
the state (i + 1, k − i) is a separating state in Σ(k + 1) at which there is a
non-trivial contest.
Figure 3 shows the separating states for the set of initial states (i, j) ∈

Σ(k), k ≤ 19, and with prize values ZA = 11, ZB = 5, and ∆ = 0. The states
indicated with black boxes are those with non-trivial component contests.
The states labeled A and B are separating states in Σ(17), but each have
trivial component contests. At state B, player B wins the remaining contests
with no effort and at point A player A wins the remaining contests with no
effort.
At this point we have yet to specify the precise form of the local strategies

employed in states in which non-trivial component contests occur. Corol-
lary 4 states that a non-trivial component contest arises at (i, j) if and only
if j−1

i
< ZB

ZA
< j

i−1 . At (i, j) the contest is an all-pay auction with prizes
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zA(i, j) = vA(i− 1, j)− vA(i, j − 1) and zB(i, j) = vB(i, j − 1)− vB(i− 1, j).
Utilizing the characterization of equilibrium continuation values in Proposi-
tion 3 it is straightforward to show that zA(i, j) ≷ zB(i, j) as ZB

ZA
≶ j

i
and,

therefore, that vA(i, j) > 0 if and only if ZB
ZA

< j
i
and vB(i, j) > 0 if and only

if ZB
ZA

> j
i
. Moreover, the functional forms of the equilibrium distributions

vary across three cases:
Case 1 : Suppose j−1

i
< ZB

ZA
≤ j−1

i−1 . It immediately follows that
ZB
ZA

< j
i
.

In this case, zA(i, j) = ZA and zB(i, j) = iZB − (j − 1)ZA, so that zA(i, j)−
zB(i, j) = jZA − iZB > 0. From Proposition 1, equilibrium distributions in
state (i, j) therefore have a common support on the interval [0, iZB − (j −
1)ZA] and take the form FA(a) =

a
iZB−(j−1)ZA and GB(b) =

jZA−iZB
ZA

+ b
ZA
over

that interval.
Case 2 : Suppose j−1

i−1 < ZB
ZA
≤ j

i
. Then zA(i, j) = jZA − (i − 1)ZB and

zB(i, j) = ZB, so that zA(i, j)−zB(i, j) = jZA−iZB ≥ 0. From Proposition 1,
equilibrium distributions in state (i, j) therefore have a common support on
the interval [0, ZB] and take the form FA(a) =

a
ZB
and GB(b) =

jZA−iZB
jZA−(i−1)ZB +

b
jZA−(i−1)ZB over that interval.

Case 3 : Suppose j
i
≤ ZB

ZA
< j

i−1 . Then zA(i, j) = jZA − (i − 1)ZB and
zB(i, j) = ZB, which implies that zA(i, j) − zB(i, j) = jZA − iZB ≤ 0.
From Proposition 1, equilibrium distributions in state (i, j) therefore have
a common support on the interval [0, jZA − (i − 1)ZB] and take the form
FA(a) =

iZB−jZA
ZB

+ a
ZB
and GB(b) =

b
jZA−(i−1)ZB over that interval.

Note that Proposition 1 also provides simple formulae for calculating the
probability that each contestant wins the component contest at (i, j) and
the expected sum of efforts in the component contest. In adapting Cases
1 and 2 above to these formulae, one need only insert the expressions for
zA(i, j) and zB(i, j) above in place of zA and zB in the proposition, since in
both cases (and in the proposition) contestant A has the larger prize. To
apply the formulae in Proposition 1 to Case 3, all indices must be inverted
since zA(i, j) ≤ zB(i, j) in Case 3, but the proposition assumes the reverse
inequality.
Before moving on to examine several of the general properties of the race

when ∆ > 0 a few more remarks are in order on the case where ∆ = 0.
First, the treatment of asymmetric per unit costs of effort when ∆ = 0 is
especially straightforward. Since behavior is invariant with respect to positive
affine transformations of utility, we may incorporate asymmetric constant
per unit effort costs in our model by dividing each contestant’s utility by the
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corresponding contestant’s per unit effort cost. Hence, if the prize values for
A and B are ZA and ZB, respectively, and the corresponding per unit costs
of effort are cA and cB, then the equilibrium of the game parameterized by
(ZA, ZB, cA, cB) is identical to that of a game with unit cost equal to one for
both players and transformed values eZA =

ZA
cA
and eZB =

ZB
cB
. With ∆ = 0,

all of our previous results then go through with these values inserted in place
of ZA and ZB.6 Although the treatment of asymmetric unit costs of effort
can be carried out through backward induction in the case where ∆ > 0, the
analysis requires somewhat more involved calculations, since transforming a
contestant’s utility by dividing by the unit cost of effort not only changes the
terminal prizes, but also changes each component contest prize. If cA 6= cB,
then ∆

cA
6= ∆

cB
, and the component contest prizes become asymmetric in the

transformed game. This means that the component contest prize values do
not net out in calculating continuation values, so that the continuation value
at any (i, j) is a complicated function of component contest prize values at
states (i0, j0) ≤ (i, j) as well as the terminal prizes.
The game with∆ = 0 is also useful in illustrating the potential for overdis-

sipation of rents in a multi-battle contest. Since only one player wins the ter-
minal prize, the maximum possible rent to be earned in this game is ZA. Since
a player has the right to opt out of the contest by bidding zero at every non-
terminal state, for any such multi-battle contest (m,n), in equilibrium there
can be no player whose expected effort exceeds the player’s value of the prize.
Moreover, it is easily demonstrated that the expected sum of efforts cannot
exceed ZA

7. However, because of the dynamic nature of the model, unlike the
one shot first price all-pay auction, there are many parameter specifications
for which, in equilibrium, there is a positive probability that an individual
contestant will expend a higher cost of effort than the contestant’s value of
the prize.8 To illustrate this, suppose that ZB = φZA where 1 > φ > n−1

n
, and

6Note , however, that if eZB > eZA the indices in the analysis will have to be reversed,
since the analysis has assumed that ZA ≥ ZB .

7These definitions of overdissipation are the asymmetric contest analogues of Expected
Individual Overdissipation (EIO)and Expected Aggregate Overdissipation (EAO) intro-
duced by Baye et al. (1999). A symmetric equilibrium exhibits Expected Individual
Overdissipation if an individual player’s expected bid exceeds the value of the prize. Ex-
pected Aggregate Overdissipation arises when the expected sum of payments of the players
exceeds the value of the prize.

8In the context of symmetric contests, Baye et al. (1999) refer to this as Probabilistic
Individual Overdissipation (PIO).
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look at the contest that starts at the intial state (n, n). The play of the game
will reach the "decisive state" (1, 1) if and only if player B wins every contest
starting from the states (m,m), n ≥ m ≥ 2, and player A wins every contest
starting from a state (m,m − 1), n ≥ m ≥ 2. (See Figure 4). This in some
sense represents a situation of maximal dissipation in the game starting at
(n, n), because the contest remains non-trivial for the longest possible time.
It is straightforward to demonstrate that in a contest at (m,m), n ≥ m ≥ 2,
zA(m,m) = ZA, zB(m,m) = mZB − (m− 1)ZA = ZA[1− (1− φ)m], so that
zA(m,m) > zB(m,m) and, from Proposition 1, the probability that B wins
at (m,m) is pB(m,m) = [1−(1−φ)m]

2
. In contests starting from states of the

form (m,m − 1), n ≥ m ≥ 2, the corresponding prizes are zA(m,m − 1) =
(m−1)(ZA−ZB) = (m−1)(1−φ)ZA, and zB(m,m−1) = ZB = φZA, so that
zB(m,m−1)−zA(m,m−1) = [1−m+φm]ZA. Since by assumption φ > n−1

n
,

and n−1
n

> m−1
m
for m < n, it follows that zB(m,m− 1) > zA(m,m− 1) and

the probability that A wins at (m,m − 1) is pA(m,m − 1) = (m−1)(1−φ)
2φ

.

For φ strictly less than but close to 1 the win probability pA(m,m − 1) is
positive but close to zero and pB(m,m) is close to 1

2
. Hence, the probability

of reaching the decisive state (1, 1) is positive, but can be quite small for
large n.9 However, the dissipation in the event that the contest reaches the
decisive state can be quite large. To reach the decisive state (1, 1) from the
initial state (n, n), 2n− 2 non-trivial contests must be fought. For each non-
trivial component contest (i, j) fought we know from Proposition 1 that the
upper bound of the support of both contestants’ equilibrium (local) strate-
gies is the value of the smallest prize, min(zA(i, j), zB(i, j)). Hence, it is
possible for both players to draw realizations of effort arbitrarily close to
this upper bound in each component contest. For Cm,m this upper bound
is ZA[1 − (1 − φ)m] and for Cm,m−1 it is ZA(m − 1)(1 − φ). Hence, for φ
very close to 1 the supremum of the support of each player’s equilibrium
effort distribution is close to zero in Cm,m−1 but approaches ZA in Cm,m. If
realizations of the local strategies occur arbitrarily close to this upper bound
of the equilibrium support for each player in each component contest on the
path from the state (n, n) to state (1, 1), and again in the decisive contest at
(1, 1), the total effort expended by a single contestant could reach arbitrarily

9We have derived an exact expression for this probability, but it is not very enligthening.
A very loose upper bound on the probability, is 2−2(n−1), which would arise if the player
with the smaller prize value at each stage of the form (m,m) or (m,m− 1) won with
probability 1

2 .
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Figure 4:

close to nZA. Obviously, realizations of aggregate overdissipation could be
double this.
Hence, it turns out that the least upper bound on the degree of possible

individual overdissipation in a realization of the subgame perfect equilibrium
strategies can be quite large. Note that this cannot arise in either the one-shot
all-pay auction or the version of our model with ZA = ZB = 0 and ∆ > 0.
The existence of at least one prize of positive value which is captured as a
result of a sequence of expenditures is crucial to the result. Overdissipation
arises because "sunk costs are sunk costs." Expenditures arising in the past
have no effect on a contestant’s willingness to expend effort to capture the
terminal prize from a given state (i, j). No matter what a contestant’s past
expenditure, contestant A is still willing to pay up to ZA to secure the prize
rather than earn zero and contestant B is still willing to pay up to ZB to
secure the prize rather than earn zero. The competition that evolves reflects
these forces in an all-pay setting.
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4 Pervasiveness and the Nonmonotonicity of
Effort with ∆ > 0

Note that ∆ > 0 implies that each contestant has a positive value of winning
at any state (i, k − i)À 0. An immediate consequence is then

Corollary 5 If ∆ > 0 a non-trivial contest occurs at all points (i, k−i)À 0.

Corollary 5 reveals that the intermediate prizes are important to obtain a
positive contest effort if players are in states that are some distance from the
separating states. Intermediate prizes avoid contests becoming trivial. Con-
sider sports contests. Intermediate prizes may consist of purely psychological
rewards or ego-rents. For instance, a player or team who already leads by
a large margin may enjoy a further increase in his lead, making his victory
even more spectacular, or a player who is close to final defeat may enjoy some
reward from winning at least another single battle, showing that he or she is
at least a serious competitor. Moreover, in many sports contests, monetary
prizes are attached to battle victories. The winner of a single Grand Prix
Formula I race receives at least a cup and some reward in terms of increased
market value and sponsoring contracts, and in tennis or golf tournaments
considerable prize money is at stake in each single tournament. A compari-
son of Corollaries 4 and 5 shows that such intermediate prizes are important
to avoid the series of battles becoming rather uninteresting once one of the
players has accumulated a sufficient advantage that the other player gives
up.
An interesting question in races is whether the current state of the race

uniquely determines how the race evolves. Particularly in the literature on
patent races, the point has been made that a lead by one contestant can
be sufficient to guarantee that this contestant also wins the final prize with
probability 1. Intuitively, if contestant A leads by sufficiently many compo-
nent contest wins, then B gives up, knowing that any effort B might make
to catch up with A will be rendered useless if A may react by increasing his
effort to keep B at a distance all the way to the finish line. This is not the
case in the race we consider. Note that B has a strictly positive probability
of winning for any (i, k− i)À 0. More generally speaking, we define the race
as pervasive if the equilibrium probability that state (i0, k0 − i0) is reached
starting from a given (i, k− i) ≥ (i0, k0 − i0) is strictly positive. We conclude
from Proposition 1:
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Corollary 6 The multi-battle contest with ∆ > 0 is pervasive.

Indeed, it is possible to characterize completely the nature of the equilib-
rium local strategies employed in any particular component contest (i, j). The
following corollary determines the nature of these distributions in states (i, j)
which cannot lead to a separating state after a single component contest.

Corollary 7 The transition probability from an interior state (i, k − i)À 0
to (i, k− i−1) and to (i−1, k− i) is equal to 1/2 for all (i, k− i) and ∆ > 0
for which ik−1 /∈ {i, i− 1}.

Proof. The separating property (7) of ik−1 implies that vA(i, k− i−1) =
vA(i − 1, k − i) and vB(i, k − i − 1) = vB(i − 1, k − i) if ik−1 /∈ {i, i − 1}.
Accordingly, zA = zB = 4 at (i, k− i) , and this implies that the equilibrium
of the component contest is symmetric at (i, k − i).
Corollary 7 is somewhat surprising. It suggests that a contestant who

is lagging far behind for some time and is only one or two battles away
from final defeat may still catch up, may still move back towards the range
of separating states, and may even win the final prize with a considerable
probability. Hence, intermediate prizes are rather important for producing
suspense.
Moreover, this result also shows that the results for R&D races discussed

in the introduction, according to which a small lead by one of the contestants
may reduce contest effort to zero in subsequent rounds, is sensitive to the
assumption that no intermediate prizes are at stake. With such intermediate
prizes, as long as a state of final victory has not been reached, each contestant
preserves a positive probability of becoming the winner of the final prize.
A complete characterization of equilibrium local strategies employed in

separating states and states that are within one component contest outcome
of a separating state is easily obtained by inserting the values for vA(i, j) and
zB(i, j) derived in Proposition 3 into the expression for state (i, j) prizes in
equation (6), and then applying Proposition 1. For illustrative purposes, an
important special case of our analysis is that in which ZA = ZB and ∆ > 0,
which we now address.
With ZA = ZB ≡ Z and ∆ > 0, from Proposition 3 we know that (i, j)

is a separating state if and only if j−1
i
≤ ZB

ZA
= 1 ≤ j

i−1 . An immediate
consequence is that if (i, j) ∈ Σ(2k) for k ≥ 1, then (i, j) = (k, k) is the
unique separating state in Σ(2k). If (i, j) ∈ Σ(2k + 1) for k ≥ 1, then
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(i, j) = (k, k+1) and (i, j) = (k+1, k) comprise the set of separating states.
In the former case it is straightforward to show, again from Proposition 3,
that zA(k, k) = vA(k − 1, k) − vA(k, k − 1) + ∆ = Z + ∆ and zB(k, k) =
vB(k, k− 1)− vB(k− 1, k) +∆ = Z +∆, so that, Proposition 1 then implies
that a symmetric non-trivial all-pay auction is played at (i, j) = (k, k). This
auction dissipates all rents, so that vA(k, k) = vB(k, k) = 0, E(a + b) =
Z +∆, and, from the symmetry of the component contest, we find that each
contestant is equally likely to win: pA = pB =

1
2
. This then immediately

allows us to derive the expected values of the prizes at the component contests
starting in states of the form (i, j) = (k, k + 1) and (i, j) = (k + 1, k). In the
former case, zA(k, k + 1) = vA(k − 1, k + 1) − vA(k, k) + ∆ = Z + ∆ and
zB(k, k+1) = vB(k, k)−vB(k−1, k+1)+∆ = ∆. Hence, from Proposition 1 at
(i, j) = (k, k + 1) we have an asymmetric component contest with vA(k, k +
1) = Z, vB(k, k + 1) = 0, E(a + b) = ∆

2
+ ∆

2
( ∆
Z+∆

), pA = 1 − ∆
2(Z+∆)

and

pB = ∆
2(Z+∆)

. In a similar fashion, it is straightforward to show that at
(i, j) = (k + 1, k), zA(k + 1, k) = ∆, zB(k + 1, k) = Z +∆, vA(k + 1, k) = 0,
vB(k+1, k) = Z,E(a+ b) = ∆

2
+ ∆

2
( ∆
Z+∆

), pB = 1− ∆
2(Z+∆)

and pA = ∆
2(Z+∆)

.
To calculate expected total effort and component contest win probabilities

for states that are not separating, we divide up the analysis. Suppose first
that (i, j) ∈ Σ(2k) for k ≥ 1, but that i < k (for k = 1 this set is empty).
Then (i, j) is not a separating state and we claim that in the component
contest starting in (i, j), E(a + b) = ∆ and pA = pB =

1
2
. To see this, we

examine the two states (i−1, j) and (i, j−1) that can be immediately reached
from the component contest at (i, j). If contestant A wins the component
contest, the state moves to (i− 1, j). Note that (i− 1, j) is either a winning
terminal state for playerA or (i−1, j) ∈ Σ(2k−1) with i−1 < k−1. In either
case, vA(i− 1, j) = Z and vB(i− 1, j) = 0. If contestant B wins the contest
at (i, j) the state moves to (i, j − 1) ∈ Σ(2k − 1) with i ≤ k − 1 , so again
vA(i, j − 1) = Z and vB(i, j − 1) = 0. (Note that if i = k − 1, (i, j − 1) ∈
Σ(2k − 1) is of the form (k − 1, k) and, even though this is a separating
state, it still satisfies vA(k − 1, k) = Z and vB(k − 1, k) = 0). Hence,
the prizes contested in the component contest at (i, j) are zA(i, j) = ∆ and
zB(i, j) = ∆. From Proposition 1 this yields E(a+ b) = ∆ and pA = pB =

1
2
.

A similar argument applies to the case where (i, j) ∈ Σ(2k) for k ≥ 1, but
that i > k. Hence, as is the case for the state (k, k), for any off-diagonal state
(i, j) ∈ Σ(2k), pA = pB =

1
2
. However, the expected aggregate effort in an

off-diagonal state (i, j) ∈ Σ(2k) is E(a+ b) = ∆.

19











∆+
∆∆

+
∆

Z22

( )∆+
∆

−
Z2

1

2
1

( )∆+
∆

Z2

∆+Z

∆

3−j 2−j 1−j j 1+j 2+j 3+j

effort
 Aggregate

i

2−j 1−j j 1+j 2+j 3+j3−j

i

effort
 Aggregate

Panel A: Expected aggregate effort at (i, j) as a function of i for given j 
assuming that all relevant points are interior (                                   )0 , >∆== ZZZ BA

Panel B: The probability that contestant A wins the component contest
at (i, j) 

Figure 5:

A somewhat more straightforward argument shows that the same type of
result holds for non-separating states contained in Σ(2k + 1). Suppose that
(i, j) ∈ Σ(2k + 1) for k ≥ 1, and (i, j) is not a separating state. Then,
as we have just shown, any state that may be reached immediately from
the component contest at (i, j) is either a terminal state or an element of
Σ(2k) for which the advantaged contestant has continuation value Z and
the disadvantaged player has continuation value 0. Hence the prize values
for both contestants at (i, j) are equal to ∆ and Proposition 1 demonstrates
that this rent is completely dissipated and each player is equally likely to
win the component contest. That is, at (i, j) the expected aggregate effort
is E(a+ b) = ∆ and pA = pB =

1
2
.

To summarize, with ZA = ZB ≡ Z and ∆ > 0, across component contests
both the expected aggregate effort of the two contestants and the individual
contestant win probabilities are non-monotonic in the ratio j

i
. Panel A of

Figure 5 shows the expected aggregate effort as a function of i for a given
j, assuming that all of the relevant points are still interior. As can be seen
in the Figure, this effort takes a maximum of Z +∆ on the diagonal where
i = j, decreases to ∆

2
+ ∆

2
( ∆
Z+∆

) at the two points, (j−1, j) and (j+1, j), just
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off of the diagonal, and then increases to ∆ and remains there for all points
satisfying i ≤ j − 2 or i ≥ j + 2. Moreover, as shown in Panel B of Figure
5 the probability that contestant A wins the contest is equal to 1

2
for any

interior state i ≤ j − 2, increases to 1− ∆
2(Z+∆)

at i = j − 1, decreases again
to 1

2
at i = j, and further decreases to ∆

2(Z+∆)
at i = j + 1, before increasing

and remaining at 1
2
for all interior i ≥ j + 2.

It is also instructive to restrict the parameter values further and examine
multi-battle contests in which there are no terminal prizes (ZA = ZB ≡ 0)
but for which the contestants have a common prize∆ > 0 for each component
contest. Although this is formally not a special case of the analysis above
(since that analysis assumed ZA ≥ ZB > 0) and, in particular, Proposition
3 does not apply, it is straightforward to show that, in this case, for every
component contest in an interior state (i, j), in equilibrium E(a + b) = ∆
and pA = pB =

1
2
.

In fact, because each contestant wins each component contest with equal
probability, the probability that a contest starting at an interior state (m,n)
evolves and reaches the interior state (i, j), with (m,n) ≥ (i, j), is the prob-
ability that out of (m+n)− (i+ j) consecutive component contests starting
with the component contest at (m,n) precisely m − i of these component
contests are won by contestant A and n − j of the component contests are
won by contestant B.10 We label this probability Pr[(m,n), (i, j)]. Since
there are 2(m+n)−(i+j) possible sequences of outcomes of (m + n) − (i + j)
consecutive component contests with pA = pB =

1
2
, each equally likely, and

we know that any sequence hitting a terminal surface will be absorbed there
and will not hit (i, j) thereafter, the probability of hitting (i, j) is the number
of ways in which exactly m− i victories for contestant A can be chosen from
(m + n) − (i + j) component contests played, divided by the total number
of sequences of (m+ n)− (i+ j) contest outcomes, 2(m+n)−(i+j). That is, for
(m,n)̇ ≥ (i, j), with (i, j) interior,

Pr[(m,n), (i, j)] =
(m+ n− i− j)!

(m− i)!(n− j)!

µ
1

2

¶m+n−i−j

10Since (i, j) is assumed to be an interior state, any path that reaches a terminal state
before (m+n)−(i+j) component contests are played would require that either contestant
A win more than m − i times or contestant B win more than n − j times. Such a path
would never hit (i, j), so we can ignore the fact that some paths may lead to fewer than
(m+ n)− (i+ j) plays of a componenet contest with pA = pB =

1
2 .
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Note that this calculation must be modified for terminal states of the
form (0, j) or (i, 0). Since these states cannot be reached once the terminal
surface is hit at another state, the only way in which the evolution of the
contest can reach such a state is to go through the corresponding penulti-
mate state, (1, j) in the case of (0, j) and (i, 1) in the case of (i, 0). Since
at state (1, j) the probability that (0, j) is reached is 1

2
, we may calculate

Pr[(m,n), (0, j)] for each terminal state of the form (0, j) from the following
identity: Pr[(m,n), (0, j)] = 1

2
Pr[(m,n), (1, j)]. A similar argument shows

that Pr[(m,n), (i, 0)] = 1
2
Pr[(m,n), (i, 1)]. Hence, we have for (m,n) ≥ (1, j)

Pr[(m,n), (0, j)] =
1

2

(m+ n− 1− j)!

(m− 1)!(n− j)!

µ
1

2

¶m+n−1−j

and for (m,n) ≥ (i, 1)

Pr[(m,n), (i, 0)] =
1

2

(m+ n− i− 1)!
(m− i)!(n− 1)!

µ
1

2

¶m+n−i−1

A special case that is of particular interest is the case where contestants
start at a symmetric point (n, n). As the logic of the formulae above indicate,
the calculation of the hitting probabilities for interior states (i, j) ≤ (n, n)
is
¡
1
2

¢2n−i−j
times the corresponding entry in a suitably constructed Pascal

Triangle, where the top point of the triangle has the entry 1 at (n, n), which
makes up zeroth entry in the zeroth row11, the first row contains the nodes
(n − 1, n) and (n, n − 1), both with entries in the triangle equal to 1, the
second row contains the nodes, (n− 2, n), (n− 1, n− 1) and (n, n− 2) with
corresponding entries, 1, 2, and 1, and so forth. In this fashion the num-
ber in the triangle corresponding to the interior state (i, j) is 2n−i−jCn−j =
(2n−i−j)!
(n−i)!(n−j)! where 2n − i − j is the number of the row (again treating, as is
standard, the tip of the triangle as the zeroth row) and n− j is the element
in that row (with convention that the initial element is the zeroth entry).
For states (i, j) that are terminal,

¡
1
2

¢2n−i−j
times the corresponding el-

ements of the Pascal Triangle constructed above do not provide the correct
hitting probabilities, since a state of the form (i, 0) (resp. (0, j)) cannot

11This is a convention common in the discussion of Pascal’s Triangle, presumably de-
rived from the interpretation of the triangle as a representation of the coefficients of the
expansion of (1 + x)n, where the power n corresponds to the row of the triangle and the
mth entry within each row is the coefficient of xm in the expansion.
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Figure 6:

be reached with positive probability on a path that hits (i + 1, 0) (resp.
(0, j + 1)). The expressions for Pr[(m,n), (i, 0)] and Pr[(m,n), (0, j)] above
show how these probabilities are determined from the corresponding Pascal
Triangle entry from the adjacent interior state. Figure 6 illustrates these
hitting probabilities for the case where (n, n) = (5, 5).
Note that our calculation above provides a simple way in which to cal-

culate the probability that a contest starting at (n, n) reaches the decisive
state (1, 1). In this case, Pr[(n, n), (1, 1)] = (2n−2)!

(n−1)!(n−1)!
¡
1
2

¢2(n−1)
. Note that

this is exactly the probability that n − 1 heads come up in 2n − 2 tosses
of a fair coin. That is, it is the central binomial coefficient times

¡
1
2

¢2(n−1)
.

For large n, this may be approximated with Stirling’s formula to obtain
Pr[(n, n), (1, 1)] ≈ [π(n − 1)]−1

2 . Hence, for ZA = ZB = 0 and ∆ > 0, the
probability that a symmetric contest starting at (n, n) leads to the maximum
duration of active conflict is of the order (n− 1)−12 .
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5 Conclusions

We studied a general type of multi-battle contest in which players interact
repeatedly in battles. In each interaction they fight a battle, each of which
follows the rules of an all-pay auction with complete information and simul-
taneous effort choices. Players accumulate battle victories until one of them
has accumulated a sufficiently large number of such victories. This player
then wins and an overall prize is allocated to him. However, players may
also receive an intermediate prize for winning each battle. This structure is
called a race and emerges in many different contexts. In some applications
the multi-battle set-up is the outcome of the technology of conflict or of what
is technologically feasible, and changes over time, like in warfare. Sometimes
the structure may have evolved in an evolutionary process, for instance, as
when fighting between animals has a multi-stage structure. Sometimes el-
ements of the multi-battle structure can be chosen by a contest designer.
Sports championships are natural examples. In tennis matches, for instance,
to win the match, a player has to win two or three sets. Annual champi-
onships are awarded on the basis of the outcomes of a series of tournaments.
The number of battle victories, but also the size of the intermediate prizes
and of the overall prize are chosen by the organizer.
We have provided a complete analytical solution for the race and a char-

acterization of the unique equilibrium. We found that there are states in
a race that have a separating property: winning the battle at such states
shifts a considerable rent to the winner of the battle, even though a long
series of battle victories may be required for each of the players to reach final
victory from this state. This result is in line with the insights from the R&D
literature that suggest that a sufficient lead by one contestant is important.
However, unlike in this literature, the conflict does not slack off completely
outside these separating states, and the final winner of the overall contest
is not readily determined as an outcome of the battle in a separating state.
The player who is lagging far behind may catch up, and does catch up with
a considerable probability in the equilibrium, if there are intermediate prizes
that are allocated to the winners of the component contests. Introducing
such intermediate prizes sustains suspense in sports tournaments and may
explain why they are chosen in these contests. Intermediate prizes are also
important in warfare and make the overall outcome of a multi-battle war
less predictable, even if one of the enemies has gained a considerable ad-
vantage, and even if there is no exogenous uncertainty in the environment.

24



Intermediate prizes also make the race pervasive in the sense that, from any
combination of past battle victories that does not terminate the game, any
other combination of numbers of battle victories with weakly larger numbers
of battle victories on each side can be reached with strictly positive prob-
ability. Moreover, with strictly positive probability the game moves along
trajectories of battle victories over which the sum of the players’ efforts can
considerably exceed the value of the prizes that are allocated between them.
This may explain why, in some instances of sports contests, or in warfare,
the aggregate, total amount of effort that is expended by the players may by
far exceed the value that is at stake.

6 Appendix

To prove Proposition 3 we first prove by induction that for each k = 1, 2, 3, ...
there exists at least one ik ∈ {1, ..., k − 1} that has the separating property
described in Definition 2 and possesses the property that

(k − ik)ZA − ikZB ≤ ZA

ikZB − (k − ik)ZA ≤ ZB.
(8)

We also demonstrate that these states have continuation values

vA(ik, k − ik) = max(0, (k − ik)ZA − ikZB)
vB(ik, k − ik) = max(0, ikZB − (k − ik)ZA).

(9)

The properties of these states are then used to demonstrate claims (i) through
(v) of Proposition 3.
Note that the property holds for k = 2: vA(0, 2) = ZA, vB(0, 2) = 0,

vA(2, 0) = 0 and vB(2, 0) = ZB. Moreover, by Proposition 1, vA(1, 1) =
ZA−ZB = max(0, 1 ·ZA− 1 ·ZB), with 1 ·ZA− 1 ·ZB ≤ ZA, and vB(1, 1) =
0 = max(0, ZB − ZA)), and ZB − ZA ≤ ZB.
Assume now that a separating state (ik, k − ik) exists in Σ(k) with (k −

ik)ZA − ikZB ≤ ZA and ikZB − (k − ik)ZA ≤ ZB and continuation values
as in (9). Let this separating state be depicted in Figure 2. Turn to states
(i, j) ∈ Σ(k+1), which are the points at the south-west frontier of the set of
points in Figure 2. We show that, then, a separating state (ik+1, k+1− ik+1)
exists such that this state has the separating property (7) and fulfills

((k + 1)− ik+1)ZA − ik+1ZB ≤ ZA

ik+1ZB − ((k + 1)− ik+1)ZA ≤ ZB
(10)

25



and

vA(ik+1, (k + 1)− ik+1) = max(0, (k + 1− ik+1)ZA − ik+1ZB)
vB(ik+1, (k + 1)− ik+1) = max(0, ik+1ZB − (k + 1− ik+1)ZA).

(11)

For i < ik, the component contest at (i, (k + 1) − i) leads to (i, k − i)
or (i − 1, k − (i − 1)). As (ik, k − ik) is a separating state, by Definition
1, the continuation values are vA = ZA and vB = 0 for both these states.
This makes the prize of winning the component contest at (i, (k+1)− i) the
same for both contestants and equal to zA = zB = ∆. Invoking Proposition
1, each contestant wins this component contest with pA = pB = 1/2 and
chooses expected effort Ea = Eb = ∆/2. Accordingly, the continuation
values for both contestants at state (i, (k+1)− i) are the same as in (i, k− i)
or in (i− 1, k − (i− 1)):

vA(i, (k + 1)− i) = ZA and vB(i, (k + 1)− i) = 0 for all i < ik. (12)

For i > ik +1, the component contest at (i, (k+1)− i) leads to (i, k− i)
if B wins and to (i − 1, (k + 1)− i) if A wins, with vA(i − 1, (k + 1)− i) =
vA(i, k − i) = 0 and vB(i− 1, (k + 1)− i) = vB(i, k − i) = ZB. Hence, using
subgame perfection, the component contest at (i, (k+1)− i) is a symmetric
all-pay auction with complete information with equilibrium win probabilities
pA = pB = 1/2 and equilibrium expected efforts Ea = Eb = ∆/2. This
yields

vA(i, (k + 1)− i) = 0 and vB(i, (k + 1)− i) = ZB for all i > ik + 1. (13)

Two states in Σ(k + 1) remain to be considered: (ik, k + 1 − ik) and
(ik + 1, (k + 1) − (ik + 1)). Which of them is a separating state ik+1 will
depend on the size of (k − ik)ZA − ikZB.
Let (k − ik)ZA − ikZB ≥ 0. As depicted in Figure 7, by (9) this implies
vA(ik, k − ik) = (k − ik)ZA − ikZB ≥ 0 and vB(ik, k − ik) = 0. (14)

From (ik, (k + 1) − ik), the state moves to (ik, k − ik), with continuation
values given in (14), or to (ik − 1, k − (ik − 1)) at which vA = ZA and
vB = 0. A attributes a prize to winning at (ik, (k + 1)− ik) that is equal to
ZA−[(k−ik)ZA−ikZB]+∆ and is at least as large as∆ by the first line of (8),
and B attributes a prize to winning that is equal to ∆. Applying Proposition
1, both contestants randomize on the interval [0,∆], and B does not have a
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BBA Zvv == ,0

( ) ( )( )11,1 +−++ kk iki

( )( )1,1 +−+ kk iki

( )kk iki −,

( )kk iki −+1,

( ) 0, =−−= BBkAkA vZiZikv

0, == BAA vZv

( ))1(,1 −−− kk iki

Figure 7:

mass point at∆. As a = ∆ is in A’s equilibrium support, A’s expected payoff
equals the payoff from choosing a = ∆, by which A wins with probability 1
the intermediate prize ∆ and enters into state (ik − 1, k− (ik − 1)) at which
A has a continuation value vA = ZA. Equilibrium effort ∆ and intermediate
prize ∆ cancel out in the payoff, and, therefore, A’s continuation value at
(ik, (k+1)−ik) is vA(ik, (k+1)−ik) = vA(ik−1, k−(ik−1)) = ZA. Contestant
B moves from (ik, (k + 1) − ik) to a state in which B’s continuation value
is zero. Among B’s equilibrium effort choices is b = 0, and, as A has no
mass point at a = 0 , B loses with probability 1 when choosing b = 0 and
moves to (ik − 1, k − (ik − 1)) with vB(ik − 1, k − (ik − 1)) = 0. Hence, also
vB(ik, (k + 1)− ik) = 0.
From (ik+1, (k+1)−(ik+1)), ifAwins, the players move to (ik, k−ik) with

continuation values as in (14). Otherwise, they move to (ik+1, k− (ik+1)),
with the continuation values vA = 0 and vB = ZB by the separation property
of ik. We need to distinguish between two subcases. Subcase 1 : Let ZB >
(k−ik)ZA−ikZB. Then B has a higher prize of winning than A. Making use
of Proposition 1, vA(ik+1, (k+1)−(ik+1)) = 0 and vB(ik+1, (k+1)−(ik+
1)) = [ZB+∆]− [(k− ik)ZA− ikZB+∆] = (ik+1)ZB−((k+1)−(ik+1))ZA.
Note further that this value is positive, but smaller than ZB. Hence, this vB
fulfills the conditions in the second line of (10) and of (11). Subcase 2 :
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BBA Zvv == ,0

( ) ( )( )11,1 +−++ kk iki

( )( )1,1 +−+ kk iki

( )kk iki −,

( )kk iki −+1,

( ) AkBkBA ZikZivv −−== ,0

0, == BAA vZv

( ))1(,1 −−− kk iki

Figure 8:

Let ZB ≤ (k − ik)ZA − ikZB. A has the higher prize of winning than B.
This yields continuation values at (ik + 1, (k + 1)− (ik + 1)) of vB = 0 and
vA = [(k− ik)ZA− ikZB+∆]− [ZB+∆] = ((k+1)−(ik+1))ZA−(ik+1)ZB.
Moreover, this vA ≤ ZA. Hence, the conditions in the first lines of (10) and
(11) are fulfilled.
Together with the properties of states in Σ(k+1) with i < ik and i > ik+1

this shows that, for the case (k − ik)ZA − ikZB ≥ 0 at ik, the state with
ik+1 = ik + 1 is a separating state.
Turn now to the case ikZB − (k − ik)ZA ≥ 0. This case implies that

vA(ik, k − ik) = 0 and vB(ik, k − ik) = ikZB − (k − ik)ZA. (15)

As shown in Figure 8, starting in (ik, (k+ 1)− ik), the state moves either to
(ik, k−ik), with continuation values given in (15), or to (ik−1, k−(ik−1)) at
which vA = ZA and vB = 0. A attributes a prize to winning at (ik, (k+1)−ik)
that is equal to ZA+∆, and B attributes a prize to winning that is equal to
ikZB− (k− ik)ZA+∆. Using property (8) and ZB ≤ ZA, we get ikZB− (k−
ik)ZA ≤ ZA. Applying Proposition 1, the equilibrium payoff is 0 for B and
(ZA+∆)− [ikZB−(k−ik)ZA+∆] = ((k+1)−ik)ZA−ikZB for A with ZA ≥
((k+1)− ik)ZA− ikZB ≥ 0. Moreover, starting in (ik+1, (k+1)− (ik+1)),
the state moves either to (ik, k − ik), with vA and vB given in (15), or to

28



(ik + 1, k − (ik + 1)) at which vA = 0 and vB = ZB by the separating
property of ik. Hence, vA(ik + 1, (k + 1)− (ik + 1)) = 0. As b = ∆ is in B’s
equilibrium support and makes B win with probability 1 and leads to state
(ik + 1, k − (ik + 1)), B’s continuation value at (ik + 1, (k + 1)− (ik + 1)) is
vB = ZB.
Together with the properties of states i < ik and i > ik + 1 in Σ(k) this

shows that, if ikZB − (k − ik)ZA ≥ 0 holds, a separating state (ik+1, (k +
1)− ik+1) has ik+1 = ik. Players have continuation values vB = 0 and vA =
((k + 1)− ik+1)ZA − ik+1ZB < ZA at this state, in line with (10) and (11).12

Overall we have shown: if Σ(k) has a separating state then does Σ(k+1),
and, together with the existence of a separating state in Σ(2) this concludes
the induction proof. We now turn to the properties in Proposition 3.
For (i) recall that there cannot be more than two separating states in

Σ(k). The Lemma establishes existence of at least one separating state, and
together these results establish (i).
For (ii) note that (8) is equivalent to

j − 1
i
≤ ZB

ZA
≤ j

i− 1 (16)

for i + j = k. Hence, all separating states (ik, k − ik) that have been con-
structed in the induction proof fulfill (8) and, hence fulfill (16). Suppose
there is some other separating state (i, j) in Σ(k) that does not fulfill (16).
Then, by (i), there is another separating state (ik, k− ik) in Σ(k) that fulfills
(16). If this (ik, k− ik) fulfills both inequalities in (16) strictly, then, by (9),
either vA(ik, k − ik) /∈ {0, ZA}, or vB(ik, k − ik) /∈ {0, ZB}. This rules out
that, in addition to (ik, k − ik) a second separating state can exist. Sup-
pose then that one of the weak inequalities holds with equality, for instance,
k−ik−1

ik
= ZB

ZA
. Using this in (9) yields vA(ik, k−ik) = ZA and vB(ik, k−ik) = 0.

In turn, this implies that the only possible further separating state that may
exist is (ik + 1, k − (ik + 1)). However, for this state the two inequalities in
condition (16) hold: the left-hand side in (16) becomes k−(ik+1)−1

ik+1
≤ ZB

ZA
, or

(k−(ik+1)−1)ZA−ZB(ik+1) ≤ 0, or, using k−ik−1
ik

= ZB
ZA
, it can be written

12For completeness note that we treated the case (k− ik)ZA − ikZB = 0 twice. Indeed,
for (k− ik)ZA− ikZB = 0, both the states (ik +1, (k+1)− (ik +1)) and (ik, (k+1)− ik)
have the separating property and the induction argument from k + 1 to k + 2 works for
any of these two separating states and leads to (ik + 1, (k + 2) − (ik + 1)) as a unique
separating state for k + 2.
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as −ZA + ZB ≤ 0, which is true, and similarly, the right-hand side in (16)
becomes ZB

ZA
≤ k−(ik+1)

ik+1−1 , or (k− (ik+1))ZA ≥ ikZB, which, by k−ik−1
ik

= ZB
ZA
is

just fulfilled with equality. This shows that all separating states must fulfill
the condition (16).
For the if-part of (ii), note that, for each k, the condition (16) determines

either one state (ik, k − ik) for which it holds with strict inequalities or two
states such that left-hand side inequality holds with strict equality and the
right-hand side inequality holds with strict inequality, and similarly for re-
placing left and right. A separating state which fulfills (16) exists by (i). If
there is only one state that fulfills (16), then the separating state must be
this state. If the condition determines two states, one of them must be a
separating state, for which also (9) applies. But then, by the continuation
values at this separating state, the other state that fulfills the condition (16)
also becomes a separating state.
Turn now to (iv). The claim for separating states in (iv) holds by (8).

The continuation values in non-separating states are also determined by the
separating property:

vA(i, j) =

½
ZA for i < min[ik : ik ∈ S(k)]
0 for i > max[ik : ik ∈ S(k)]

vB(i, j) =

½
0 for i < min[ik : ik ∈ S(k)]
ZB for i > max[ik : ik ∈ S(k)]

and

with S(k) the set of separating states (i, k−i) in Σ(k). The general represen-
tation of continuation values of non-separating states is then confirmed by
min[ZA,max(0, (k− i)ZA− iZB] = ZA as k−i−1

i
> ZB

ZA
, min[ZB,max(0, iZB −

(k − i)ZB] = 0 as k−i−1
i

> ZB
ZA
, min[ZB,max(0, iZB − (k − i)ZB] = ZB as

ZB
ZA

> k−i
i−1 , and min[ZA,max(0, (k − i)ZA − iZB] = 0 as ZB

ZA
> k−i

i−1 . This
completes (iv). Property (v) follows immediately from (iv).
For part (iii), consider three states, (i, j) ∈ Σ(k−1) and (i+1, j), (i, j+1)

∈ Σ(k). Let ZB
ZA
= j

i
. Then by (iv), vA(i, j) = vB(i, j) = 0. By (ii), this state

(i, j) has to be a separating state. In turn, using the separating property
for (i, j), it must hold that vA(i − 1, j + 1) = ZA, vA(i + 1, j − 1) = 0,
vB(i − 1, j + 1) = 0 and vB(i + 1, j − 1) = ZB. Using the results from
Proposition 1 for states (i+1, j) and (i, j+1), this implies that vA(i+1, j) = 0,
vB(i+ 1, j) = ZB, vA(i, j + 1) = ZA, vB(i, j + 1) = 0. Accordingly, the only
candidates for separating states in Σ(k) are (i + 1, j) and (i, j + 1), and by
existence of such a state, both must be separating states. Conversely, let
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(i+1, j) and (i, j+1) be separating states in Σ(k). Then, by (8) this implies
that (j +1)ZA− iZB ≤ ZA and (i+1)ZB − jZA ≤ ZB. Both together imply
that jZA− iZB = 0, or ZB

ZA
= j

i
. But by (ii) this implies that (i, j) is a unique

separating state in Σ(k − 1).
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