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Abstract This paper examines a multi-player and multi-front ColonelBlotto game in which

one player, A, simultaneously competes in two disjoint Colonel Blotto games, against two sep-

arate opponents, 1 and 2. Prior to competing in the games, players 1 and 2 have the opportunity

to form an alliance to share their endowments of a one-dimensional resource (e.g., troops,

military hardware, money). This paper examines “non-cooperative” alliances in which only

individually rationalex antetransfers of the resource are allowed. Once these transferstake

place, each alliance member maximizes his payoff in his respective Colonel Blotto game, given

his resource constraint and player A’s allocation of its endowment across the two games. No

ex posttransfers are enforceable. Remarkably, there are several ranges of parameters in which

endogenous unilateral transfers take place within the alliance. That is, one player gives away

resources to his ally, who happily accepts the gift. Unilateral transfers arise because they lead to

a strategic shift in the common opponent’s force allocationaway from the set of battlefields of

the player making the transfer, towards the set of battlefields of the player receiving the transfer.

Our result demonstrates that there exist unilateral transfers for which the combination of direct

and strategic effects benefits both allies. This stands in stark contrast to the previous literature

on alliances (see Sandler and Hartley, 2001), which relies on the assumption of pure or impure

public goods.

1 Introduction

This paper examines a multi-player, multi-front Colonel Blotto game in which one player,A, si-

multaneously competes in two disjoint Colonel Blotto games, against two separate opponents,

1 and 2. Prior to competing in the games, players 1 and 2 have the opportunity to form an

alliance to share their endowments of a one-dimensional resource (e.g., troops, military hard-

ware, money). Our focus is on non-cooperative alliances in which only individually rationalex

antetransfers of the resource are allowed. Once these transferstake place, player A optimally

responds in allocating his resource endowment across the two games and then players play their

respective Colonel Blotto games given their resource constraints. Noex posttransfers between

the two alliance members are enforceable. We call such an alliance aself–enforcing alliance

without commitment.

The main result of this paper is to show that there is a wide range of parameters in which en-

dogenous unilateral transfers take place within such an alliance. That is, one player gives away

resources to its ally, who happily accepts the gift. Unilateral transfers arise because they lead

to a strategic shift in the common opponent’s force allocation away from the set of battlefields

common to the player making the transfer, towards the set of battlefields common to the player

receiving the transfer. Our result demonstrates that thereexist unilateral transfers for which the

combination of the direct and strategic effects benefits both allies.
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Our approach contrasts with the major focus of the literature on the economics of alliances,

dating back to Olson (1965) and Olson and Zeckhauser (1966),(for a summary, see Sandler

and Hartley, 2001). This literature generally assumes thatthe resource employed by allies is

a (possibly impure) public good.1 In these models, one player’s resource allocation provides

direct non-rival, non-excludable benefits to an allied player.2 In our model, resource expendi-

ture by an ally is completely rival and excludable. However,through its effects on the strategic

choices of the enemy, strategic externalities may be created. These externalities may suffice to

generate endogenous unilateral transfers in strategic alliances without thea priori assumption

of pure or impure public goods and without commitment.

Our model appears to provide potential insight into the behavior of alliances in historical

military conflicts. For instance, it seems capable of explaining the assistance that the United

States provided to the Soviet Union in The Second World War through the Lend-Lease Act of

1941. Estimates of these transfers vary, ranging from $9 billion to $11 billion for the four-year

period after Nazi Germany’s invasion of the Soviet Union in 1941. Historical accounts of this

program lend some support for the view that this assistance was extended with no expectation

of repayment.3

Despite its significant departure from the assumptions of the public goods-based literature

on alliances, our model also obtains results consistent with one prominent conjecture in that

literature, Olson’s (1965)“exploitation hypothesis.”This hypothesis asserts that larger nations

will bear a disproportionately higher share of the common cost of an alliance relative to its

benefits. In our model, a self–enforcing alliance without commitment arises involving unilateral

transfers from playeri to player j when playeri has a larger resource endowment and the ratio

of player i’s endowment to playerj ’s endowment is sufficiently greater than the ratio of the

total values of the battlefields in the two players’ respective Colonel Blotto games. When such

alliances arise, transfers flow from the player who is resource rich to the player who is resource

1 In Olson (1965) and Olson and Zeckhauser (1966) alliance expenditure was treated as a

pure public good. Extensions to impure public good expenditure, known as the “joint product

model” originate with Van Ypersele De Strihou (1967). See also Sandler and Cauley (1975),

Sandler (1977), and Murdoch and Sandler (1982, 1984).
2 In the early contributions to this literature it was standard to focus solely on the game be-

tween alliance members and take the enemy’s expenditure as given. Exceptions to this approach

include Linster (1993) and Skaperdas (1998), who examine the formation of alliances in con-

tests in which the probability of winning a prize is represented by a contest success function

and the expenditure of each alliance member serves as a (possibly impure) public good in that

it directly increases the expected payoffs of other alliance members for a given enemy expen-

diture.
3 See for instance, Herring (1973, p.38).
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poor. The degree of asymmetry in resource endowments necessary to generate a self–enforcing

alliance without commitment depends not only on the relative aggregate values of the players’

respective battlefields, but also on the absolute magnitudes of the two players’ endowments

relative to that of playerA.

Section 2 introduces our three stage game. Section 3 characterizes equilibrium in the final

stage of the game, which consists of a multi-player, multi-front Colonel Blotto game in which

one player,A, simultaneously competes in two disjoint Colonel Blotto games, against two sep-

arate opponents, 1 and 2. This section provides a complete characterization of the equilibrium

univariate marginal distributions and payoffs of the component Colonel Blotto games for ar-

bitrary budget constraints and any number of battlefieldsn≥ 3. The resource endowments in

this final stage are determined by choices made in the first twostages. These two stages are

examined in Section 4. In the first stage, conditional on their endowments, players1 and 2 de-

cide on whether to transfer resources, with any positive nettransfer generating a self–enforcing

alliance without commitment. In the second stage, playerA decides upon an allocation of its

resources across the two Blotto games, contingent on the choices of players 1 and 2. Section

4 shows thatself–enforcing alliances without commitmentmay indeed occur and characterizes

both the range of parameter values for which they arise and the nature of transfers in such

alliances. Section 5 compares the range of parameters for which positive transfers arise in self–

enforcing alliances without commitment to the range for which positive individually rational

ex antetransfers would arise between players 1 and 2 when complete and binding contingent

commitments may be made as to theex postdivision of payoffs. We call alliances in which

such commitments can be madealliances with complete commitment.Section 6 concludes and

outlines extensions.

2 The Coalitional Colonel Blotto Game

Players

There are 3 players,{A,1,2}, and two simultaneous Colonel Blotto games,G1 andG2. Player

A competes in both of the Colonel Blotto games,G1 andG2. Each playeri ∈ 1,2 competes in

only one Colonel Blotto game,Gi (see the schematic in Figure 1). The Colonel Blotto game

Gi hasni battlefields, and we will assume thatni ≥ 3, i = 1,2.4 Each battlefieldj ∈ {1, . . . ,ni}

in Colonel Blotto gameGi has a payoff ofvi > 0. The total value of Colonel Blotto gameGi ,

nivi , is denoted byφi ≡ nivi . The force allocated to each battlefield in each Colonel Blotto game

must be nonnegative and each playeri ∈ A∪{1,2} has a normalized budget ofXi, where player

4 Moving from ni = 2 to ni ≥ 3 greatly enlarges the space of feasiblen-variate distribution

functions, and the equilibrium strategies examined in thispaper require thatni ≥ 3.
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A’s normalized budget isXA = 1. On each battlefield the player that allocates the higher level

of force wins that battlefield. In the case that the players allocate the same level of force on a

given battlefield, the player that has the higher level of resources in that Colonel Blotto game

wins that battlefield. The specification of the tie-breakingrule does not affect the results as

long as no player has less than2
ni

times the forces of their opponent in Colonel Blotto game

Gi , i = 1,2. In the case that this condition does apply this specification of the tie-breaking rule

avoids the need to have the stronger player allocate a level of force that is arbitrarily close to,

but above, the weaker player’s maximal allocation of force.A range of tie-breaking rules yield

similar results.

[Insert Figure 1 here]

Alliances

In the first stage of the game players 1 and 2 choose whether or not to form an alliance. We

focus on the case in which it is not possible for players 1 and 2to a priori commit to a divi-

sion rule for the alliance’sex postpayoff. In this case each alliance member, conditional on the

resources that are available, maximizes the payoff from their individual Colonel Blotto game.

To emphasize the point that unilateral transfers between allies may take place in the absence

of pure or impure public goods, we assume that neither player’s payoff depends on the even-

tual outcome of his ally’s game. However, prior to the play oftheir respective games, alliance

members may reallocate resources among themselves subjectto the constraint that the resulting

allocation of resources is individually rational for each alliance member.

Since there are many game forms that might govern how mutually beneficial transfers might

take place, we instead focus on the following simple question: When does there exist a nonzero

and feasible5 net transfer,t, from player 1 to player 2 (negativet corresponds to a positive net

transfer from 2 to 1) that strictly increases both allies’ payoffs when compared to the case in

which t = 0. In examining this question, we assume that following any choice oft the game

that follows is one in which playerA observes the resulting budget constraints,Xt
1 ≡ X1− t

andXt
2 ≡ X2 + t, takes them as given, and then responds optimally in allocating XA acrossG1

andG2. We label the resulting allocations ofXA acrossG1 andG2 by XA1 andXA2, respec-

tively. Once the budgets(Xt
1,X

t
2,XA1,XA2) are determined, they become common knowledge

and the corresponding complete information simultaneous move Colonel Blotto gamesG1 and

G2 are played. If such Pareto improving transfers between players 1 and 2 exist, it is reasonable

to assume that the allies, in this environment of complete information, can implement some

5 Feasibility in this context means that the transfer lies in the interval[−X2,X1].
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such transfer.6 When nonzero transfers between players 1 and 2 exist that arestrictly Pareto

improving, we refer to the alliance as aself–enforcing alliance without commitment.

Before examining this game in more detail, it is important tonote that one immediate re-

sult of Roberson’s (2006) characterization of equilibriumpayoffs in Colonel Blotto games with

asymmetric budgets is that, for a given opposition budget constraint, a player’s payoff is non-

decreasing in his own budget. Hence, if playerA’s allocation of his budget over the two games

Gi , i = 1,2, cannot be adjusted in response to transfers, as would be the case ifA’s allocation

of XA across the two games preceded or was simultaneous with the transfer between players 1

and 2, neither player could possibly strictly benefit from a transfer of resources to his ally.

In the analysis that follows, letπ t
i denote the payoff of the Colonel Blotto gameGi to player

i = 1,2 if a self–enforcing alliance without commitmentis formed with net transfer from 1

to 2 equal tot, and π0
i , denote the payoff to playeri = 1,2 from acting in isolation, with

no transfer taking place. By definition, aself–enforcing alliance without commitmentforms if

and only if π t
i > π0

i for somet 6= 0 for eachi = 1,2. Thus, aself–enforcing alliance without

commitmentforms if and only if there exists a reallocation of the alliance members’ budgets

such that each playeri = 1,2 strictly prefers this to competing with his own endowment,given

the corresponding optimal responses ofA in allocating his resources.

Before defining the players’ strategies, it is useful to motivate the leadership role the alliance

takes in determining transfers. As noted above, if playerA cannot condition the allocation of

his budget on the available budgets of the alliance members,the private good nature of the

expenditure of players 1 and 2 insures that no transfers takeplace between the two players.

However, ifA has an opportunity to condition his allocation upon the alliance transfers, a pos-

itive transfer from one player to the other may induce a sufficient shift in the optimal budget

allocations of playerA away from the transferring player’s Colonel Blotto game to more than

compensate the player for making the positive net transfer.That is, the strategic effect may

more than compensate for the direct effect of the transfer for one player, while the direct effect

more than compensates for the strategic effect for the other.

Why might it be reasonable to assume thatA can condition his allocation across fronts on the

transfers of the allies? One reason is that it seems plausible to believe that transfers between

6 Naturally, there are many game forms that might govern the implementation of transfers of

the one-dimensional resource between the two allies. For instance, in one version of such a

game each ally simultaneously decides upon a nonnegative amount to transfer to its ally. Each

ally then observes these amounts and then the allies simultaneously decide whether to accept or

reject the offer of its ally. It is straightforward to show that when nonzero transfers exist which

are Pareto improving, this offer process can implement one such transfer, the transfer in which

the ally making the Pareto improving positive net transfer obtains his most preferred positive

net transfer.
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alliance members are more easily observed than transfers between different Colonel Blotto

games by playerA. After all, alliance members are different players and reaching agreements to

transfer material between players may take longer than solving an individual allocation problem

and may involve a public announcement. Moreover, as in the case with the Allies fighting Nazi

Germany in The Second World War, it may be the case that the twoColonel Blotto gamesG1

andG2 represent two distinct geographically separate fronts in awar and countryA can transfer

resources between these fronts within the confines of the geographical area that it controls.

Finally, the notion of the transfer of resources as a commitment seems more reasonable in the

context of a Pareto improving transfer across players than as a shifting of resources controlled

by a single player. Any attempt to undo such a commitment would require the compliance and

coordination of two decision makers, not just the command ofone.

Strategies

Let XA1 andXA2 = 1−XA1 be playerA’s resources allocated to the Colonel Blotto gamesG1

and G2, respectively, andXt
i be playeri’s, i = 1,2, level of resources utilized inGi after a

transfert is implemented. Each distinct pair of games (G1(Xt
1,XA1),G2(Xt

2,XA2)) represents a

distinct final stage subgame of the overall game. In the final stage, it is well known that for

a giveni ∈ {1,2}, if either 1
ni

XAi < Xt
i ≤ XAi or 1

ni
Xt

i < XAi ≤ Xt
i there exists no pure strategy

equilibrium in the final stage Colonel Blotto gameGi .7

For each playeri ∈ 1,2 a mixed strategy inGi , which we label adistribution of forcefor

playeri, is anni-variate distribution functionPi : R
ni
+ → [0,1] with support contained in the set

of playeri’s feasible allocations of force,Xi = {x ∈ R
ni
+|∑

ni
j=1x j ≤ Xt

i }, and with a set of uni-

variate marginal distribution functions{F j
i }

ni
j=1, one univariate marginal distribution function

for each battlefield in playeri’s Colonel Blotto gameGi . Theni-tuple of playeri’s allocation of

force across theirni battlefields is a randomni-tuple drawn from theni-variate distributionPi

with the set of univariate marginal distribution functions{F j
i }

ni
j=1. PlayerA’s mixed strategy,

a distribution of forcefor playerA, is a set compromised of ann1-variate distribution func-

tion PA1 : R
n1
+ → [0,1] and ann2-variate distribution functionPA2 : R

n2
+ → [0,1]. Each of the

ni-variate distributionsPAi has support contained inXAi = {x ∈ R
ni
+|∑

ni
j=1x j ≤ XAi} and has

a set of univariate marginal distribution functions{F j
Ai}

ni
j=1, one univariate marginal distribu-

tion function for each battlefield in the Colonel Blotto gameGi . For each Colonel Blotto game

Gi , theni-tuple of playerA’s allocation of force across theni battlefields is a randomni-tuple

7 In the cases where1ni
XAi ≥Xt

i or 1
ni

Xt
i ≥XAi there, trivially, exists a pure strategy equilibrium

in the gameGi and the player with the higher level of resources in that gamewins all of the

battlefields.
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drawn from theni-variate distributionPAi with the set of univariate marginal distribution func-

tions{F j
Ai}

ni
j=1.

Coalitional Colonel Blotto Games

TheCoalitional Colonel Blotto Game,which we label

Γ {G1,G2,XA,X1,X2} ,

is the multistage game in which players 1 and 2 first implementa feasible net transfer of

resources between themselves, playerA then observes this transfer and allocates his budget

XA(= 1) across the two Colonel Blotto gamesG1 andG2, and then players 1 and 2 individually

compete with playerA in their respective Colonel Blotto games by simultaneouslyannouncing

distributions of forces to their respective battlefields, subject to their respective budget con-

straints determined in the previous stages. In the gamesG1 andG2 each battlefield is won by

the player that provides the higher allocation of force to that battlefield (subject to the tie break-

ing rules discussed above), and each player’s payoff equalsthe expected value of all battlefields

won.

3 The Final Stage Colonel Blotto Games

We start our analysis with the final stage subgamesGi, i = 1,2, and work our way back through

the game tree. Theorem 1 summarizes Roberson’s (2006) characterization of equilibrium in

the Colonel Blotto game. To simplify the exposition we adoptthe following notation: letXi =

max{XAi,Xt
i } andXi = min{XAi,Xt

i } for i = 1,2.

Theorem 1 (Roberson (2006))
A. Suppose Xi andXi satisfy2

ni
≤ Xi

Xi
≤ 1, then the unique Nash equilibrium univariate marginal

distribution functions of the final stage Colonel Blotto game Gi in the gameΓ {G1,G2,XA,X1,X2}

are as follows:

For the player with Xi forces, denoted as player k,

∀ j ∈ {1, . . . ,ni} F j
k (x) =

(

1− Xi
Xi

)

+ x
2
ni

Xi

Xi
Xi

x∈
[

0, 2
ni

Xi

]

Similarly for the player withXi forces, denoted as player−k,

∀ j ∈ {1, . . . ,ni} F j
−k (x) = x

2
ni

Xi
x∈
[

0, 2
ni

Xi

]
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Moreover, in any Nash equilibrium the expected payoff for player k isφi

(

Xi
2Xi

)

and the expected

payoff for player−k is φi

(

1− Xi
2Xi

)

.8

B. Suppose Xi and Xi satisfy 1
ni−1 ≤ Xi

Xi
< 2

ni
, then the unique Nash equilibrium univariate

marginal distribution functions of the final stage Colonel Blotto game Gi in the game

Γ {G1,G2,XA,X1,X2} are as follows:

For the player with Xi forces, denoted as player k,

∀ j ∈ {1, . . . ,ni} F j
k (x) =

(

1− 2
ni

)

+ x
Xi

2
ni

x∈ [0,Xi ]

Similarly for player withXi forces, denoted as player−k,

∀ j ∈ {1, . . . ,ni} F j
−k (x) =











2x
(

Xi−
Xi
ni

)

(Xi)
2 x∈ [0,Xi)

1 x≥ Xi

In any Nash equilibrium the expected payoff for player k isφi

(

2
ni
− 2Xi

n2
i Xi

)

and the expected

payoff for player−k is φi

(

1− 2
ni

+ 2Xi
n2

i Xi

)

.

C. Suppose Xi andXi satisfy1
ni

< Xi
Xi

< 1
ni−1. Define m=

⌈

Xi
Xi−Xi(ni−1)

⌉

, and note that2≤m< ∞.

A pair of Nash equilibrium ni-variate distributions of the final stage Colonel Blotto game Gi in

the gameΓ {G1,G2,XA,X1,X2} are as follows:

The player with Xi forces, denoted player k, randomly allocates0 forces to ni −2 battlefields.

On the remaining2 battlefields player k utilizes a bivariate distribution that has m mass points

and each mass point receives the same weight,1
m. Player k’s mass points on the2 remaining

battlefields are located at the points
(

(m−1− j)
Xi

m−1
, j

Xi

m−1

)

, j = 0, . . . ,m−1.

Player−k, randomly allocates Xi forces to n−2 battlefields. On the remaining2 battlefields

player−k utilizes a bivariate distribution that has m mass points and each mass point receives

the same weight,1m. Player−k’s mass points on the2 remaining battlefields are located at
(

Xi − j
niXi −Xi

m−1
,Xi − (m−1− j)

niXi −Xi

m−1

)

, j = 0, . . . ,m−1.

In any Nash equilibrium the expected payoff for player k isφi

(

2m−2
mn2

i

)

, and the expected

payoff for player−k is φi

(

1− 2m−2
mn2

i

)

.

8 The final stage gamesG1 andG2 are constant-sum games. Consequently, any Nash equilib-

rium strategies derived are also optimal strategies and thecorresponding payoffs are security

level payoffs.
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For a proof of Theorem 1 see Roberson (2006). A major part of this proof is establishing the ex-

istence ofni-variate distributions with the given univariate marginaldistribution functions and

with supports contained in{x ∈ R
ni
+|∑

ni
j=1x j = Xi} and{x ∈ R

ni
+|∑

ni
j=1x j = Xi} respectively.

Note that uniqueness of the equilibrium payoffs follows immediately from the fact that the fi-

nal stage Colonel Blotto games are constant–sum. These payoffs are illustrated in Figure 2 as a

function of Xi
Xi

. A salient feature of this characterization is that as the number of battlefields,ni ,

becomes large, the ranges ofXi
Xi

covered by (B) and (C) of Theorem 1 collapse to zero, and the

weaker player’s payoff (in these ranges) goes to zero as well. We use these facts in the analysis

of the second stage game that follows.

[Insert Figure 2 here]

4 Stages One and Two: Alliances and Resource Allocations

We begin in stage two with playerA’s optimal allocation of resources between the two Colonel

Blotto games. The primitives in this section are the payoffsderived in the previous section.

Given the above characterization, it follows that the form of player A’s payoff function de-

pends critically on the transfer of resources between players 1 and 2 in the first period. In fact

for playerA there are 64 different regions each with a distinct form for the payoff function.

These regions correspond to the cases where eitherXt
i

XAi
or XAi

Xt
i
, i = 1,2, satisfy one of the three

conditions of Theorem 1, or one player has more thanni times the budget of the other inGi .

For example, assume thatXA = 1 > Xt
1 +Xt

2. If playerA divides his resources between the

two Colonel Blotto games such that2n1
≤

Xt
1

XA1
≤ 1 and 2

n2
≤

Xt
2

XA2
≤ 1 then playerA’s payoff

function is:

πA

(

{

XAi,X
t
i

}

i=1,2

)

= φ1

(

1−
Xt

1

2XA1

)

+φ2

(

1−
Xt

2

2XA2

)

.

The payoff functions for the remaining regions are similarly constructed.

To simplify the analysis the number of battlefieldsni is assumed to be arbitrarily large.

(However, the total value of each Colonel Blotto gameφi = nivi is held constant.) Thus, the

number of different regions collapses from 64 to 4, which aregiven by 2
ni
≤

Xt
i

XAi
≤ 1 and 2

ni
≤

XAi
Xt

i
≤ 1 for each Colonel Blotto gameGi , i = 1,2. For given post-transfer levels of resources

of players 1 and 2,Xt
1 andXt

2 respectively, playerA’s payoffs in each Colonel Blotto game are

shown in Figure 3 below.

[Insert Figure 3 here]
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PlayerA’s optimal second stage allocation of resources between thetwo Colonel Blotto

games is determined by the marginal payoffs in each Colonel Blotto game. In particular, there

are four qualitatively distinct cases of optimal resource allocations for playerA. These corre-

spond to the four distinct regions of(Xt
i ,X

t
−i) pairs illustrated in Figure 4.

Case 1Supposeφi
φ−i

>
max

{

(Xt
i )

2
,1
}

Xt
i Xt

−i
or 1> Xt

i and φi
φ−i

= 1
Xt

i Xt
−i

. Then playerA allocates all of

his resources to Colonel Blotto gameGi .

In Case 1, each unit of resource that playerA allocates to the Colonel Blotto gameGi has a

marginal payoff that is higher than the first unit allocated to G−i . If the initial endowmentsX0
1 ,

X0
2 are such that this case holds, it is clear that there can be no nonzero net transfer that strictly

improves upon the allocation for both players, since player−i cannot do strictly better.

Case 2Suppose φi
φ−i

>
Xt

i
Xt
−i

and 0 < 1 −
(

φiXt
i Xt

−i
φ−i

)
1
2
≤ Xt

−i. Then player A allocates

XAi =
(

φiXt
i Xt

−i
φ−i

)
1
2

to Colonel Blotto gameGi andXA(−i) = 1−
(

φiXt
i Xt

−i
φ−i

)
1
2

to Colonel Blotto

gameG−i .

In Case 2,A’s budget is sufficiently large that it is optimal to allocatea level of resources greater

thanXt
i to the Blotto gameGi , XAi > Xt

i , thereby hitting the range of diminishing returns (see

Figure 3). At the margin A equates the return to an extra unit of resource allocated to gameGi to

the constant marginal return that he receives for allocating XA(−i) < Xt
−i . That is φ−i

2Xt
−i

=
φiXt

i

2(XAi)
2

(see Figure 3), yieldingXAi =
(

φiXt
i Xt

−i
φ−i

)
1
2
. PlayerA’s remaining forces 0< 1−

(

φiXt
i Xt

−i
φ−i

)
1
2
< Xt

−i

are allocated to the remaining Colonel Blotto game,G−i .

Case 3Suppose φi
φ−i

≥
Xt

i
Xt
−i

and 1−
(

φiXt
i Xt

−i
φ−i

)
1
2

> Xt
−i. Then player A allocates

XAi =
(φiXt

i )
1
2

(φiXt
i )

1
2 +(φ−iXt

−i)
1
2

to Colonel Blotto gameGi andXA(−i) =
(φ−iXt

−i)
1
2

(φiXt
i )

1
2 +(φ−iXt

−i)
1
2

to Colonel

Blotto gameG−i .

In Case 3 playerA has a sufficient level of resources to be able to set the marginal payoffs from

the two Colonel Blotto games equal at levels greater than thecorresponding resource levels of

players 1 and 2. In particular, playerA choosesXAi andXA(−i) such that
φ−iXt

−i

2(XA(−i))
2 =

φiXt
i

2(XAi)
2 (see

Figure 3).

Case 4Supposeφi
φ−i

=
Xt

i
Xt
−i

and 1≤ X0
1 +X0

2 . Then any pair(XA1,XA2) such thatXA1+XA2 = 1

andXAi ≤ Xt
i , i = 1,2 is an optimal response of playerA.

In Case 4 any allocation by playerA in whichXAi ≤ Xt
i , i = 1,2 sets the marginal payoffs from

the two Colonel Blotto Games equal. As is shown in Section 5, if players 1 and 2 had the ability
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to commit to binding agreements and 1≤ X0
1 + X0

2 , then the transfer,t, which sets φi
φ−i

=
Xt

i
Xt
−i

maximizes the sum of the two players’ payoffs. Thus, it is clear that in Case 4 there can be no

nonzero net transfer that strictly improves upon the allocation for both players.

Figure 4 illustrates the ranges of
(

Xt
i ,X

t
−i

)

pairs corresponding to the cases described above

for values ofφi andφ−i such that φi
φ−i

≥ 1. The analysis is analogous whenφi
φ−i

< 1.

[Insert Figure 4 here]

We now determine when there exists a nonzero transfert from player 1 to player 2 that

strictly Pareto improves upon their initial endowments of the resource. The primitives at this

stage are the
(

Xt
1,X

t
2

)

-contingent subgame payoffs arising when playerA optimally responds as

detailed in Cases 1 through 4 above, and the resulting Colonel Blotto game payoffs are given

as in Theorem 1, part (A).

By definition a self–enforcing alliance without commitmentexists if and only if there exists

a t 6= 0 such that

π t
i

(

Xt
i ,XAi

(

Xt
1,X

t
2

))

> π0
i

(

X0
i ,XAi

(

X0
1 ,X0

2

))

in each of the respective gamesGi , i = 1,2.

Clearly if the initial resource endowments
(

X0
1 ,X0

2

)

satisfy the conditions of Case 1, then

there is no incentive for a non-zero transfer to take place (player−i is already receiving his

highest feasible payoff).9 The following two propositions examine alliance formationwhen the

initial resource endowments satisfy the conditions of Cases 2 and 3, respectively.

Proposition 1 Suppose
(

X0
1 ,X0

2

)

satisfies the conditions of Case 2. Then a self–enforcing al-

liance without commitment exists in which player−i transfers a net positive level of resources

to player i if and only if

X0
i +X0

−i > 2

(

φ−iX0
i

φiX0
−i

)
1
2

.

No self–enforcing alliance exists in which player i transfers a positive net level of resources.

Proof With the initial endowments satisfying the conditions of Case 2, playerA’s optimal al-

location of forces between the two Blotto games is determined by φ−i

2X0
−i

=
φiX0

i

2(XAi)
2 , and thus

9 While our focus is on alliance transfers that strictly benefit both alliance members, it is

instructive to note that in the portion of the Case 1 region inwhich 1≤ X0
i or 1 > X0

i and
φi

φ−i
6= 1

X0
i X0

−i
, player−i is indifferent between keeping his endowment and making a transfer to

player i that leaves the endowment pair within the region, whereas player i prefers to accept

any such transfer.
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XAi =
(

φiX0
1 X0

2
φ−i

)
1
2

andXA(−i) = 1−
(

φiX0
1 X0

2
φ−i

)
1
2
. Given playerA’s optimal stage 2 allocation of

resources between the two Colonel Blotto games with no transfers, playeri’s payoff is

π0
i

(

X0
i ,XAi

(

X0
1 ,X0

2

))

=
1
2

(

φiφ−iX0
i

X0
−i

)
1
2

and player−i’s payoff is

π0
−i

(

X0
−i ,XA(−i)

(

X0
1 ,X0

2

))

= φ−i −
φ−i

2X0
−i

+
1
2

(

φiφ−iX0
i

X0
−i

)
1
2

.

Note that any positive net transfersτ from i to−i would result in the pair
(

Xt
1,X

t
2

)

satisfying

the conditions of Case 2 ( φi

2X0
i −2τ increases while φ−i

2X0
−i+2τ decreases), and that in this case player

A’s optimal allocation of forces between the two Blotto gamesis determined by φ−i

2X0
−i+2τ =

φi(X0
i −τ)

2(XAi)
2 . Thus playeri’s payoff from such a transfer is

πτ
i

(

X0
i − τ,XAi

(

X0
i − τ,X0

−i + τ
))

=
1
2

(

φiφ−i
(

X0
i − τ

)

(

X0
−i + τ

)

)1
2

.

It follows immediately that since∂πτ
i

∂τ < 0 for all feasible positive net transfersτ, it is clear that

any nonzero strictly Pareto improving transfer must be fromplayer−i to playeri. Furthermore,

it is also clear that any such transfer of resources from player −i could not result in the pair
(

Xt
1,X

t
2

)

satisfying the conditions of Case 3 or Case 2 withφ−i

X0
−i−τ > φi

X0
i +τ (i.e. the roles reversed)

since in both cases player−i would be worse off. Thus we can restrict our attention to alliance

transfers from player−i to player i in which the resulting levels of resources remain in the

current Case 2.

If a positive net transfer,τ, of resources from player−i to playeri takes place, resulting in

an allocation that remains in Case 2, playerA’s optimal allocation of forces between the two

Blotto games is determined by the marginal conditionφ−i

2X0
−i−2τ =

φi(X0
i +τ)

2(XAi)
2 and thus playeri’s

payoff is

πτ
i

(

X0
i + τ,XAi

(

X0
i + τ,X0

−i − τ
))

=
1
2

(

φiφ−i
(

X0
i + τ

)

(

X0
−i − τ

)

)
1
2

and player−i’s payoff is

πτ
−i

(

X0
−i − τ,XA(−i)

(

X0
i + τ,X0

−i − τ
))

=

φ−i −
φ−i

2X0
−i−2τ + 1

2

(

φiφ−i(X0
i +τ)

(X0
−i−τ)

) 1
2

.
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Note that∂πτ
i

∂τ =
(φiφ−i)

1/2(X0
i +X0

−i)

4(X0
−i−τ)

3/2
(X0

i +τ)
1/2 , which is positive for allτ. Thus playeri is always willing

to accept a transferτ > 0. It is straightforward to show that,

∂πτ
−i

∂τ
= −

φ−i

2
(

X0
−i − τ

)2 +
(φiφ−i)

1/2(X0
i +X0

−i

)

4
(

X0
−i − τ

)3/2(
X0

i + τ
)1/2

.

Clearly, if
∂πτ

−i
∂τ |τ=0 > 0, a sufficiently small positive transfer would benefit−i as well. More-

over, it is straightforward to show that if
∂πτ

−i
∂τ |τ=0 ≤ 0 then

∂πτ
−i

∂τ will remain nonpositive for all

τ > 0 such thatτ < X0
−i. Hence player−i will strictly benefit from a positive transfer to player

i if and only if
∂πτ

−i
∂τ |τ=0 > 0. This holds if and only ifX0

i +X0
−i > 2

(

φ−iX0
i

φiX0
−i

)1
2

. Q.E.D.

Proposition 2 Suppose
(

X0
1 ,X0

2

)

satisfies the conditions of Case 3. Then a self–enforcing al-

liance without commitment exists in which player−i transfers a net positive level of resources

to player i if and only if

1−
X0

i

X0
−i

> 2

(

φ−iX0
i

φiX0
−i

) 1
2

No self–enforcing alliance exists in which player i transfers a positive net level of resources.

Proof With the initial endowments satisfying the conditions of Case 3, playerA’s optimal al-

location of forces between the two Blotto games is determined by φiX0
i

2(XAi)
2 =

φ−iX0
−i

2(XA(−i))
2 , and thus

XA1 =
(φ1X0

1)
1
2

(φ1X0
1)

1
2 +(φ2X0

2)
1
2

andXA2 =
(φ2X0

2)
1
2

(φ1X0
1)

1
2 +(φ2X0

2)
1
2
. Given playerA’s optimal stage 2 allocation

of forces between the two Colonel Blotto games playeri’s, i = 1,2, payoff with a zero transfer

is

π0
i

(

X0
i ,XAi

(

X0
1 ,X0

2

))

=
φi

2



X0
i +

(

φ−iX0
i X0

−i

φi

) 1
2


 .

If a positive net transfer,τ > 0, of resources from player−i to playeri takes place, it is

feasible that the resulting allocation may remain in Case 3 or may switch to Case 2. First

looking at transfers within Case 3, playerA’s optimal allocation of resources between the two

Blotto games is determined by the marginal condition
φi(X0

i −τ)
2(XAi)

2 =
φ−i(X0

−i+τ)
2(XA(−i))

2 . Hence, player

−i’s payoff is given by

πτ
−i

(

X0
−i − τ,XA(−i)

(

X0
i + τ,X0

−i − τ
))

=

φ−i
2

(

X0
−i − τ +

(

φi(X0
−i−τ)(X0

i +τ)
φ−i

)1
2
)
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and playeri’s payoff follows directly. Clearly if
∂πτ

−i
∂τ |τ=0 > 0 a sufficiently small positive trans-

fer would benefit−i, and if ∂πτ
i

∂τ |τ=0 > 0 a sufficiently small transfer would benefiti. Moreover,

it is straightforward to show that if
∂πτ

−i
∂τ |τ=0 ≤ 0 then

∂πτ
−i

∂τ will remain nonpositive for allτ > 0

such thatτ < X0
−i . In addition, for allτ, ∂πτ

i
∂τ >

∂πτ
−i

∂τ . Hence within the range of transfers that

remain in Case 3, both players 1 and 2 will strictly benefit from a net positive transfer from

player−i to playeri if and only if
∂πτ

−i
∂τ |τ=0 > 0.

It is straightforward to show that

∂πτ
−i

∂τ
=

φ−i

2



−1+
1
2

(

φi

φ−i

)1
2 X0

−i −X0
i −2τ

((

X0
−i − τ

)(

X0
i + τ

))
1
2



 .

Thus, there exists a strictly Pareto improving transferτ > 0, from−i to i, that remains in the

range of allocations covered by Case 3 if and only if
X0
−i−X0

i

(X0
i X0

−i)
1
2

> 2
(

φ−i
φi

)
1
2
. We claim that this

is also a necessary condition for the existence of a strictlyPareto improving transfer from−i to

i that switches to Case 2. This results from the fact that the subset of Case 2 allocations where
∂πτ

−i
∂τ |τ=0 > 0 (delineated in Proposition 1) may be reached through a transfer from−i to i only

if the initial Case 3 allocation satisfies the condition of Proposition 2.

A similar condition holds for playeri. In examining transfersτ > 0 from i to−i, ∂πτ
i

∂τ |τ=0 >

0 is equivalent to
X0

i −X0
−i

(X0
i X0

−i)
1
2

> 2
(

φi
φ−i

)
1
2
. However, no initial endowment in whichφi

φ−i
≥

X0
i

X0
−i

satisfies this constraint. Thus, playeri never offers a positive net transfer to player−i that

results in an allocation in Case 3. As shown in Proposition 1,once in Case 2 playeri also never

offers a positive net transfer to player−i. It follows directly that given an initial endowment

in Case 3 there exists no strictly Pareto improving positivenet transfer from playeri to player

−i that crosses over into Case 2. Thus, playeri never offers a positive net transfer to player−i.

Q.E.D.

Propositions 1 and 2 demonstrate that there are several ranges of parameters in which en-

dogenous unilateral transfers take place. That is, aself–enforcing alliance without commitment

forms. The set of(X0
i ,X0

−i) pairs for which such an alliance forms is illustrated in Figure 5 for

the case in whichXA = 1. The(X0
i ,X0

−i) pairs satisfying the conditions of Cases 2 or 3 and lying

in the region above and to the left of the bold lines are the initial endowments for which these

alliances arise.

[Insert Figure 5 here]

As is evident from Figure 5 and the inequalities that determine this region in the statements

of the two propositions,self–enforcing alliances without commitmentform only when players
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1 and 2 have sufficiently asymmetric endowments both in absolute terms and relative to the

corresponding values of their Blotto games. In particular,in the region of endowments corre-

sponding to Case 3, the boundary delineating the set of endowments for which these alliances

form is linear (see Figure 5). Throughout this region, self–enforcing alliances without commit-

ment form if and only if the ratio of the initial endowments
X0
−i

X0
i

exceeds a constant threshold,

which is greater than max{1, φ−i
φi
}. This insures that alliance transfers only flow from player−i,

the player with the higher endowment, to playeri, the player with the lower endowment and

only if the ratio of their endowments
X0
−i

X0
i

exceeds the ratio of Blotto game valuesφ−i
φi

.

In the region of endowments corresponding to Case 2, the boundary of the set of endow-

ments for which these alliances form is concave inX0
i . Within this region, as the sum of the

endowments,X0
i + X0

−i, increases, the threshold value of
X0
−i

X0
i

above which alliances form de-

creases. Whenφ−i
φi

< 1, as in panel (a) of Figure 5, the boundary of the set of endowments for

which these alliances form intersects the boundary of the region corresponding to Case 1 along

the 45◦ line. One consequence (as is illustrated in Figure 5, panel (a)) is that there exist param-

eter configurations for which self–enforcing alliances without commitment arise even though

the initial endowments are arbitrarily close to equality. When φ−i
φi

> 1, as in panel (b) of Figure

5, the boundary of this set intersects the lineXt
−i = φ−i

φi
Xt

i before it reaches the boundary of

the Case 1 region. Indeed, from the condition provided in Proposition 2, this happens precisely

whenX0
i +X0

−i = 2. One consequence, (as is illustrated in Figure 5, panel (b)) is that there ex-

ist parameter configurations for which self–enforcing alliances without commitment arise even

though the ratio of the initial endowments
X0
−i

X0
i

is arbitrarily close to the ratio of Blotto game

valuesφ−i
φi

.10 Finally, as in the region of endowments corresponding to Case 3, for Case 2 en-

dowments alliance transfers always flow from player−i, the player with the higher endowment,

to playeri, the player with the lower endowment, and only if the ratio oftheir endowments
X0
−i

X0
i

exceeds the ratio of Blotto game valuesφ−i
φi

.

In this sense, the nature of transfers in our model conform toa version of the “exploitation

hypothesis”. When self–enforcing alliances without commitment form,transfers flow from the

player who is resource rich to the player who is resource poor, both in absolute terms and

relative to the total value at stake in their respective Colonel Blotto games with player A.

Moreover, whenself–enforcing alliances without commitmentform, it must be the case that

the combination of direct and strategic effects of the unilateral transfer benefits both allies.

Clearly, since the direct effect harms the player making thetransfer and benefits the player re-

ceiving the transfer, it must be the case that the strategic effect benefits the transferring player

10 This holds for initial endowments which are (1) above the line Xt
−i = φ−i

φi
Xt

i and (2) satisfy

2≤ X0
−i +X0

i ≤ 1+ φ−i
φi

.
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and harms the receiving player (if playerA moves resources away from the game of the trans-

ferring player, these resources flow to the game with the receiving player). In this context, it is

interesting to identify the source of a breakdown of the existence of self–enforcing alliances

without commitment, that is, whether it is the relatively resource poor ally whodeclines to re-

ceive a transfer or the relatively rich ally who declines to initiate the transfer. The details of

the proofs of these two Propositions indicate that it is always the resource rich ally whose in-

centive constraint binds first. That is, the region where such alliances form is bounded by the

willingness of the player making the transfer.

5 Alliances with Complete Commitment

As a benchmark for the analysis of self–enforcing allianceswithout commitment, it is useful

to examine the nature ofex antetransfers that would arise between players 1 and 2 if complete

and binding commitments could be made concerning theex postdivision of payoffs. We call

alliances in which such commitment can be madealliances with complete commitment.

In the presence of complete and binding commitments an optimal ex antetransfer solves

max
t

π t
1

(

Xt
1,XA1

(

Xt
1,X

t
2

))

+π t
2

(

Xt
2,XA2

(

Xt
1,X

t
2

))

In Proposition 3 we show that an optimal transfer leads to an outcome in whichXt
−i = φ−i

φi
Xt

i .

Hence, unless the initial endowments satisfyX0
−i =

φ−i
φi

X0
i nonzero transfers of resource endow-

ments will always take place.11

Proposition 3 Let X̂ = X0
1 +X0

2 . In any alliance with complete commitment, the allocation of

the alliance budget to the two Colonel Blotto games is Xt
i = X̂φi

φi+φ−i
and Xt

−i =
X̂φ−i

φi+φ−i
. Thus, the

alliance transfers result inφi
φ−i

=
Xt

i
Xt
−i

. If X0
−i =

φ−i
φi

X0
i , then no transfers take place.

Proof We begin with the case thatX̂ ≥ 1. Thus, in the alliance with complete commitment, the

allocation of the alliance budget to the two Colonel Blotto games may satisfy the conditions for

Case 1, Case 2, or Case 4 (see Figure 4). Clearly, any allocation by the alliance that satisfies

the conditions for Case 1 is not an equilibrium strategy. In Case 1 the alliance wins all of the

battlefields in Blotto game−i and playerA allocates zero resources to Blotto game−i. Thus,

the alliance can strictly increase its payoff by diverting resources from the Blotto game−i to

the Blotto gamei up until the point at whichφi
φ−i

=
Xt

i
Xt
−i

, as in Case 4, or 0< 1− (
φiXt

i Xt
−i

φ−i
)

1
2 , as

in Case 2.
11 We abstract away from issues concerning the precise ex post division of the alliance’s joint

payoff. For cooperative game theoretic approaches to the theory of alliance costs and benefits

see Sandler (1999) and Arce M. and Sandler (2001).
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Similarly, any allocation by the alliance that satisfies theconditions for Case 2 is not an

equilibrium strategy. In particular note that in Case 2 the joint payoff of the alliance,πτ
12≡ πτ

1 +

πτ
2 , given any allocation,(X0

i ,X0
−i) in Case 2 and any transferτ > 0 such thatX

0
i +τ
φi

<
X0
−i−τ
φ−i

, is

given by

πτ
12

(

X0
i + τ,X0

−i − τ
)

=

πτ
i

(

X0
i + τ,XAi

(

X0
i + τ,X0

−i − τ
))

+πτ
−i

(

X0
−i − τ,XA(−i)

(

X0
i + τ,X0

−i − τ
))

.

In Case 2 this equalsφ−i −
φ−i

2(X0
−i−τ)

+

(

φiφ−i(X0
i +τ)

X0
−i−τ

)1
2

. It follows directly that
∂πτ

12
∂τ > 0 for all

τ > 0 such thatX
0
i +τ
φi

<
X0
−i−τ
φ−i

. Thus, the alliance can strictly increase its payoff by diverting

resources from Blotto game−i to Blotto gamei up until the point at whichφi
φ−i

=
Xt

i
Xt
−i

, as in

Case 4.

In Case 4, the payoff to the alliance is(φ1 +φ2)
(

1− 1
2X̂

)

. Given the arguments given above

concerning Cases 1 and 2, it is clear that their are no profitable deviations for the alliance.

Lastly, in the case of an alliance with complete commitment and X̂ < 1, the allocation of

the alliance budget to the two Colonel Blotto games may satisfy the conditions for Case 2 or

Case 3 (see Figure 4). Given the above arguments, any allocation by the alliance that satisfies

the conditions for Case 2 is not an equilibrium strategy. In Case 3 the payoff of the alliance

given any initial allocation,
(

X0
i ,X0

−i

)

in Case 3 and any transferτ > 0 such thatX
0
i +τ
φi

≤
X0
−i−τ
φ−i

,

is given by
πτ

12

(

X0
i + τ,X0

−i − τ
)

=
φi(X0

i +τ)
2 +

φ−i(X0
−i−τ)

2 +
(

φiφ−i(X0
−i − τ)(X0

i + τ)
)

1
2 .

It follows directly that

∂πτ
12

∂τ
=

φi

2
−

φ−i

2
+

1
2

(

φiφ−i(X0
−i − τ)

X0
i + τ

)
1
2

−
1
2

(

φiφ−i(X0
i + τ)

X0
−i − τ

)
1
2

.

Solving forτ yields φi
φ−i

=
X0

i +τ
X0
−i−τ , and thusXt

i = X̂φi
φi+φ−i

andXt
−i =

X̂φ−i
φi+φ−i

. Q.E.D.

In contrast to the restricted range of initial endowments for which transfers take place in

self–enforcing alliances without commitment, such transfers take place almost everywhere un-

der alliances with complete commitment. Only whenX0
−i = φ−i

φi
X0

i does no transfer take place.

However, as shown in panel (b) of Figure 5, there exist initial endowments for which a self–

enforcing alliance without commitment yields the same outcome as under complete commit-

ment,Xt
−i = φ−i

φi
Xt

i . This arises for a subset of the range of endowments in which the alliance

member (−i in the figure), with the higher Colonel Blotto game value(φ−i) has an endowment,

X0
−i, both larger than that of playerA and larger than the product of the ratio of game values

and the alliance partner’s endowment (φ−i
φi

X0
i ).
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Of course these two types of alliances form the two endpointsof the entire spectrum of pos-

sible levels of commitment. However, one might conjecture that intermediate levels of commit-

ment generate regions of initial endowments where nonzero transfers take place that are nested

between the regions corresponding to these two extremes.

6 Conclusion

The literature on the economics of alliances, originating with Olson (1965) and Olson and

Zeckhauser (1966) focuses on the case where defense expenditures are a (possibly impure)

public good and the threat of attack is exogenous. This paperextends this literature by examin-

ing the formation of self–enforcing alliances without commitment in a multi-player, multi-front

Colonel Blotto game. In this case, the payoff to each alliance member is completely exclud-

able and rival. Moreover, the common opponent is able to observe and react to the formation

of the alliance and the resulting transfer of resources. Remarkably, we find that self–enforcing

alliances without commitment form for a wide range of parameters. Withex anteasymmetry

of resources — both in absolute terms and relative to the respective values at stake in the al-

lies’ Colonel Blotto games — unilateral transfers from the relatively resource-rich ally to the

relatively resource-poor ally cause a reallocation of the common opponent’s resources that ben-

efits both allies. For the ally making the transfer, the positive strategic effect of the opponent’s

reallocation of resources away from their Blotto game makesup for the negative direct effect

of the reduction in own resources. For the ally receiving thetransfer, the positive direct effect

of greater resource availability dominates the negative strategic effect of a higher opponent

resource level.

Potential extensions of the model include the analysis of a more general network structure

of battlefield alignment in which players may be engaged in several conflicts with different

sets of adversaries, who may themselves be engaged in other conflicts. In this context, it is

possible to carry out a nontrivial examination of the natureof the alliances that form and the

composition of their membership. Our model also provides a useful tool for examining the

strategic effects of precommitment to budgetary transparency. Since the payoffs and strategies

in any Blotto game are parameterized by the players’ budgets, our model is a natural framework

for examining the costs and benefits of finer or coarser budgetary information and the effects

of budgetary aggregation and disaggregation in entities engaged in conflict. It may also serve

as a useful framework for the study of espionage.

Finally, although the analysis in this paper is framed in thecontext of military alliances, it is

readily adapted to other contexts. For instance, in the context of multiple-product R&D races

or patent races, it can be applied to explain research joint ventures and silent cross-industry
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partnerships (“cash infusions”) between firms that do not compete in the same market, but face

a common conglomerate competitor.
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