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ABSTRACT: We develop a general procedure to construct pairwise meeting processes character-
ized by two features. First, in each period the process maximizes the number of matches in the
population. Second, over time agents meet everybody else exactly once. We call this type of
meetings “absolute strangers.” Our methodological contribution to economics is to offer a simple
procedure to construct a type of decentralized trading environments usually employed in both
theoretical and experimental economics. In particular, we demonstrate how to make use of the
mathematics of Latin Squares to enrich the modeling of matching economies.
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1. Introduction

This paper offers a simple procedure that can be used to construct sequences of pairwise
meetings among players drawn from a finite population. The meeting process that we are
interested in studying has two properties. First, the sequence of meetings is exogenous
and it is such that players meet everybody else exactly once. Second, in each period the
process maximizes the number of matches in the population.

Pairwise meeting processes of this type are often used in economics to make explicit a
notion of trade frictions. For example, they are used in macroeconomics to model obstacles
to the exchange process, as in the random matching model in [6], in monetary economics to
introduce obstacles to credit transactions, as in the deterministic pairwise matching model
in [10] or the random matching model in [7], and in experimental economics to introduce

∗This research is supported in part by the NSF grants SES-0128039 and DMS-0437210.
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informational isolation, as in [4]. Indeed, we will borrow terminology from experimental
economics (see [2] and [8]) and refer to agents matched in the manner described above as
being ‘absolute strangers.’

To develop a procedure to create the desired sequence of matches, we use a special class
of permutations called involutions, and we exploit some results from the mathematics of
Latin squares. In a nutshell, the reason for working with these mathematical objects
is the following. A matching process is a way to repeatedly partition a population X
into disjoint sets of agents (for a formalization see [1]). Therefore, since the meetings we
consider are bilateral, a matching process can be viewed as a sequence of involutions from
X to X . Indeed, an involution is simply a permutation such that the function composed
with itself is the identity function. It turns out that constructing the desired type of
bilateral matching process can be conveniently done by arraying involutions by means of
Latin squares. A Latin square is an n×n matrix filled with n different symbols arranged
in such a way that each symbol appears exactly once in every row and column.1 We
will interpret symbols as agents and then we will offer a procedure to match ‘absolute
strangers’ by demonstrating how to construct Latin squares such that all rows, but the
initial, are involutions of the first row.

To do so we take several steps. First, we explain how to create absolute strangers
meetings among agents who belong to two different but equally sized groups. Subse-
quently, we study how to create matches of this type when agents belong to an odd-sized
group, ensuring that everyone remains unmatched exactly once. Finally, we exploit the
two earlier steps to demonstrate how to obtain absolute strangers pairings on any finite
population. In particular, we prove that, given a population of size n, we can create
exactly n− 1 matching rounds among absolute strangers. Besides offering a new method
of constructing and formalizing pairwise matching economies, our procedure has practical
applications in the design of experimental matching economies. Indeed, our construction
scheme is simple, because it can be accomplished quickly with pencil and paper, and so
it allows to devise a desired pairing scheme without having to use specialized software.

The paper is organized as follows. Section 2 introduces the mathematical background.
Section 3 discusses the interpretation of Latin squares as absolute strangers bilateral
matching processes. Section 4 and Section 5 show the existence and the construction of
pairwise matches of the type desired. Section 6 provides a practical example that might
of interest in experimental economics. Section 7 concludes with some final remarks.

2. Mathematical Background: Latin Squares

We discuss here the basic mathematical concepts that are needed to formalize our notion
of pairwise matching. The most important one is that of a Latin square.

1When Leonhard Euler started to study Latin squares in 1782, he used Latin characters as symbols; and
hence the origin of the name. Latin squares have been used especially to design agricultural experiments
and to construct tournaments; see [9].
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Definition 2.1. Given n distinct symbols, a Latin square is an n×n matrix with entries
from the given symbols arranged in such a way that every symbol appears exactly once in
each row and in each column.

Given the sets of symbols {1, 2, 3, 4} and {�, �,♠,♣}, the matrices
⎡
⎢⎢⎣

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

� � ♠ ♣
♠ ♣ � �
� ♠ ♣ �
♣ � � ♠

⎤
⎥⎥⎦ ,

are two examples of Latin squares. Of course, for a given set of n symbols we generally
have many different Latin squares. Indeed, the number of distinct Latin squares grows so
rapidly with n that, although Latin squares have been studied extensively in mathematics
(see, for instance [5, 9]), the number of distinct Latin squares has been calculated only for
up to n = 10.

Our purpose here is to identify three basic types of Latin squares that will be the
building blocks for our matching processes. Given a population set X = {1, . . . , n} with
n agents, in what follows we introduce three Latin square constructions each of which
generates a specific n × n matrix.

Latin Square Construction # 1

This Latin square is denoted L− and its first row is the vector (1, 2, . . . , n). The other
rows of L− are generated recursively by shifting by one position to the right the previous
row in a cyclical manner. Thus, the second row is obtained by shifting by one position to
the right the first row, i.e., the second row is the vector (2, 3, . . . , n, 1) and the third row
is the vector (3, 4, . . . , n, 1, 2), etc. Specifically, L− is the following n × n Latin square:

L− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 · · · n − 2 n − 1 n
2 3 · · · n − 1 n 1
3 4 · · · n 1 2
...

...
. . .

...
...

...
n − 1 n · · · n − 4 n − 3 n − 2

n 1 · · · n − 3 n − 2 n − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

If we use the standard notation L− = [aij] to denote this Latin square, then it is easy
to see that its entries aij are given by the formula

aij = i + j − 1 − nχY (i + j − 1)

=

⎧⎪⎨
⎪⎩

j if i = 1 and 1 ≤ j ≤ n

i + j − 1 if i ≥ 2 and 1 ≤ j ≤ n − i + 1

j − (n − i)− 1 if i ≥ 2 and n − i + 2 ≤ j ≤ n ,
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where χY : N → {0, 1} is the charecteristic function of the set

Y = {n + 1, n + 2, . . .} ,

defined as usual by χY (k) = 1 if k ∈ Y and χY (k) = 0 if k /∈ Y .
For instance, when n = 4 this construction yields the Latin square

L− =

⎡
⎢⎢⎣

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎤
⎥⎥⎦ .

Latin Square Construction # 2

We denote this Latin square by L+ = [aij]. It has first row the vector (1, 2, . . . , n) and
its construction is done recursively exactly as in the Latin square of Construction # 1
with the only difference that this time we shift to the left. This means that the second
row of L+ is obtained by shifting by one position to the left the first row in a cyclical
manner, i.e., the second row is (n, 1, . . . , n − 2, n − 1), and the third row is the vector
(n − 1, n, 1, . . . , n − 2), etc. The complete Latin square L+ is the following:

L+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 · · · n− 2 n− 1 n
n 1 · · · n− 3 n− 2 n − 1

n− 1 n · · · n− 4 n− 3 n− 2
...

...
. . .

...
...

...
3 4 · · · n 1 2
2 3 · · · n− 1 n 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

An easy verification shows that the entries aij of L+ are given by the formula

aij = n + 1 + j − i − nχ
Y
(n + 1 + j − i)

=

⎧⎪⎨
⎪⎩

j if i = 1 and 1 ≤ j ≤ n

(n − i) + j + 1 if i ≥ 2 and 1 ≤ j ≤ i − 1

j − i + 1 if i ≥ 2 and i ≤ j ≤ n .

When n = 4 we have:

L+ =

⎡
⎢⎢⎣

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

⎤
⎥⎥⎦



5

Latin Square Construction # 3

This is the Latin square L = [aij] when the first row is the vector (n, n−1, . . . , 1) and the
other rows of L are constructed by following the recursive procedure of the Construction
# 1. That is, the second row is obtained by shifting by one position to the right the first
row, i.e., the second row is (n − 1, n − 2, . . . , 1, n). Repeating this shifting process n − 1
times recursively we obtain the following n × n Latin square:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n n− 1 · · · 2 1
n−1 n− 2 · · · 1 n

...
...

. . .
...

...
n − i + 1 n − i · · · n − i + 3 n − i + 2

...
...

. . .
...

...
2 1 · · · 4 3
1 n · · · 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As before, an easy verification shows that the entries aij of L+ are given by the formula

aij = n + 1 − (i + j − 1) + nχ
Y
(i + j − 1)

=

⎧⎪⎨
⎪⎩

n + 1− j if i = 1 and 1 ≤ j ≤ n

n + 2 − i− j if i ≥ 2 and 1 ≤ j ≤ n − i + 1

2n − i + 2 − j if i ≥ 2 and n − i + 2 ≤ j ≤ n .

When n = 4 the Latin square L is the following:

L =

⎡
⎢⎢⎣

4 3 2 1
3 2 1 4
2 1 4 3
1 4 3 2

⎤
⎥⎥⎦

3. Matching Matrices and Latin Squares

The three types of Latin squares that we have presented above are useful to model
the desired type of bilateral matchings among agents in a finite population. A bilateral
matching on a population X is simply a function φ : X → X satisfying φ2(x) = x
for all x ∈ X , that is φ is a special type of permutation called an involution.2 We
interpret agent φ(x) to be the partner of agent x and so a sequence of meetings (or
bilateral matchings) is simply a sequence of bilateral matchings. Of course, every bilateral

2For further details see [1].
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matching φ automatically provides a partition of the population X into pairs—this is the
partition ({x, φ(x)})x∈X.

In this section we are interested in a particular type of matching process. Specifically,
we wish to match everyone in the population to someone else, whenever this is feasible,
but we also want to ensure that agents meet everybody else in the population exactly
once. These requirements immediately imply that, if we have a population of n agents,
the desired matching process cannot last more than n − 1 periods, since each agent can
be matched at most to n − 1 different individuals. To formalize such a matching process,
we need to introduce a special type of matrix.

Definition 3.1. Let X = {1, . . . , n} be a population. An m × n matrix M = [πij] with
entries from the population is called a matching matrix if:

(1) Its first row is the vector (1, 2, . . . , n).
(2) Each other row is an involution of the first row.
(3) If n is even every column has distinct entries.
(4) If n is odd, then in each column j the agent j appears at most twice and the

remaining entries in the column are all distinct (and hence they are precisely the
agents X \ {j}).

An m × n matching matrix M is called maximal if:
(a) When n is even M has n rows, i.e., m = n.
(b) When n is odd M has n + 1 rows, i.e., m = n + 1.3

Given a population X = {1, . . . , n} we will see that several distinct maximal matching
matrices can be constructed. For a population X of size n we denote an arbitrary maximal
matching matrix by Mn(X), omitting the argument X when it is understood. To empha-
size the link between maximal matching matrices and meeting processes, we introduce the
following terminology.

Definition 3.2. An absolute strangers matching process for a population is a maximal
matching matrix.

To see why a maximal matching matrix represents a sequence of partitions of the pop-
ulation into the type of pairwise matches that we desire, consider populations with n = 3
and n = 4 . Two corresponding maximal matching matrices are:

M3 =

⎡
⎢⎢⎣

1 2 3
3 2 1
2 1 3
1 3 2

⎤
⎥⎥⎦ and M4 =

⎡
⎢⎢⎣

1 2 3 4
2 1 4 3
4 3 2 1
3 4 1 2

⎤
⎥⎥⎦

The first row simply lists all agents of the population X , which we order from 1, 2, . . . , n.
Clearly, each subsequent row defines a partition of the population into pairs, in some

3In each column j the agent j appears exactly twice and the remaining m − 2 entries are all distinct.
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period. To see how this is done, let t = 1, . . . , n − 1 denote a matching period, and
t = 0 denote an initial stage where no one is matched. So, each row i pinpoints a distinct
matching period t = i − 1. The partition in period t is thus identified by associating to
each element in column j of the first row, the element present in the same column of row
t + 1. That is, we read the matches vertically.

For instance, the matching matrix M4 above describes the following sequence of three
pairwise meetings on the population X = {1, 2, 3, 4}:

t
1
2
3

⎡
⎢⎢⎣

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

⎤
⎥⎥⎦

Consider the second row, i.e., period t = 1. Agent 1 is matched to agent 2, and column
two confirms that agent 2 is matched to agent 1. The other two columns tell us that agent
3 is matched to agent 4 in period t = 1. Subsequent periods are interpreted similarly.

The (maximal) matching matrix Mn conveniently describes pairwise encounters among
n agents such that no one meets the same partner again, which is a feature of several
matching frameworks in economics.4

It is important to recognize that for n even any matrix Mn is a Latin square that
satisfies the additional restriction that every row is an involution of the first. This is a
special case, since not all Latin squares possess this property. For instance, in the Latin
square below

⎡
⎢⎢⎣

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎤
⎥⎥⎦ ,

while each number appears exactly once in each column and each row, the Latin square
does not represent a matching for the population X = {1, 2, 3, 4}. Notice that the second
row is not an involution of the first since in period t = 1 agent 1 appears to be matched
to agent 2 (first column) but agent 2 is matched to agent 3 (second column).

Clearly, for n odd a maximal matching matrix is not a Latin square because m = n+1,
so it is not a square matrix. However, notice that every element j appears in the first row
of column j, and exactly once more below, in that same column. This implies that if n
is odd, then by eliminating the first row from the matrix Mn we obtain a Latin square,
something that will come in handy to construct matchings on any population.

4For instance, it reflects the meeting restrictions assumed in the pairwise random matching model of
Kiyotaki and Wright [7], the spatial separation requisite described in the multilateral matching model in [3],
the ‘anonymity’ requisites studied in [1], and the informational isolation in the experimental study in [4].
Indeed, the name we use to describe the meeting process reflects a description of a matching protocol found
in a popular experimental software platform [8], which further restricts the interactions possible under the
‘strangers’ matching protocol (see [2]).
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For example, when n = 3, we can see that the matrix to the right below, obtained by
eliminating the first row from M3 is a Latin square.

M3 =

⎡
⎢⎢⎣

1 2 3
3 2 1
2 1 3
1 3 2

⎤
⎥⎥⎦

⎡
⎣ 3 2 1

2 1 3
1 3 2

⎤
⎦

4. Maximal Matching Matrices

In this section we show existence of maximal matching matrices for any finite population.
We start by pairing agents across two groups of equal size. Suppose we have a population
composed of two groups, denoted A and B, of n individuals each. For practical purposes,
we interpret each group as being composed by a homogenous type of agents, such as buyers
or sellers. Our objective is to pair exactly once each agent from A to someone from B, so
that everyone in a group is always matched to someone else in the other group. That is,
we want to pair agents across groups in an absolute strangers fashion.

It is immediate that this matching protocol can generate at most n periods of matching
since each agent can meet at most n agents from the other group. The key questions are
whether we can sustain n matching periods and, if we can, if there is a systematic way5

to match agents as absolute strangers.
The following result achieves two goals. On one hand, it establishes that we can pair

agents as absolute strangers at most n times. And on the other hand, it offers a basic
procedure for constructing the desired matching protocol on any population. Note that
the notation X = A � B, means X = A ∪ B and A ∩ B = �©, i.e., X is the disjoint union
of A and B.

Lemma 4.1. Let A = {1, . . . , n} and B = {n + 1, . . . , 2n}. Then the (n + 1) × n matrix

M(A, B) =

⎡
⎢⎢⎢⎢⎢⎣

1 2 · · · n − 1 n + 2
n + 1 n + 2 · · · 2n − 1 2n
n + 2 n + 3 · · · 2n n + 1

...
...

. . .
...

...
2n n + 1 · · · 2n − 2 2n − 1

n + 1 n + 2 · · · 2n − 1 2n
1 2 · · · n − 1 n
n 1 · · · n − 2 n − 1
...

...
. . .

...
...

2 3 · · · n 1

⎤
⎥⎥⎥⎥⎥⎦

is a matching matrix for the population X = A�B such that every agent in A is pairwise
matched to every agent in B.

The proof of this lemma is straightforward. Start by noticing that the notation M(A, B)
indicates that we are matching agents from set A to set B, without matching them within
sets. Therefore, it is easy to see that the matrix M(A, B) is a desired matching matrix

5By a “systematic way” we mean, as usual, the development of an algorithm that can be executed by
a computer.
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for the population X = A � B. Also, let L−(B) be the n × n Latin square with symbols
from B = {n+1, . . . , 2n} (constructed using procedure #1 in Section 2). Similarly, L+(A)
denotes the n×n Latin square with symbols from A = {n+1, . . . , 2n} (constructed using
procedure #2 in Section 2). Then we can rewrite M(A, B) as follows

M(A, B) =
[

1 · · · n n + 1 · · · 2n
L−(B) L+(A)

]
.

The reader should observe that a matching matrix obtained by the construction provided
in Lemma 4.1 is not maximal, since it provides matches across the groups A and B, but
not within each group. An example follows.

Let X = {1, . . . , 8} with A = {1, 2, 3, 4} and B = {5, 6, 7, 8}. Then, it is easy to see that
the procedure above gives the following 5 × 8 matching matrix

M(A, B) =

⎡
⎢⎢⎢⎢⎣

1 2 3 4
5 6 7 8
6 7 8 5
7 8 5 6
8 5 6 7

5 6 7 8
1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

⎤
⎥⎥⎥⎥⎦ .

We are now ready to state and prove the main result of this paper.

Theorem 4.2. Every finite population admits a maximal matching matrix.

Proof. The proof consists of two parts. In the first part we construct a maximal matching
matrix for odd populations, while the second part shows existence of maximal matching
matrices for any even population.

Let us start with a population X = {1, . . . , n}, where n is odd. Recall that L is the
Latin Square constructed using procedure #3 in Section 2. Now, notice that the (n+1)×n
matrix

Mn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 · · · n − 2 n − 1 n
n n − 1 n − 2 · · · 3 2 1

n − 1 n − 2 n − 3 · · · 2 1 n
n − 2 n − 3 n − 4 · · · 1 n n − 1

...
...

...
. . .

...
...

...
2 1 n · · · 5 4 3
1 n n − 1 · · · n − 1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

1 · · · n
L

]

is a maximal matching matrix for the population X .
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In the second part let X = {1, . . . , 2n}. Write 2n = 2kp, where p, k are natural numbers
with p odd. We need to consider two cases.

Case 1: p = 1.
In this case we have 2n = 2k. The existence of a maximal matching matrix will be

established by induction on k. For k = 1, the 2 × 2 matrix M2 =
[

1 2
2 1

]
is a maximal

matching matrix.
Now assume that a maximal matching matrix exists for a population 2n = 2k, where

k ≥ 1. We need to show that a maximal matching matrix exists for 2n = 2k+1. To this
end, let X = {1, . . . , 2k+1} = A � B, where A = {1, . . . , 2k} and B = {2k + 1, . . . , 2k+1}.

For the induction step, we know that there exists a 2k × 2k maximal matching matrix
for the population A, say M2k(A). Similarly, there exists a 2k × 2k maximal matching
matrix for the population B, say M2k(B).

It is not difficult to check that the 2k+1 × 2k+1 matrix

M2k+1 =
[ M2k(A) M2k(B)
M2k(B) M2k(A)

]

is a maximal matching matrix for the population X . (For another construction of a
maximal matching matrix for X see also Lemma 5.1 below.)

Case 2: p > 1.
In this case we have 2n = 2kp, and we can still use induction on k. Let p be fixed.

For k = 1, 2n = 2p and so X = {1, . . . , 2p}. Let X = A � B where A = {1, . . . , p} and
B = {p + 1, . . . , 2p}, i.e., A and B have p agents each. Let L−(B)−1 and L+(A)−1 denote
the (p − 1) × p Latin squares obtained by deleting the first row of L−(B) and L+(A).

Next, notice that p is odd and so we can use the first part to construct the maximal
matching matricesMp(A) and Mp(B). Let M′

p(A) and M′
p(B) denote (p + 1)×p matrices

obtained from Mp(A) and Mp(B) as follows.
By construction all the rows of Mp(A) and Mp(B) (other than the first) have exactly

one fixed point. Let
[p

2

]
denote p

2 rounded to the next integer, and note that 2×[p
2

]
= p+1.

The following table summarizes the fixed points for each row j (other than the first) of
Mp(A) and Mp(B).

Row Range of k Mp(A) Mp(B)
j = 2k 1, . . . ,

[p
2

] [p
2

] − (k − 1)
(
p +

[p
2

]) − (k − 1)
j = 2k + 1 1, . . . ,

[p
2

] − 1 p − (k − 1) 2p− (k − 1)

Then M′
p(A) and M′

p(B) are obtained by exchanging the fixed points of Mp(A) and
Mp(B) row by row. For example, agent 1, which appears in entry (p + 1, 1) of Mp(A)
remains unmatched in the last row of Mp(A) and agent p+1 which occupies entry (p + 1, 1)
of Mp(B) remains unmatched in the last row of Mp(B). Then, the last row of M′

p(A) is
obtained by replacing agent 1 in the last row of Mp(A) by agent p + 1. Analogously, the
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last row of M′
p(B) is obtained by substituting agent p + 1 in the last row of Mp(B) by

agent 1. A similar procedure is conducted to obtain the other rows of M′
p(A) and M′

p(B).
Now, with the help of Lemma 4.1, the reader can verify that the 2p× 2p matrix

M2p =

⎡
⎣ M′

p(A) M′
p(B)

L−(B)−1 L+(A)−1

⎤
⎦

is a maximal matching matrix for the population X = {1, . . . , 2p}.
Next, suppose that a maximal matching matrix exists for a population 2n = 2kp, where

k ≥ 1. A procedure analogous to the one illustrated in Case 1 shows that a maximal
matching matrix exists for 2n = 2k+1p.

Theorem 4.2 shows the existence of maximal matching matrices for any finite population
and in some cases provides algorithms of constructing maximal matching matrices. We
illustrate this in the examples below.

Example 4.3. We start with the construction of a maximal matching matrix for an odd
population with n = 3. Using the Latin square construction # 3 we obtain

M3 =

⎡
⎢⎢⎣

1 2 3
3 2 1
2 1 3
1 3 2

⎤
⎥⎥⎦ .

Notice that this construction does not work with even populations. Indeed, the number
n would appear in the last column of both the first and the third row, which is not a
matching matrix for even populations.

Example 4.4. Consider now an even population X = {1, 2, 3, 4, 5, 6}, i.e., we have k = 1
and p = 3. Let A = {1, 2, 3} and B = {4, 5, 6}. Then

M′
3(A) =

⎡
⎢⎢⎣

1 2 3
3 5 1
2 1 6
4 3 2

⎤
⎥⎥⎦ and M′

3(B) =

⎡
⎢⎢⎣

4 5 6
6 2 4
5 4 3
1 6 5

⎤
⎥⎥⎦ .

Also, notice that given the definitions of L+(A) and L−(B), we obtain the matrices

L+(A)−1 =
[

3 1 2
2 3 1

]
and L−(B)−1 =

[
5 6 4
6 4 5

]
.
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Thus, the 6× 6 matrix

M6 =

⎡
⎣ M′

3(A) M′
3(B)

L−(B)−1 L+(A)−1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6
3 5 1 6 2 4
2 1 6 5 4 3
4 3 2 1 6 5
5 6 4 3 1 2
6 4 5 2 3 1

⎤
⎥⎥⎥⎥⎥⎥⎦

is a maximal matching matrix for the population X .

When the population is of size n = 2k there are other useful ways of constructing
maximal matching matrices. Indeed, we can always use the construction in the proof of
Lemma 4.1 repeatedly or we can use another method that is described next.

5. Pairing agents in a population of size 2k

In this section we consider a population X whose cardinality is a power of two, that
is, X = {1, 2, . . . , 2k} for some k. Again, we want to find out for how many periods
we can pair every agent in X to everyone else exactly once, ensuring that all agents are
paired in every period. This type of matching is of interest to experimental economists,
where subjects should be handled parsimoniously. Clearly, there cannot be more than
2k − 1 rounds of matching since each agent x ∈ X can meet at most 2k − 1 other agents.
Therefore, let t = 1, . . . , 2k−1 denote the number of matching periods. In Theorem 4.2 we
showed that an absolute strangers matching protocol exists for this case. In what follows
we will additionally show how to construct it. Our construction is recursive and takes k
steps to be completed. We denote the arbitrary step of this construction by s.

In each step s we construct 2k−s matching matrices of size 2s × 2s labelled as

M1
s, M

2
s, . . . , M

2k−s

s .

Each matrix Mi
s is a 2s × 2s maximal matching matrix with the following 2s symbols

{2s(i − 1) + 1, . . . , 2si} .

For s = 0, we start by letting the matrices M1
0, M

2
0, . . . , M

2k

0 be the 1 × 1 matrices:

M1
0 = 1, M2

0 = 2, . . . , M2k

0 = 2k.

Now for the inductive procedure, if for some s ≥ 1 the matching matrices

M1
s−1, M

2
s−1, . . . , M

2k−s+1

s−1

have been constructed, then for each 1 ≤ i ≤ 2k−s we let

Mi
s =

⎡
⎣ M2i−1

s−1 M2i
s−1

M2i
s−1 M2i−1

s−1

⎤
⎦
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Note that the second row of each Mi
s is obtained by shifting the matrices M2i−1

s−1 and M2i
s−1

in the first row, by one position to the left. That is, each Mi
s is a partitioned matrix whose

blocks are the submatrices M2i−1
s−1 and M2i

s−1.
Each matrix Mi

s is a matching matrix as we establish in the following.

Lemma 5.1. If the population is of the form X = {1, . . . , 2k}, then for each s = 1, . . . , k
and i = 1, . . . , 2k−s the matrix Mi

s is a 2s × 2s maximal matching matrix with symbols
{(i − 1)2s + 1, . . . , i2s}.

In particular, the recursively constructed matrix M1
k = M2k is a maximal matching

matrix for the population X .

Proof. In order to show that M1
k identifies an absolute strangers matching protocol for the

whole population X , we need to show that Mi
s is a matching matrix for each s = 1, . . . , k

and each i = 1, . . . , 2k−s.
The proof proceeds by induction on s. Consider s = 1 and observe that for each

i = 1, ..., 2k−1, the matrix Mi
1 is a matching matrix by construction since:

Mi
1 =

⎡
⎣ M2i−1

0 M2i
0

M2i
0 M2i−1

0

⎤
⎦ =

[
2i− 1 2i

2i 2i− 1

]

In particular, for all i = 1, . . . , 2k−1, each matrix Mi
1 is a maximal matching matrix with

symbols {(i− 1)2 + 1, . . . , i2}.
Now, assume that for all i = 1, . . . , 2k−s−1 the matrix Mi

s−1 is a 2s−1 × 2s−1 maximal
matching matrix with symbols

{
(i− 1)2s−1 + 1, . . . , i2s−1

}
. We need to show that for

all i = 1, . . . , 2k−s the matrix Mi
s is a 2s × 2s maximal matching matrix with symbols

{(i − 1)2s + 1, . . . , i2s}. Recall that

Mi
s =

⎡
⎣ M2i−1

s−1 M2i
s−1

M2i
s−1 M2i−1

s−1

⎤
⎦ . (5.1)

By the induction hypothesis, M2i−1
s−1 is a 2s−1×2s−1 maximal matching matrix with symbols{

(i − 1)2s + 1, . . . , i2s − 2s−1
}

and M2i
s−1 is a 2s−1 × 2s−1 maximal matching matrix with

symbols
{
i2s − 2s−1 + 1, . . . , i2s

}
. Also, notice that{

(i − 1)2s + 1, . . . , i2s − 2s−1
} ∩ {

i2s − 2s−1 + 1, . . . , i2s
}

= �©,

i.e., the matrices M2i−1
s−1 and M2i

s−1 have distinct symbols. Therefore, by the construction
provided in (5.1), we have that Mi

s is a 2s × 2s maximal matching matrix with symbols
{(i − 1)2s + 1, . . . , i2s}. Finally, note that the matrix obtained in the last step is a maximal
matching matrix for the population, i.e., M1

k = M2k .

Since each matching matrix Mi
s is of size 2s, then it provides matches for 2s distinct

agents over the course of 2s − 1 periods. Therefore, the set
{
Mi

s : i = 1, . . . , 2k−s
}

defined
for s = 1, . . . , k−1 provides a partition of the population in bilateral matches, up to period
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t = 2s − 1. When s = k we have a single 2k × 2k maximal matching matrix M1
k = M2k

that gives us a matching of the whole population for a total of 2k − 1 periods.
Furthermore, this construction can be extended to obtain absolute strangers bilateral

matching processes for countably infinite populations.6

Example 5.2. We illustrate our procedure by letting k = 3 and considering the population
X = {1, . . . , 8}. Lemma 5.1 indicates that we can bilaterally match agents as absolute
strangers for 2k − 1 = 7 periods. We proceed as follows. First, start by defininig Mi

0 = i
for i = 1, . . . , 8. Then, the first matching is given by[

M1
1 M2

1 M3
1 M4

1

]
,

i.e., we have the four Latin squares of order 2 × 2

M1
1 =

[
1 2
2 1

]
, M2

1 =
[

3 4
4 3

]
, M3

1 =
[

5 6
6 5

]
, M4

1 =
[

7 8
8 7

]
.

That is, agent 1 is paired to agent 2, agent 3 to 4, and so on and so forth.
Next, note that 1 has met 2 but he did not meet 3 and 4, and similarly 5 has met 6 but

he has not met 7 and 8. When s = 2, the matching for the first three periods is given by
23−2 = 2 Latin squares of order 22 × 22

M1
2 =

⎡
⎢⎢⎣

1 2
2 1

3 4
4 3

3 4
4 3

1 2
2 1

⎤
⎥⎥⎦ and M2

2 =

⎡
⎢⎢⎣

5 6
6 5

7 8
8 7

7 8
8 7

5 6
6 5

⎤
⎥⎥⎦ .

That is, agent 1 is paired with agent 2, in period 1, with agent 3 in period 2 and with
agent 4 in period 3.

Finally, when s = k = 3, we obtain a matching square of order 23 × 23 providing us
with absolute strangers for 23 − 1 = 7 periods

M1
3 = M8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
2 1

3 4
4 3

3 4
4 3

1 2
2 1

5 6
6 5

7 8
8 7

7 8
8 7

5 6
6 5

5 6
6 5

7 8
8 7

7 8
8 7

5 6
6 5

1 2
2 1

3 4
4 3

3 4
4 3

1 2
2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

6Those matching matrices can be used also to construct matching processes where agents are more
than absolute strangers. For instance, we can bilaterally match agents in every period t by selecting row
j = 1 + 2t−1 of the matching matrix. This is equivalent to a strongly anonymous matching process as
formalized in [1].



15

For instance, in period t = 3, agent 4 meets agent 1, while in period t = 7 agent 4 meets
agent 5.

6. A Practical Application to Experimental Economics

Consider the following setting for an economic experiment. We want to collect data
on a repeated duopoly game involving two different types of subjects, say buyers and
sellers. Suppose we wish to run the experiment for 40 periods and in each period we wish
to match a buyer to a seller. Suppose also that we can only recruit 8 subjects, four of
each type. Clearly, we can pair subjects so that every buyer meets every seller exactly
once7 for at most 4 periods. However, we would like to be as close as possible to an
absolute strangers matching protocol. That is, we wish to minimize repeated interaction.8

Randomizing equally over all possible matches would not allow us to achieve this goal,
unfortunately. Indeed, the probability that agents are absolute strangers under a random
matching protocol is very low.

To see why, start by noticing that the number of all possible matchings (with repetition)
is (n!)n. That is, we must consider all matrices in which the symbols 1, . . . , n appear
exactly once in every row, but can appear more than once in a column. Thus, we have n!
choices for the first row, n! choices for the second row, and so on until n! choices for the
nth row.

This implies that, if we assume that all matchings are equally likely, the probability of
obtaining an absolute strangers matching is given by

pn =
�n

(n!)n .

Here, �n is the number of Latin squares that can be created for a population of size
n. For example, if n = 3 then �3 = 18 and so the probability that agents are absolute
strangers is p3 = 1

18 . For n = 4 we have �4 = 576 and so the probability is p4 = 1
576 .

For numbers that can be calculated, greater values of n are associated to progressively
smaller probabilities (e.g, p10 = 2.5212× 10−29). That is to say, if matchings are selected
randomly, the probability of selecting an absolute strangers matching becomes very small
as n increases.

This suggests that knowing how to construct absolute strangers matching protocols
may be important, since it allows us to construct several distinct matching matrices, i.e.,
several distinct absolute strangers matching protocols. This allows us flexibility in the
design of the matching protocol and, in particular, it allows us to decrease the chance that
the same partition of the population is repeated.

For example, given our population of size four we will constract several Latin squares of
order 4 and then randomly select matchings from them. We need more than one matching

7And nobody is unmatched.
8Strangers matching protocols are used in experimental economics to reduce the impact of repeated

game effects while allowing for learning over time.
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square because using one only implies that if a match is repeated, then the partition of
the entire population is also repeated. This is comparable to having a “periodic” repeated
game, which may be desirable to avoid.

For a concrete example, suppose we want to match buyers A = {a, b, c, d} with sellers
B = {1, 2, 3, 4}. Generate several distinct Latin squares (we can generate up to 4!3!4), and
use them to form matching matrices. Note that distinct Latin squares generate distinct
matching matrices. For example, it is easy to see that the Latin square

L1 =

⎡
⎢⎢⎣

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎤
⎥⎥⎦

gives rise to the matching matrix

M(A, B) =

⎡
⎢⎢⎢⎢⎣

a b c d
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1 2 3 4
a b c d
d a b c
c d a b
b c d a

⎤
⎥⎥⎥⎥⎦ .

Similarly, the following Latin squares generate matching matrices different than M(A,B).

L2 =

⎡
⎢⎢⎣

2 1 4 3
3 2 1 4
4 3 2 1
1 4 3 2

⎤
⎥⎥⎦ , L3 =

⎡
⎢⎢⎣

3 1 4 2
4 2 3 2
1 3 2 4
2 4 1 3

⎤
⎥⎥⎦

L4 =

⎡
⎢⎢⎣

4 1 2 3
1 3 4 2
2 4 3 1
3 2 1 4

⎤
⎥⎥⎦ , L5 =

⎡
⎢⎢⎣

1 2 4 3
2 4 3 1
3 1 2 4
4 3 1 2

⎤
⎥⎥⎦

Next, we can select a matching matrix every four periods, randomly and independently,
to minimize repeated interaction while preserving randomness in matching as well as in
partitioning the population. If we were to use only L1 and repeat it over time, for instance,
if a is matched repeatedly to 1, then the matches (b, 2) , (c, 3) , (d, 4) are also repeated.
Thus, knowing how to construct matching matrices can allow to generate a matching
process such that we disentangle information about composition of a subject’s match
(presumably observable only in the match) from info about entire partition (presumably
unobservable).
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7. Conclusion

We have offered a procedure to match bilaterally agents in a finite population, so that in
each period everybody has a partner (but at most one) and meets everybody else exactly
once. Our method is simple and makes use of the mathematics of Latin squares. It can
have practical applications in the construction of decentralized trading environments that
are often employed in both theoretical and experimental economics to model trading or
informational frictions. The basic procedure to create these type of meetings is simple,
can be done with pencil and paper, and can be extended to countably infinite population
by means of a straighforward recursive process.
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