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1 Introduction

This paper considers the problem of selecting the number of breaks in the trend function of

a univariate time series without any prior knowledge as to whether the noise component is

stationary, I(0), or contains an autoregressive unit root, I(1). This is an important practical

issue as typical macroeconomic series appear to be characterized by one or more breaks in

trend. For instance, Lumsdaine and Papell (1997) find evidence of structural change for 9

out of 13 macroeconomic series when allowing for two breaks in the trend function. Ben-

David and Papell (1997), using a dataset consisting of 48 countries, show that most countries

experienced statistically significant structural changes in the paths of their export-GDP and

import-GDP ratios in light of the substantial movement towards trade liberalization during

the postwar period. Ben-David and Papell (2000) find evidence of multiple breaks in per

capita real GDP of the G7 countries over 1870-1989. Given the discontinuity of the growth

process, they then provide a demarcation between different periods of growth along the

development paths based on estimates of the break dates. In another interesting application,

Loewy and Papell (1996) find that allowing for trend breaks permits more rejections of the

unit root hypothesis in relative per-capita income among U.S. regions, an implication that

follows from the notion of stochastic convergence among regions.

Testing whether a time series contains a broken trend is complicated by the fact that it

is not known a priori whether the noise is I(0) or I(1). Firstly, doing a structural change

test based on the level of the data entails different limit distributions in both cases. Fur-

ther, tests based on differenced data have very poor properties when the series contains an

I(0) component (see Vogelsang, 1998). On the other hand, to conduct inference about the

presence or absence of a unit root, it is useful to have information regarding the presence or

absence of changes (see Kim and Perron, 2009, Carrion-i-Silvestre et al., 2009). In particular,

usual unit root tests based on search procedures, suggested by Zivot and Andrews (1992)

and others, are not invariant to the magnitude of the trend break if one is present. The

presence of a break in slope or level can adversely affect both the size and power properties

of these tests. We thus have a circular testing problem between tests on the parameters of

the trend function and unit root tests.

To deal with this circular problem, various approaches have been suggested to test for the

stability of the trend function that are robust to whether the errors are I(0) or I(1). The first

to provide such a solution is Vogelsang (2001), building on prior work related to hypothesis

testing on the coefficients of a polynomial time trend reported in Vogelsang (1998). He
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shows that Wald tests for structural change in the coefficients of a linear trend function have

non-degenerate limit distributions in both I(0) and I(1) cases. He weights the test statistic

by a unit root test scaled by some parameters so that, for a given significance level, the value

of the scaling parameter can be chosen to ensure that the asymptotic critical values will be

the same.

More recently, Harvey, Leybourne and Taylor (2008) propose tests based on a weighted

average of the regression t-statistics for a broken trend appropriate for the case of I(0) and

I(1) noise. The weighting function they employ is based on the KPSS stationarity test

applied to the levels and first-differenced data. In the unknown break date case, they use

the supremum of the trend function t-statistics, calculated for all permissible break dates,

for both the I(0) and I(1) cases. As in Vogelsang (2001), they use a correction to ensure

that the weighted test has the same asymptotic critical value irrespective of whether the

noise is I(0) or I(1).

Perron and Yabu (2008, henceforth PY), propose an alternative approach based on a

Feasible Generalized Least Squares procedure that uses a super-efficient estimate of the sum

of the autoregressive parameters α when α = 1. When the break date is known, they

show that the standard Wald test from the feasible GLS regression has the Chi-square limit

distribution. When the break date is unknown, the limit distributions in the I(0) and

I(1) cases are nearly the same when constructing the test using the Exp functional of the

Wald test across all permissible break dates (See Andrews and Ploberger, 1994). To improve

the finite sample properties of their procedure, they also use a bias-corrected version of the

OLS estimate of α (obtained from an autoregression based on the residuals from estimating

the trend function parameters by OLS) as suggested by Roy and Fuller (2001). Based on

Monte Carlo experiments, PY show their procedure to have a power function that is close

to that attainable if one knew the true value of α in many cases. The advantage of their

method over those of Vogelsang (2001) and Harvey et al. (2008) is that it does no involve

any random scaling so that the test used is the best possible in both the I(0) and I(1) cases,

though not necessarily in the local to I(1) case.

Building on the work of PY, we propose a sequential procedure that allows one to test the

null hypothesis of, say, l changes, against the alternative hypothesis of (l+1) changes. Such a

sequential testing strategy has been developed by Bai and Perron (1998, 2003) in the context

of stationary regression models. For the model with l breaks, the estimated break dates are

obtained by a global minimization of the sum of squared residuals. The strategy proceeds

by testing for the presence of an additional break in each of the (l + 1) segments (obtained

2



using the estimated partition). The test thus amounts to the application of (l + 1) tests of

the null hypothesis of no change versus the alternative hypothesis of a single change. We

derive the asymptotic distribution of the sequential test and show that, in both I(0) and

I(1) cases, asymptotic critical values can be obtained from the relevant quantiles of the

limit distribution of the test for a single break. Monte Carlo experiments indicate that the

procedure performs adequately in finite samples.

The paper is organized as follows. Section 2 presents the models allowing for a single

break and reviews the PY testing procedure. In Section 3, we develop the sequential testing

procedure and derive its asymptotic properties. Section 4 provides some Monte Carlo simu-

lations and Section 5 offers some concluding remarks. All technical derivations are included

in a mathematical appendix.

2 The Models and Test Statistics: The Single Break Case

Consider the following data generating process (DGP) for a scalar random variable yt:

yt = x0tΨ+ ut

ut = αut−1 + et (1)

for t = 1, ..., T where u0 is a finite constant, et ∼ i.i.d.(0, σ2), xt is an (r × 1) vector of
deterministic components, and Ψ is an (r×1) vector of unknown parameters. The parameter
α ∈ (−1, 1] so that ut can be stationary or have a unit root. For simplicity, we focus on
the AR(1) case here and defer the case of a generalized error structure for ut to the next

section. We will consider the following two models involving a break in the slope of the

trend function.1 We denote the true break date as T 01 = [Tλ
0
1] for some λ

0
1 ∈ (0, 1), where

[.] denotes the largest integer that is less than or equal to the argument. Also, I(.) is the

indicator function.

• Model 1: Structural Change in slope only. Here xt = (1, t,DTt)
0, Ψ = (μ0, β0, β1)

0,

where DTt = I(t > T 01 )(t− T 01 ).

• Model 2: Structural Change in both intercept and slope. Here xt = (1,DUt, t, DTt)
0

and Ψ = (μ0, μ1,β0, β1)
0 where DUt = I(t > T 01 ).

1PY also consider a model which involves an intercept shift only. However, the focus in this paper is on
models which allow for breaks in the slope of the trend function.

3



For Model 1, the null hypothesis of interest is H0: β1 = 0 while for Model 2 it is H0:

μ1 = β1 = 0. Using the notation in (1), these hypotheses can be expressed in the form

RΨ = γ where R is a (q × r) full rank matrix and and γ is a (q × 1) vector, q being the
number of restrictions. For Model 1, R = (0, 0, 1), γ = 0 and for Model 2,

R =

⎛⎝ 0 1 0 0

0 0 0 1

⎞⎠ , γ =

⎛⎝ 0

0

⎞⎠ .

We first discuss the testing procedure for some generic break date T1 = [Tλ1] where λ1 ∈
Λ with Λ = {λ: ≤ λ ≤ 1− } for some > 0. If α were known, the GLS estimate of the

parameters can be obtained by applying OLS to the regression

(1− αL)yt = (1− αL)x0tΨ+ (1− αL)ut, for t = 2, ..., T

y1 = x01Ψ+ u1 (2)

In practice, however, α is unknown and must be replaced by an estimate. Perron and Yabu

(2007) proposed the use of the following super-efficient estimate of α:

α̂S =

⎧⎨⎩ α̂

1

if

if

T δ |α̂− 1| > d

T δ |α̂− 1| ≤ d
(3)

for δ ∈ (0, 1) and d > 0 where

α̂ =

PT
t=2 ûtût−1PT
t=2 û

2
t−1

(4)

and {ût} are the OLS residuals from the regression of yt on xt. Perron and Yabu (2007)

showed that (a) T 1/2(α̂S − α)
d→ N(0, 1 − α2) when |α| < 1 and (b) T (α̂S − 1) p→ 0 when

α = 1.

For testing H0: RΨ = γ, PY propose using the Wald statistic based on the feasible GLS

regression that uses α̂S as an estimate of α in (2):

WFS(λ1) = (RΨ̂− γ)0[s2R(X 0X)−1R0]−1(RΨ̂− γ)

where X = (x1, (1 − α̂S)x2, ..., (1 − α̂S)xT )
0, s2 = T−1

PT
t=1 ê

2
t and êt are the residuals

associated with the feasible GLS regression. If |α| < 1, PY show that

WFS(λ1)

⇒ [R(
R 1
0
F (s, λ1)F (s, λ1)

0ds)−1
R 1
0
F (s, λ1)dW (s)]

0[R(
R 1
0
F (s, λ1)F (s, λ1)

0ds)−1R0]−1

×[R(R 1
0
F (s, λ1)F (s, λ1)

0ds)−1
R 1
0
F (s, λ1)dW (s)] ≡ G0(λ1)
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where F (s, λ1) = [1, s, I(s > λ1)(s− λ1)]
0 for Model 1 and F (s, λ1) = [1, I(s > λ1), s, I(s >

λ1)(s − λ1)]
0 for Model 2. Here W (.) represents a standard Brownian motion on [0, 1]. If

α = 1,

WFS(λ1) ⇒
⎧⎨⎩ [λ1W (1)−W (λ1)]

2/[λ1(1− λ1)]

limT→∞ e[Tλ1]+1/σ
2 + [λ1W (1)−W (λ1)]

2/[λ1(1− λ1)]

for Model 1

for Model 2

≡ G1(λ1)

In practice, since the break date is unknown, PY propose using the exp functional over the

set of permissible break dates:

Exp-WFS = log[T
−1 P

λ1∈Λ
exp(WFS(λ1)/2)]⇒ log[

R
λ1∈Λ exp(g(λ1)/2)dλ1]

where g(λ1) denotes G0(λ1) and G1(λ1) for the I(0) and I(1) cases, respectively. They show

that using the Exp-functional, asymptotic critical values in the I(1) and I(0) cases are very

close so that using the larger of the two can be expected to provide tests with the correct

size for both stationary and integrated errors. Note that for Model 2 in the I(1) case, the

critical values are simulated assuming that the errors et are i.i.d. normal.

Given that the OLS estimate of α may suffer from a serious downward bias especially

when α is close to one, PY use a bias-corrected estimate based on the procedure proposed

in Roy and Fuller (2001). The super-efficient estimate is then based on this bias-corrected

estimate as opposed to the OLS estimate. The details of the bias correction procedure can

be found in Section 2.5 of PY.

3 The Sequential Procedure

In this section, we consider a DGP for yt that allows for the possibility of (l + 1) breaks in

the trend function. Following the notation in (1), it is:

• Model 1: l + 1 breaks in slope only. Here xt = (1, t,DT1t, ...,DT(l+1)t)
0, Ψ =

(μ0, β0, β1, ..., βl+1)
0 where DTit = I(t > T 0i )(t− T 0i ).

• Model 2: l+ 1 breaks in both intercept and slope. Here xt = (1, DU1t, ...,DU(l+1)t, t,

DT1t, ..., DT(l+1)t)
0, Ψ = (μ0, μ1, ..., μl+1, β0, β1, ..., βl+1)

0 where DUit = I(t > T 0i ).

We are interested in testing the null hypothesis of l breaks against the alternative hy-

pothesis that there are (l + 1) breaks. For Model 1, this implies the null hypothesis H0:
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βl = 0 while for Model 2, the implication is H0: βl = μl = 0. In Section 3.1, we present the

sequential test and derive its limit distribution for the case where ut is an AR(1) process.

Section 3.2 subsequently discusses the case of a general error structure for ut.

3.1 The AR(1) Case

Here we continue to assume that ut is generated by (1). The sequential test of the null

hypothesis of l breaks versus the alternative of l+1 breaks is implemented as follows. First,

we obtain the estimates of the break dates T̂1, ..., T̂l as global minimizers of the sum of

squared residuals from the model with l breaks estimated by OLS:

(T̂1, ..., T̂l) = argmin(T1,...,Tl)SSR(T1, ..., Tl).

This can be achieved using the dynamic programming algorithm proposed by Bai and Perron

(2003). Next, we test for the presence of an additional break in each of the (l+1) segments

obtained using the estimated partition (T̂1, ..., T̂l). In order to construct the test for the i-th

segment (i = 1, ..., l + 1), we first estimate the following regression by OLS:

yt = x
(i)0
t Ψ(i) + ut for t = T̂i−1 + 1, ..., T̂i (5)

where, for Model 1, we have x(i)t = (1, t− T̂i−1, (t− k)I(t > k))0, Ψ(i) = (μ
(i)
0 , β

(i)
0 , β

(i)
1 )

0 while

for Model 2 we have x(i)t = (1, I(t > k), t− T̂i−1, (t−k)I(t > k))0, Ψ(i) = (μ
(i)
0 , μ

(i)
1 , β

(i)
0 , β

(i)
1 )

0.

Here k = [Tτ ] where τ ∈ Λi, = {τ : λ̂i−1 + (λ̂i − λ̂i−1) ≤ τ ≤ λ̂i − (λ̂i − λ̂i−1) } with
λ̂i = T̂i/T . We use the convention T̂0 = 0 and T̂l+1 = 0. Note that the trend included in the

i-th segment is (t− T̂i−1) instead of t. This modification is needed to ensure that the initial

conditions are the same across segments. The residuals from this regression denoted û
(i)
t are

then used to compute the OLS estimate of α as in (4) for the i-th segment. This estimate in

turn is used to construct a super-efficient estimate of α, denoted α̂
(i)
S , as in (3).

Given the estimate α̂(i)S , the feasible GLS regression for the i-th segment is

(1− α̂
(i)
S L)yt = (1− α̂

(i)
S L)x

(i)0
t Ψ(i) + (1− α̂

(i)
S L)ut (6)

for t ∈ [T̂i−1+2, ..., T̂i] together with yT̂i−1+1 = x
(i)0
T̂i−1+1

Ψ(i)+uT̂i−1+1. Let X
(i) = (x

(i)

T̂i−1+1
, (1−

α̂
(i)
S )xT̂i−1+2, ..., (1− α̂

(i)
S )xT̂i)

0 and the feasible GLS estimate of Ψ(i) be denoted by Ψ̂(i). The

Wald statistic for a given τ ∈ Λi, is then given by

WFS(λ̂i−1, τ , λ̂i) = (RΨ̂(i) − γ)0[s2iR(X
(i)0X(i))−1R0]−1(RΨ̂(i) − γ) (7)
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where s2i = (T̂i − T̂i−1)−1
PT̂i

t=T̂i−1+1
[ê
(i)
t ]

2 and ê
(i)
t are the residuals from OLS estimation of

(6). As in PY, we use the exp functional over all permissible break dates:

Exp-W (i)
FS = log[(T̂i − T̂i−1)−1

P
τ∈Λi,

exp
³
WFS(λ̂i−1, τ , λ̂i)/2

´
]

Given Exp-W (i)
FS for i = 1, ..., l + 1, the sequential test is defined by

FT (l + 1|l) = max
1≤i≤l+1

{Exp-W (i)
FS}.

We conclude in favor of a model with (l + 1) breaks if the maximum of the Exp-W (i)
FS tests

is sufficiently large. The test thus amounts to the application of (l + 1) tests of the null

hypothesis of no change versus the alternative hypothesis of a single change. The following

theorem states the limit distribution of the sequential test under the null hypothesis of

l breaks.

Theorem 1 Assume that ut (t = 1, ..., T ) is generated by (1). Under the null hypothesis

that the true number of breaks is l, we have limT→∞ P (FT (l + 1|l) ≤ x) = H (x)l+1 with

H (x) being the distribution function of log[
R
λ1∈Λ exp (g(λ1)/2) dλ1] where g(λ1) = G0(λ1) if

|α| < 1 and g(λ1) = G1(λ1) if α = 1.

The proof is in the appendix. The theorem states that, in both I(0) and I(1) cases,

asymptotic critical values for the sequential test can be obtained from the relevant quantiles

of the limit distribution for the single break test. A similar result was obtained by Bai and

Perron (1998) in the context of stationary regression models. We calculated the critical values

by simulations using i.i.d. N(0, 1) random variables to approximate the Wiener process.

The integrals are approximated by normalized sums with 2000 steps and the number of

replications used is 10, 000. Tables 1a and 1b presents critical values for a wide range of

values of the trimming parameter . As is evident from the tables, the quantiles in the

I(0) and I(1) cases are quite close and hence using the larger of the two can be expected

to provide tests with the correct size in both cases. The argument for the consistency of

the sequential test is the same as that in Bai and Perron (1998). Note also that the result

continue to hold when using the bias adjustment method advocated in PY.

The test based on FT (l+1|l) can be used to provide an estimate of the number of breaks
in the following way. First, apply the one break test FT (1|0) to determine if there is at least
one break. Upon a rejection, use the test FT (2|1) to determine if there is more than one
break. This process is repeated by increasing l sequentially until the test fails to reject the
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null hypothesis of no additional structural breaks. The estimated number of breaks is then

obtained as the number of rejections. The sequential procedure can be made consistent by

allowing the significance level of the test FT (l+ 1|l) to decrease to zero at a suitable rate as
the sample size increases. This leads to the following theorem whose proof is similar to that

of Hosoya (1989) and is, therefore, omitted.

Theorem 2 Let m be the true number of breaks and m̂ be the number of breaks obtained

using the sequential procedure based on the test statistic FT (l + 1|l) applied with some size
aT . If aT converges to zero slowly enough so that FT (l+1|l) remains consistent, then P (m̂ =

m)→ 1 as T →∞.

3.2 The General Case

We now provide an extension of the previous analysis to the case where ut is allowed to have

the following more general structure

ut = αut−1 + vt (8)

vt = d(L)et

with d(L) =
P∞

i=0 diL
i,
P∞

i=0 i |di| < ∞, d(1) 6= 0 and et ∼ i.i.d. (0, σ2). Here again we
assume that u0 is a constant. Under these conditions, ut has an autoregressive representation,

say A(L)ut = et, where A(L) = 1−
P∞

i=1 aiL
i. In (8), we wish to have α represent the sum

of the autoregressive coefficients,
P∞

i=1 ai. Accordingly, we consider the representation

ut = αut−1 +
∞X
j=1

a∗i∆ut−j + et

where a∗i = −
P∞

j=i+1 aj. To obtain a consistent estimate of α in this general case, we

estimate a truncated autoregression of order kT . Let û
(i)
t be the residuals from estimating

(5) by OLS. Then the estimate of α considered is the OLS estimate eα(i) obtained from the

regression

û
(i)
t = α(i)û

(i)
t−1 +

kTX
j=1

ς
(i)
j ∆ût−j + etk

In practice, kT is unknown and PY recommend using the Bayesian Information Criterion

(BIC) for choosing it. Again a bias-correction is applied and the super-efficient estimateeα(i) is constructed as in (3) and used in the feasible GLS regression (6). The specific form
of the Wald test depends on the nature of the errors, I(0) or I(1), and the model. Consider
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first the I(0) case. For both models, we need to simply replace s2i in (7) by ĥ
(i)
v , an estimate

of (2π times) the spectral density function at frequency zero of vt = (1−αL)ut. PY propose

using an estimator based on a weighted sum of autocovariances using the quadratic spectral

kernel and the bandwidth selected according to the plug-in method advocated by Andrews

(1991) using an AR(1) approximation. Consider now the case where the errors are I(1).

For Model 1, the form of the test statistic is the same as in (7), except that we replace

s2i by an autoregressive spectral density estimate with the lag length of the autoregression

again selected by BIC. For Model 2, PY propose a modified test statistic which ensures

that the limit distribution is the same as that in the AR(1) case. See PY for details on the

modification used.

4 Simulation Experiments

In this section, we conduct simulation experiments to assess the finite sample performance of

the proposed sequential procedure. We consider cases where the DGP involve either one and

two breaks. The sample sizes used are T = 120, 240, 360. The level of trimming is set at =

0.15. We consider six values for the autoregressive parameter: α = 0.5, 0.8, 0.85, 0.9, 0.95, 1.

The maximum number of allowable breaks is set at three. In all experiments, {et} denotes
a sequence of i.i.d. standard normal random variables and ut = αut−1 + et, u0 = 0. All

experiments are based on 1000 replications.

The estimate of the autoregressive parameter is obtained from an autoregression where

the number of lags of the first differences of the residuals is selected using BIC. As recom-

mended in PY, we set δ = 1/2 and d = 1 for the construction of the super-efficient estimate.

We construct the bias-corrected estimate of the autoregressive parameter using the method

of Roy and Fuller (2001) as used in PY. We present our results in terms of the probabilities

of selecting a given number of breaks, that is, P (m̂ = m∗) for m∗ = 0, 1, 2, 3.

4.1 The Case With One Break

We consider two models, the first involving a break in the slope of the trend only and the

second involving a break in both level and slope. The data are generated by:

• Model-1 (A Single Break in Slope Only): yt = ηDTt + ut,

• Model-2 (A Single Break in Level and Slope): yt = η(10DUt +DTt) + ut

where the break date is set to T 01 = [T/2], at mid-sample.
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Tables 2 presents the probability of break selection corresponding to different values of

η for Model 1. First, when α = 0.5 so that the process exhibits only moderate persistence,

the procedure selects one break with probability at least 90% irrespective of the magnitude

of break and the sample size. When the degree of persistence increases, the probability of

under-estimation increases, at least for small break sizes. This is expected, given that power

of the one break test declines as α approaches 1. The performance of the procedure generally

improves as the magnitude of the break increases, mirroring corresponding increases in the

power of the single break test. As expected, the probabilities of selecting a single break

increase when the sample size is increased.

Tables 3 presents corresponding results for Model 2. Again, the procedure performs

relatively better when α = 0.5, although now there is a non-negligible probability of over-

estimation which increases as α increases. This is due to the fact that the tests suffer from

size distortions which become more severe with increases in α and the number of breaks

assumed under the null hypothesis. These size inaccuracies persist for α = 1 and small break

sizes even with the two larger sample sizes. However, as with Model 1, the probabilities of

selecting one break are higher relative to those with the smallest sample size.

4.2 The Case With Two Breaks

With two breaks the DGPs considered are the following:

• Model-1 (Two Breaks in Slope Only): yt = η1DT1t + ηDT2t + ut,

• Model-2 (Two Breaks in Level and Slope)

yt = η1(DT1t + 10DU1t) + η(DT2t + 10DU2t) + ut

We set η1 = 1 and report results for a range of values of η. The dates of the breaks are

set at T 01 = [T/3] and T 02 = [2T/3].

The results for Model 1 are reported in Table 4. With α = 0.5, the probabilities of

selecting the true number of breaks is close to 90% even with T = 120 and small break sizes.

However, in contrast to the one break case, these probabilities are reduced as α approached

1. This suggests that the power of the one-versus-two breaks test is low relative to that

of the zero-versus-one break test. For α > 0.5, there is also a non-negligible probability of

over-estimation reflecting the size distortions of the two-versus-three breaks test. As for the

one break case, the selection probabilities for two breaks increase with the sample size.
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Tables 5 reports results for Model 2. As in the one break case, there is a substantial

probability of over-estimation, especially for values of α close to 1. Noticeably, the probability

of under-estimation is negligible even for small break sizes and T = 120. When the sample

size increases to T = 240, the probabilities of selecting two breaks increase to about 80-85%

for moderate break sizes when α ≤ 0.95. These probabilities further increase when T is

increased to 360. For α = 1, the size distortions are still in play even for large magnitudes

of the breaks and large sample sizes.

In summary, the performance of the proposed sequential procedure is qualitatively dif-

ferent for Models 1 and 2. For Model 1, there is a tendency to under-estimate the true

number of breaks while for Model 2, there is a probability of over-estimation. This difference

can be traced to the finite sample properties of the tests for these models with low power

being more of an issue for Model 1 and size distortions being the dominant factor for Model

2. The power problem is alleviated to a considerable extent for large magnitudes of the

breaks while the size distortions in Model 2 remain somewhat of a concern, especially in the

presence of strong persistence in the error component, though these concerns are mitigated

for larger sample sizes. The simulation results points to the importance of the choice of the

maximal value of the number of breaks in relation to the size of the sample available. For

example, when testing for two breaks in a sample of size 120, one ends up with fewer than 40

observations per segments. It is then not surprising to see low power and/or size distortions.

Hence, practitioners must exercise caution to allow a sufficient number of observations in

each segment and chose the maximum number of breaks permissible accordingly.

5 Conclusion

Testing whether a time series contains a broken trend is complicated by the fact that we

do not have a priori knowledge of whether the noise is stationary or integrated. This has

motivated the development of tests that are robust to the extent of persistence in the error

component. These are designed to evaluate the null hypothesis of no structural change versus

the alternative of a single change in trend but do not allow researchers to select the number

of changes. Given that selecting the number of breaks is an important practical issue, we

attempted to fill a gap in the literature by proposing a sequential procedure that enables

consistent estimation of the number of breaks. Monte Carlo evidence demonstrated that the

procedure works well in samples sizes that are common in applied work.

11



References

Andrews, D.W.K. (1991), “Heteroskedasticity and autocorrelation consistent covariance ma-
trix estimation,” Econometrica 59, 817-858.

Andrews, D.W.K., and W. Ploberger (1994), “Optimal tests when a nuisance parameter is
present only under the alternative,” Econometrica 62, 1383-1414.

Bai, J., and P. Perron (1998), “Estimating and testing linear models with multiple structural
changes,” Econometrica 66, 47-78.

Bai, J., and P. Perron (2003), “Computation and analysis of multiple structural change
models,” Journal of Applied Econometrics 18, 1-22.

Ben-David, D., and D.H. Papell (1997), “International trade and structural change,” Journal
of International Economics 43, 513-523.

Ben-David, D., and D.H. Papell (2000), “Some evidence on the continuity of the growth
process among the G7 countries,” Economic Inquiry 38, 320-330.

Carrion-i-Silvestre, J.L., D. Kim, and P. Perron (2009), “GLS-based unit root tests with
multiple structural breaks both under the null and the alternative hypotheses,” forthcoming
in Econometric Theory.

Harvey, D.I., S.J. Leybourne, and A.M.R. Taylor (2008), “Simple, robust and powerful tests
of the breaking trend hypothesis,” Econometric Theory, forthcoming.

Hosoya, Y. (1989), “Hierarchical statistical models and a generalized likelihood ratio test,”
Journal of the Royal Statistical Society, Series B 51, 435-447.

Kim, D., and P. Perron (2009), “Unit root tests allowing for a break in the trend function at
an unknown time under both the null and alternative hypotheses,” Journal of Econometrics
148, 1-13.

Loewy, M.B., and D.H. Papell (1996), “Are US regional incomes converging? Some further
evidence,” Journal of Monetary Economics 38, 587-598.

Lumsdaine, R.L., and D.H. Papell (1997), “Multiple trend breaks and the unit-root hypoth-
esis,” Review of Economics and Statistics 79, 212-218.

Perron P., and T. Yabu (2007), “Estimating deterministic trends with an integrated or
stationary noise component,” Unpublished Manuscript, Department of Economics, Boston
University.

12



Perron P., and T. Yabu (2008), “Tests for shifts in trend with an integrated or stationary
noise component,” Journal of Business & Economic Statistics, forthcoming.

Roy, A., and W.A. Fuller (2001), “Estimation for autoregressive processes with a root near
one,” Journal of Business & Economic Statistics 19, 482-493.

Vogelsang, T.J. (1998), “Trend function hypothesis testing in the presence of serial correla-
tion,” Econometrica 66, 123-148.

Vogelsang, T.J. (2001), “Tests for a shift in trend when serial correlation is of unknown
form,” Unpublished Manuscript, Department of Economics, Cornell University.

Zivot, E., and D.W.K. Andrews (1992), “Further evidence on the great crash, the oil-price
shock, and the unit-root hypothesis,” Journal of Business & Economic Statistics 10, 251-270.

13



Appendix
In what follows, W (i) (i = 1, ..., l + 1) denotes a set of (l + 1) independent standard

Brownian motions on [0, 1] and W denotes a standard Brownian motion on [0, 1] that is
independent ofW (i) for all i. Also, Λi, = {τ : λ̂i−1+(λ̂i− λ̂i−1) ≤ τ ≤ λ̂i−(λ̂i− λ̂i−1) } and
Λ = {r: 1 − ≤ r ≤ } for some > 0. We shall also use the fact that the estimates of
the break fractions are consistent for the true break fractions. As shown in Perron and Zhu
(2005): T 3/2(λ̂i− λ0i ) = Op(1) for Model 1 with I(0) errors, T (λ̂i− λ0i ) = Op(1) for Model 2
with I(0) errors, while T 1/2(λ̂i − λ0i ) = Op(1) for Models 1 and 2 with I(1) errors. Though
their proof is for the single break case, the results continue to hold with multiple breaks.
Proof of Theorem 1: Consider first Model 1. Let X(i) = {x(i)

T̂i−1+1
, (1− α̂(i)S )x(i)T̂i−1+2, ..., (1−

α̂
(i)
S )x

(i)

T̂i
}0 with X

(i)
j (j = 1, 2, 3) being the j-th column of X(i). For a given τ ∈ Λi, , the

Wald test of β(i)1 = 0 can be expressed as

WFS(λ̂i−1, τ , λ̂i) = [β̂
(i)

1 ]
2(X

(i)0
3 M (i)X

(i)
3 )/s

2
i (A.1)

with M (i) = I(i)−Z(i)(Z(i)0Z(i))−1Z(i)0, Z(i) = (X(i)
1 , X

(i)
2 ) and s

2
i the residual error variance

from the feasible GLS regression. Denoting eU (i) = {ut − α̂
(i)
S ut−1}T̂it=T̂i−1+1, we have, under

the null hypothesis of l breaks,

β̂
(i)

1 =
X
(i)0
3 M (i) eU (i)

X
(i)0
3 M (i)X

(i)
3

=
X
(i)0
3
eU (i) −X

(i)0
3 Z(i)(Z(i)0Z(i))−1Z(i)0 eU (i)

X
(i)0
3 X

(i)
3 −X

(i)0
3 Z(i)(Z(i)0Z(i))−1Z(i)0X(i)

3

=

⎡⎣r(i)3 − ³ q
(i)
13 q

(i)
23

´⎛⎝ q
(i)
11 q

(i)
12

q
(i)
12 q

(i)
22

⎞⎠−1⎛⎝ r
(i)
1

r
(i)
2

⎞⎠⎤⎦
⎡⎣q(i)33 − ³ q

(i)
13 q

(i)
23

´⎛⎝ q
(i)
11 q

(i)
12

q
(i)
12 q

(i)
22

⎞⎠−1⎛⎝ q
(i)
13

q
(i)
23

⎞⎠⎤⎦
(A.2)

where

q
(i)
11 = 1 + (T̂i − T̂i−1 − 1)(1− α̂

(i)
S )

2

q
(i)
12 = 1 + (1− α̂

(i)
S )

2
T̂iP

t=T̂i−1+2
(t− T̂i−1) + α̂

(i)
S (1− α̂

(i)
S )(T̂i − T̂i−1 − 1)

q
(i)
13 = (1− α̂

(i)
S )

2
T̂iP

t=k+1

(t− k) + α̂
(i)
S (1− α̂

(i)
S )(T̂i − k)
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q
(i)
22 = 1 + (1− α̂

(i)
S )

2
T̂iP

t=T̂i−1+2
(t− T̂i−1)2 + [α̂

(i)
S ]

2(T̂i − T̂i−1 − 1)

+2α̂
(i)
S (1− α̂

(i)
S )

T̂iP
t=T̂i−1+2

(t− T̂i−1)

q
(i)
23 = (1− α̂

(i)
S )

2
T̂iP

t=k+1

(t− T̂i−1)(t− k) + α̂
(i)
S (1− α̂

(i)
S )

T̂iP
t=k+1

(t− T̂i−1)

+α̂
(i)
S (1− α̂

(i)
S )

T̂iP
t=k+1

(t− k) + [α̂
(i)
S ]

2(T̂i − k)

q
(i)
33 = (1− α̂

(i)
S )

2
T̂iP

t=k+1

(t− k)2 + [α̂
(i)
S ]

2(T̂i − k) + 2α̂
(i)
S (1− α̂

(i)
S )

T̂iP
t=k+1

(t− k)

r
(i)
1 = uT̂i−1+1 − α̂

(i)
S uT̂i−1 + (1− α̂

(i)
S )

T̂iP
t=T̂i−1+2

(ut − α̂
(i)
S ut−1)

r
(i)
2 = uT̂i−1+1 − α̂

(i)
S uT̂i−1 + (1− α̂

(i)
S )

T̂iP
t=T̂i−1+2

(t− T̂i−1)(ut − α̂
(i)
S ut−1) + α̂

(i)
S

T̂iP
t=T̂i−1+2

(ut − α̂
(i)
S ut−1)

r
(i)
3 = (1− α̂

(i)
S )

T̂iP
t=k+1

(t− k)(ut − α̂
(i)
S ut−1) + α̂

(i)
S

T̂iP
t=k+1

(ut − α̂
(i)
S ut−1)

Next, we derive the limit of each term separately for |α| < 1 and α = 1.

Stationary Case (|α| < 1). We use the fact that

T−1/2
[Ts]P
t=1

(ut − α̂
(i)
S ut−1) = T−1/2

[Ts]P
t=1

[(α− α̂
(i)
S )ut−1 + et]

= T−1/2
[Ts]P
t=1

et − T−1/2[T 1/2(α̂(i)S − α)]T−1/2
[Ts]P
t=1

ut−1

= T−1/2
[Ts]P
t=1

et + op(1)⇒ σW (s)

The convergence results for each of the components are then as follows: T−1q(i)11
p→ (λ0i −

λ0i−1)(1 − α)2, T−2q(i)12
p→ (1 − α)2

R λ0i
λ0i−1
(s − λ0i−1)ds = (1 − α)2(λ0i − λ0i−1)

2/2, T−2q(i)13
p→

(1−α)2(λ0i −τ)2, T−3q(i)22 p→ (1−α)2(λ0i −λ0i−1)3/3, T−3q(i)23 p→ (1−α)2 R λ0i
τ
(s−λ0i−1)(s−τ)ds,

T−3q(i)33
p→ (1 − α)2

R λ0i
τ
(s − τ)2ds, T−1/2r(i)1 ⇒ (1 − α)σ[W (λ0i ) − W (λ0i−1)], T

−1/2r(i)2 ⇒
(1−α)σ

R λ0i
λ0i−1
[W (λ0i )−W (s)]ds and T−3/2r(i)3 ⇒ (1−α)σ

R λ0i
τ
[W (λ0i )−W (s)]ds. Using these

results in (A.1) together with the fact that s2i
p→ σ2 for each i, we obtain

WFS(λ̂i−1, τ , λ̂i)⇒ A2i /Bi ≡ ξi(τ)
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where

Ai =
R λ0i
τ
[W (λ0i )−W (s)]ds

−
³
(λ0i − τ)2

R λ0i
τ
(s− λ0i−1)(s− τ)ds

´⎛⎝ (λ0i − λ0i−1)
(λ0i−λ0i−1)2

2

(λ0i−λ0i−1)2
2

(λ0i−λ0i−1)3
3

⎞⎠−1

×
⎛⎝ [W (λ0i )−W (λ0i−1)]R λ0i

λ0i−1
[W (λ0i )−W (s)]ds

⎞⎠
Bi =

R λ0i
τ
(s− τ)2ds−³
(λ0i − τ)2

R λ0i
τ
(s− λ0i−1)(s− τ)ds

´⎛⎝ (λ0i − λ0i−1)
(λ0i−λ0i−1)2
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(λ0i−λ0i−1)2
2

(λ0i−λ0i−1)3
3

⎞⎠−1

×
⎛⎝ (λ0i − τ)2R λ0i

τ
(s− λ0i−1)(s− τ)ds

⎞⎠
Note that the random variables ξ1, ..., ξl+1 are independent. This follows since, for si ∈
[λ0i−1, λ

0
i ), the processes W (λ

0
1)−W (s1),W (λ

0
2)−W (s2), ...,W (λ

0
l+1)−W (sl+1) are indepen-

dent. Next, we use the fact that W (λ0i )−W (s) has the same distribution asq
λ0i − λ0i−1

∙
W (i)(1)−W (i)

µ
s− λ0i−1
λ0i − λ0i−1

¶¸
for s ∈ [λ0i−1, λ0i ). Then with the change of variable r = (τ −λ0i−1)/(λ

0
i −λ0i−1), ξi(τ) has the

same distribution as ξ∗i (r) = [A
∗
i ]
2/B∗i where

A∗i =

Z 1

r

[W (i)(1)−W (i)(s)]ds

−
³
(1− r)2

R 1
r
s(s− r)ds

´⎛⎝ 1 1/2

1/2 1/3

⎞⎠−1⎛⎝ W (i)(1)R 1
0
[W (i)(1)−W (i)(s)]ds

⎞⎠
B∗i =

Z 1

r

(s− r)2ds−
³
(1− r)2

R 1
r
s(s− r)ds

´⎛⎝ 1 1/2

1/2 1/3

⎞⎠−1⎛⎝ (1− r)2R 1
r
s(s− r)ds

⎞⎠
We then obtain

log[(T̂i − T̂i−1)−1
P

τ∈Λi,
exp(WFS(λ̂i−1, τ , λ̂i)/2)]⇒ log[

R
r∈Λ exp(ξ

∗
i (r))]
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which is the limit distribution of the zero-versus-one break test. Using the independence of
ξ∗1, ξ

∗
2, ..., ξ

∗
l+1, the result follows.

Unit Root Case (α = 1). Here, we use the fact that T (α̂(i)S − 1)
p→ 0. Also, we have

T−1/2
[Ts]P
t=1

(ut − α̂
(i)
S ut−1) = T−1/2

[Ts]P
t=1

et − T−1[T (α̂(i)S − 1)]T−1/2
[Ts]P
t=1

ut−1 ⇒ σW (s).

Then the convergence results for the components in (A.2) are: q(i)11
p→ 1, q(i)12

p→ 1, q(i)13
p→

0, T−1q(i)22
p→ λ0i − λ0i−1, T

−1q(i)23 → λ0i − τ , T−1q(i)33
p→ λ0i − τ , r(i)1 ⇒ limT→∞ e[Tλ0i−1]+1,

T−1/2r(i)2 ⇒ σ[W (λ0i ) − W (λ0i−1)] and T−1/2r(i)3 ⇒ σ[W (λ0i ) − W (τ)]. Again, using these
results in (A.1) together with the fact that s2i

p→ σ2 for each i, we obtain

WFS(λ̂i−1, τ , λ̂i)⇒ C2
i /Di ≡ ηi(τ)

where

Ci = W (λ0i )−W (τ)− (λ
0
i − τ)[W (λ0i )−W (λ0i−1)]

λ0i − λ0i−1

Di =
(λ0i − τ)(τ − λ0i−1)

λ0i − λ0i−1

Again, it is straightforward to verify that η1, ..., ηl+1 are independent. Then, as in Model 1,
we use the fact that W (λ0i )−W (s) has the same distribution asq

λ0i − λ0i−1

∙
W (i)(1)−W (i)

µ
s− λ0i−1
λ0i − λ0i−1

¶¸
for s ∈ [λ0i−1, λ0i ). With the change of variable r = (τ −λ0i−1)/(λ

0
i −λ0i−1), ηi(τ) has the same

distribution as
η∗i (r) = [W

(i)(r)− rW (i)(1)]2/r(1− r).

We thus have

log[(T̂i − T̂i−1)−1
P

τ∈Λi,
exp(WFS(λ̂i−1, τ , λ̂i)/2)]⇒ log[

R
r∈Λ exp(η

∗
i (r))]

which is the limit distribution of the zero-versus-one break test. Again, the result follows
from the independence of η∗1, η

∗
2, ..., η

∗
l+1.

Consider now the proof for Model 2. Again, let X(i) = {x(i)
T̂i−1+1

, (1− α̂
(i)
S )x

(i)

T̂i−1+2
, ..., (1−

α̂
(i)
S )x

(i)

T̂i
}0 with X

(i)
j (j = 1, 2, 3, 4) being the j-th column of X(i). For a given τ ∈ Λi, , the

Wald test for testing μ(i)1 = β
(i)
1 = 0 can be expressed as

WFS(λ̂i−1, τ , λ̂i) = [γ̂(i)]
0
(Z

(i)0
1 M

(i)
2 Z

(i)
1 )[γ̂

(i)]/s2i (A.3)
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with γ̂(i) = (μ̂
(i)
1 , β̂

(i)

1 )
0, Z

(i)
1 = (X

(i)
2 ,X

(i)
4 ), M

(i)
2 = I(i) − Z

(i)
2 (Z

(i)0
2 Z

(i)
2 )

−1Z(i)02 , Z
(i)
2 =

(X
(i)
1 ,X

(i)
3 ) and s2i the residual error variance from the feasible GLS regression.

Stationary Case (|α| < 1). Using arguments similar to those for Model 1, we have
WFS(λ̂i−1, τ , λ̂i)⇒ F 0

i (Ei)
−1Fi ≡ Φi(τ)

where

Ei =

⎛⎝ λ0i − τ
R λ0i
τ
(s− τ)dsR λ0i

τ
(s− τ)ds

R λ0i
τ
(s− τ)2ds

⎞⎠−
⎛⎝ λ0i − τ

R λ0i
τ
(s− τ)ds

(λ0i − τ)2
R λ0i
τ
(s− λ0i−1)(s− τ)ds

⎞⎠⎛⎝ (λ0i − λ0i−1)
(λ0i−λ0i−1)2

2

(λ0i−λ0i−1)2
2

(λ0i−λ0i−1)3
3

⎞⎠−1

×
⎛⎝ λ0i − τ (λ0i − τ)2R λ0i

τ
(s− τ)ds

R λ0i
τ
(s− λ0i−1)(s− τ)ds

⎞⎠
Fi =

⎛⎝ [W (λ0i )−W (τ)]R λ0i
τ
[W (λ0i )−W (s)]ds

⎞⎠−
⎛⎝ λ0i − τ

R λ0i
τ
(s− τ)ds

(λ0i − τ)2
R λ0i
τ
(s− λ0i−1)(s− τ)ds

⎞⎠⎛⎝ (λ0i − λ0i−1)
(λ0i−λ0i−1)2

2

(λ0i−λ0i−1)2
2

(λ0i−λ0i−1)3
3

⎞⎠−1

×
⎛⎝ [W (λ0i )−W (λ0i−1)]R λ0i

λ0i−1
[W (λ0i )−W (s)]ds

⎞⎠
Applying the same transformations as in Model 1, Φi(τ) has the same distribution as Φ∗i (r) =
F ∗0i (E

∗
i )
−1F ∗i where

E∗i =

⎛⎝ 1− r
R 1
r
(s− r)dsR 1

r
(s− r)

R 1
r
(s− r)2ds

⎞⎠−
⎛⎝ 1− r

R 1
r
(s− r)ds

(1− r)2
R 1
r
s(s− r)ds

⎞⎠⎛⎝ 1 1/2

1/2 1/3

⎞⎠−1⎛⎝ 1− r (1− r)2R 1
r
(s− r)ds

R 1
r
s(s− r)ds

⎞⎠
F ∗i =

⎛⎝ [W (i)(1)−W (i)(r)]R 1
r
[W

(i)
(1)−W

(i)
(s)]ds

⎞⎠−
⎛⎝ 1− r

R 1
r
(s− r)ds

(1− r)2
R 1
r
s(s− r)ds

⎞⎠⎛⎝ 1 1/2

1/2 1/3

⎞⎠−1⎛⎝ W (i)(1)R 1
0
[W (i)(1)−W (i)(s)]ds

⎞⎠
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which is the limit distribution of the zero-versus-one break test in a model that allows for
a break in intercept as well as the slope. Using the independence of Φ∗1, ...,Φ

∗
l+1, the result

follows.

Unit Root Case (α = 1). Derivations similar to those used for Model 1 yield

WFS(λ̂i−1, τ , λ̂i) ⇒
£
limT→∞ e[Tτ ]+1

¤2
σ2

(A.4)

+
(λ0i − λ0i−1)

(λ0i − τ)(τ − λ0i−1)
[W (λ0i )−W (τ)− (λ

0
i − τ)[W (λ0i )−W (λ0i−1)]

(λ0i − λ0i−1)
]2

Under the assumption that et is i.i.d. normal, for τ ∈ Λi, , e[Tτ ]+1 is asymptotically indepen-

dent of both T−1/2
PT 0i

t=[Tτ ]+1
et and T−1/2

PT0i
t=

T0
i−1+1

et so that the the first and second terms

in (A.4) are independent. Then using the same variable and distribution transformations as
in Model 1 and the fact that limT→∞ e[Tτ ]+1 has the same distribution as

lim
T→∞

e T (τ−λ0
i−1)

λ0
i
−λ0

i−1
+1
,

the result of the theorem follows from the independence of the tests over the (l+1) regimes.
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Table 1a: Asymptotic Critical Values of the Sequential Test FT (l + 1|l) for
Model 1

I(0) I(1)
l l

α 1 2 3 4 5 1 2 3 4 5

.01 .90 2.02 2.33 2.60 2.82 2.97 2.08 2.37 2.65 2.81 2.99
.95 2.61 2.98 3.24 3.41 3.59 2.66 3.03 3.25 3.47 3.62
.975 3.24 3.60 3.85 4.04 4.22 3.27 3.62 3.86 4.14 4.31
.99 4.04 4.40 4.75 5.09 5.30 4.14 4.50 4.79 4.95 5.07

.05 .90 1.90 2.25 2.52 2.72 2.88 1.93 2.23 2.46 2.62 2.82
.95 2.55 2.92 3.15 3.31 3.47 2.49 2.84 3.04 3.22 3.37
.975 3.15 3.49 3.63 3.86 4.04 3.05 3.38 3.68 3.80 3.98
.99 3.86 4.25 4.52 4.76 4.97 3.80 4.32 4.67 4.84 4.90

.10 .90 1.75 2.08 2.30 2.50 2.68 1.82 2.12 2.40 2.56 2.71
.95 2.32 2.72 3.00 3.23 3.38 2.41 2.73 2.90 3.07 3.25
.975 3.04 3.39 3.66 3.79 3.91 2.91 3.25 3.51 3.76 3.90
.99 3.79 4.11 4.53 4.76 4.86 3.76 4.18 4.51 4.72 4.82

.15 .90 1.67 1.94 2.18 2.36 2.53 1.66 1.97 2.20 2.37 2.54
.95 2.19 2.54 2.85 3.10 3.24 2.22 2.56 2.78 2.94 3.15
.975 2.88 3.25 3.41 3.64 3.79 2.78 3.15 3.44 3.66 3.82
.99 3.64 4.01 4.22 4.37 4.81 3.66 4.04 4.20 4.43 4.56

.25 .90 1.29 1.62 1.87 2.08 2.24 1.27 1.62 1.85 2.01 2.15
.95 1.89 2.27 2.45 2.61 2.73 1.88 2.19 2.41 2.61 2.75
.975 2.45 2.73 2.98 3.17 3.42 2.41 2.75 3.04 3.27 3.42
.99 3.17 3.61 4.01 4.13 4.34 3.27 3.59 3.93 4.07 4.25

Table 1b: Asymptotic Critical Values of the Sequential Test FT (l + 1|l) for
Model 2

I(0) I(1)
l l

α 1 2 3 4 5 1 2 3 4 5

.01 .90 3.34 3.70 3.97 4.19 4.38 3.52 3.86 4.11 4.34 4.52
.95 3.99 4.41 4.73 4.96 5.20 4.13 4.53 4.83 4.99 5.20
.975 4.74 5.21 5.39 5.53 5.88 4.84 5.20 5.42 5.59 5.72
.99 5.53 6.05 6.28 6.60 6.82 5.59 5.94 6.20 6.73 7.10

.05 .90 3.20 3.57 3.84 4.08 4.25 3.36 3.70 3.97 4.14 4.33
.95 3.87 4.27 4.56 4.74 4.94 4.02 4.37 4.67 4.87 5.02
.975 4.59 4.94 5.23 5.41 5.57 4.69 4.02 5.31 5.58 5.74
.99 5.41 5.81 6.13 6.34 6.76 5.58 5.97 6.16 6.30 6.52

.10 .90 2.96 3.37 3.64 3.87 4.13 3.26 3.60 3.83 3.99 4.10
.95 3.67 4.15 4.37 4.56 4.67 3.85 4.15 4.38 4.57 4.72
.975 4.39 4.67 5.06 5.21 5.45 4.39 4.74 5.00 5.15 5.34
.99 5.21 5.65 5.92 6.10 6.59 5.15 5.65 5.84 6.08 6.19

.15 .90 2.91 3.34 3.60 3.86 4.03 3.09 3.44 3.64 3.84 3.99
.95 3.63 4.06 4.34 4.59 4.79 3.66 4.00 4.28 4.61 4.73
.975 4.38 4.79 5.05 5.28 5.46 4.30 4.73 4.98 5.17 5.43
.99 5.28 5.70 5.83 5.98 6.22 5.17 5.57 5.93 6.07 6.15

.25 .90 2.54 2.88 3.16 3.36 3.57 2.72 3.05 3.31 3.52 3.69
.95 3.17 3.58 3.88 4.08 4.33 3.34 3.71 3.96 4.13 4.29
.975 3.90 4.35 4.57 4.77 5.00 3.99 4.30 4.55 4.80 4.95
.99 4.77 5.22 5.50 5.81 6.00 4.80 5.21 5.39 5.63 5.73



Table 2: Probability of Break Selection for Model 1 [m = 1]

α = 1 α = 0.95 α = 0.90 α = 0.85 α = 0.80 α = 0.50

m∗ m∗ m∗ m∗ m∗ m∗

η 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
T = 120

0.5 .317 .593 .045 .045 .265 .650 .044 .041 .231 .714 .032 .023 .213 .732 .034 .021 .161 .776 .044 .019 .000 .920 .060 .020

0.6 .141 .741 .071 .047 .058 .839 .054 .049 .019 .888 .053 .040 .005 .914 .050 .031 .005 .914 .053 .028 .000 .914 .052 .034

0.7 .067 .809 .058 .066 .012 .885 .056 .047 .000 .914 .050 .036 .000 .917 .048 .035 .000 .911 .052 .037 .000 .903 .064 .033

0.8 .022 .838 .068 .072 .000 .897 .055 .048 .000 .924 .036 .040 .000 .923 .040 .037 .000 .927 .038 .035 .000 .910 .063 .027

0.9 .008 .863 .060 .069 .000 .912 .050 .038 .000 .931 .043 .026 .000 .931 .038 .031 .000 .937 .035 .028 .000 .910 .062 .028

1.0 .000 .865 .065 .070 .000 .913 .039 .048 .000 .919 .050 .031 .000 .920 .043 .037 .000 .926 .043 .031 .000 .899 .059 .042

T = 240
0.5 .064 .874 .044 .018 .000 .957 .033 .010 .000 .955 .042 .003 .000 .942 .051 .007 .000 .933 .056 .011 .000 .916 .083 .001

0.6 .009 .927 .054 .010 .000 .963 .031 .006 .000 .963 .026 .011 .000 .949 .047 .004 .000 .934 .060 .006 .000 .920 .077 .003

0.7 .000 .923 .070 .007 .000 .959 .033 .008 .000 .958 .037 .005 .000 .952 .042 .006 .000 .936 .059 .005 .000 .912 .086 .002

0.8 .001 .915 .067 .017 .000 .962 .030 .008 .000 .945 .047 .008 .000 .940 .057 .003 .000 .932 .064 .004 .000 .919 .077 .004

0.9 .000 .920 .058 .022 .000 .966 .024 .010 .000 .970 .023 .007 .000 .953 .037 .010 .000 .938 .051 .011 .000 .915 .080 .005

1.0 .000 .907 .076 .017 .000 .964 .025 .011 .000 .965 .027 .008 .000 .958 .034 .008 .000 .945 .043 .012 .000 .917 .075 .008

T = 360
0.5 .012 .942 .034 .012 .000 .967 .021 .012 .000 .954 .040 .006 .000 .934 .057 .004 .000 .919 .070 .011 .000 .918 .075 .007

0.6 .002 .930 .054 .014 .000 .968 .025 .007 .000 .962 .033 .005 .000 .939 .057 .004 .000 .928 .062 .010 .000 .934 .060 .006

0.7 .000 .939 .046 .015 .000 .969 .029 .002 .000 .950 .045 .005 .000 .937 .054 .009 .000 .919 .069 .012 .000 .925 .066 .009

0.8 .000 .926 .062 .518 .000 .960 .031 .009 .000 .951 .036 .013 .000 .941 .052 .007 .000 .927 .061 .012 .000 .929 .063 .008

0.9 .000 .927 .058 .015 .000 .972 .020 .008 .000 .963 .025 .012 .000 .946 .044 .010 .000 .928 .063 .009 .000 .932 .062 .006

1.0 .000 .947 .049 .004 .000 .975 .021 .004 .000 .963 .029 .008 .000 .947 .038 .015 .000 .930 .055 .015 .000 .929 .062 .009



Table 3: Probability of Break Selection for Model 2 [m = 1]

α = 1 α = 0.95 α = 0.90 α = 0.85 α = 0.80 α = 0.50

m∗ m∗ m∗ m∗ m∗ m∗

η 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
T = 120

0.5 .014 .513 .087 .386 .007 .587 .100 .306 .005 .684 .077 .234 .004 .725 .063 .208 .005 .760 .052 .183 .000 .800 .067 .133

0.6 .001 .598 .077 .324 .000 .657 .063 .280 .000 .721 .068 .211 .000 .757 .060 .183 .000 .755 .072 .173 .000 .763 .070 .167

0.7 .000 .628 .085 .287 .000 .676 .072 .252 .000 .732 .077 .191 .000 .759 .061 .180 .000 .769 .065 .166 .000 .776 .073 .151

0.8 .000 .646 .073 .281 .000 .714 .049 .237 .000 .750 .052 .198 .000 .784 .055 .161 .000 .793 .054 .153 .000 .759 .063 .178

0.9 .000 .675 .066 .259 .000 .725 .063 .212 .000 .760 .066 .174 .000 .776 .053 .171 .000 .785 .052 .163 .000 .791 .054 .155

1.0 .000 .656 .080 .264 .000 .710 .055 .235 .000 .752 .060 .188 .000 .753 .062 .185 .000 .775 .048 .177 .000 .765 .059 .176

T = 240
0.5 .002 .683 .136 .179 .000 .819 .076 .105 .000 .871 .069 .060 .000 .875 .072 .053 .000 .874 .082 .044 .000 .858 .107 .035

0.6 .000 .753 .104 .143 .000 .856 .066 .078 .000 .894 .054 .052 .000 .891 .065 .044 .000 .875 .078 .047 .000 .872 .097 .031

0.7 .000 .761 .113 .126 .000 .876 .063 .061 .000 .886 .065 .049 .000 .879 .078 .043 .000 .882 .077 .041 .000 .852 .113 .035

0.8 .000 .804 .103 .093 .000 .885 .066 .049 .000 .900 .071 .029 .000 .895 .065 .040 .000 .883 .073 .044 .000 .865 .100 .035

0.9 .000 .845 .083 .072 .000 .902 .050 .048 .000 .905 .056 .039 .000 .903 .061 .036 .000 .882 .072 .046 .000 .852 .112 .036

1.0 .000 .831 .079 .090 .000 .892 .056 .052 .000 .906 .058 .036 .000 .900 .067 .033 .000 .901 .068 .031 .000 .870 .099 .031

T = 360
0.5 .000 .791 .099 .110 .000 .924 .041 .035 .000 .932 .040 .028 .000 .914 .059 .027 .000 .901 .065 .034 .000 .895 .084 .021

0.6 .000 .829 .083 .088 .000 .919 .042 .039 .000 .925 .043 .032 .000 .900 .061 .039 .000 .898 .065 .037 .000 .887 .088 .025

0.7 .000 .845 .076 .079 .000 .923 .034 .043 .000 .923 .045 .032 .000 .907 .061 .032 .000 .889 .081 .030 .000 .895 .089 .016

0.8 .000 .840 .103 .057 .000 .915 .057 .028 .000 .911 .064 .025 .000 .907 .065 .028 .000 .897 .076 .027 .000 .889 .095 .016

0.9 .000 .881 .068 .051 .000 .922 .052 .026 .000 .916 .057 .027 .000 .910 .060 .030 .000 .892 .086 .022 .000 .897 .088 .015

1.0 .000 .859 .087 .054 .000 .926 .042 .032 .000 .918 .056 .026 .000 .907 .066 .027 .000 .892 .078 .030 .000 .901 .085 .014



Table 4: Probability of Break Selection for Model 1 [m = 2]

α = 1 α = 0.95 α = 0.90 α = 0.85 α = 0.80 α = 0.50

m∗ m∗ m∗ m∗ m∗ m∗

η 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
T = 120

0.5 .000 .589 .292 .119 .000 .604 .288 .108 .000 .625 .295 .080 .000 .616 .329 .055 .000 .575 .371 .054 .000 .028 .884 .088

0.6 .000 .433 .430 .137 .000 .444 .431 .125 .000 .437 .457 .106 .000 .418 .495 .087 .000 .397 .519 .084 .000 .023 .871 .106

0.7 .000 .332 .516 .152 .000 .295 .555 .150 .000 .274 .578 .148 .000 .257 .616 .127 .000 .231 .651 .118 .000 .012 .875 .113

0.8 .000 .233 .599 .168 .000 .191 .654 .155 .000 .157 .706 .137 .000 .119 .752 .129 .000 .095 .787 .118 .000 .009 .898 .093

0.9 .000 .164 .667 .169 .000 .128 .716 .156 .000 .066 .789 .145 .000 .061 .805 .134 .000 .047 .838 .115 .000 .004 .900 .096

1.0 .000 .098 .720 .182 .000 .070 .759 .171 .000 .046 .802 .152 .000 .027 .843 .130 .000 .021 .862 .117 .000 .000 .899 .101

T = 240
0.5 .000 .297 .639 .064 .000 .229 .720 .051 .000 .180 .777 .043 .000 .125 .826 .049 .000 .070 .876 .054 .000 .000 .950 .050

0.6 .000 .145 .781 .074 .000 .056 .893 .051 .000 .021 .925 .054 .000 .012 .936 .052 .000 .003 .939 .058 .000 .000 .944 .056

0.7 .000 .060 .864 .076 .000 .011 .927 .062 .000 .005 .934 .061 .000 .000 .951 .049 .000 .000 .950 .050 .000 .000 .950 .050

0.8 .000 .014 .905 .081 .000 .001 .935 .064 .000 .000 .939 .061 .000 .000 .948 .052 .000 .000 .951 .049 .000 .000 .957 .043

0.9 .000 .003 .906 .091 .000 .000 .948 .052 .000 .000 .949 .051 .000 .000 .943 .057 .000 .000 .946 .054 .000 .000 .954 .046

1.0 .000 .001 .913 .086 .000 .000 .944 .056 .000 .000 .953 .047 .000 .000 .963 .037 .000 .000 .960 .040 .000 .000 .950 .050

T = 360
0.5 .000 .103 .833 .064 .000 .018 .930 .052 .000 .000 .944 .056 .000 .000 .926 .074 .000 .000 .915 .085 .000 .000 .902 .098

0.6 .000 .027 .899 .074 .000 .001 .944 .055 .000 .000 .945 .055 .000 .000 .934 .066 .000 .000 .915 .085 .000 .000 .913 .087

0.7 .000 .009 .900 .091 .000 .000 .934 .066 .000 .000 .935 .065 .000 .000 .926 .074 .000 .000 .918 .082 .000 .000 .911 .089

0.8 .000 .002 .907 .091 .000 .000 .953 .047 .000 .000 .953 .047 .000 .000 .937 .063 .000 .000 .930 .070 .000 .000 .914 .086

0.9 .000 .000 .917 .083 .000 .000 .948 .052 .000 .000 .940 .060 .000 .000 .925 .075 .000 .000 .911 .089 .000 .000 .905 .095

1.0 .000 .000 .922 .078 .000 .000 .936 .064 .000 .000 .934 .066 .000 .000 .926 .074 .000 .000 .915 .085 .000 .000 .907 .093



Table 5: Probability of Break Selection for Model 2 [m = 2]

α = 1 α = 0.95 α = 0.90 α = 0.85 α = 0.80 α = 0.50

m∗ m∗ m∗ m∗ m∗ m∗

η 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
T = 120

0.5 .000 .115 .373 .512 .000 .106 .397 .497 .000 .121 .436 .443 .000 .110 .501 .389 .000 .094 .539 .367 .000 .010 .648 .342

0.6 .000 .042 .418 .540 .000 .045 .474 .481 .000 .056 .500 .444 .000 .045 .532 .423 .000 .037 .566 .397 .000 .010 .619 .371

0.7 .000 .009 .468 .523 .000 .009 .491 .500 .000 .009 .520 .471 .000 .009 .555 .436 .000 .009 .588 .403 .000 .001 .616 .383

0.8 .000 .000 .482 .518 .000 .001 .546 .453 .000 .000 .579 .421 .000 .000 .606 .394 .000 .000 .640 .360 .000 .000 .649 .351

0.9 .000 .000 .511 .489 .000 .000 .529 .471 .000 .000 .566 .434 .000 .000 .595 .405 .000 .000 .611 .389 .000 .000 .655 .345

1.0 .000 .000 .497 .503 .000 .000 .525 .475 .000 .000 .560 .440 .000 .000 .616 .384 .000 .000 .621 .379 .000 .000 .667 .333

T = 240
0.5 .000 .077 .542 .381 .000 .069 .620 .311 .000 .029 .719 .252 .000 .015 .790 .195 .000 .002 .830 .168 .000 .000 .873 .127

0.6 .000 .011 .606 .383 .000 .004 .692 .304 .000 .002 .775 .223 .000 .000 .828 .172 .000 .000 .849 .151 .000 .000 .874 .126

0.7 .000 .001 .628 .371 .000 .000 .714 .286 .000 .000 .784 .216 .000 .000 .817 .183 .000 .000 .849 .151 .000 .000 .859 .141

0.8 .000 .000 .697 .303 .000 .000 .760 .240 .000 .000 .829 .171 .000 .000 .862 .138 .000 .000 .873 .127 .000 .000 .873 .127

0.9 .000 .000 .710 .290 .000 .000 .789 .211 .000 .000 .840 .160 .000 .000 .850 .150 .000 .000 .838 .132 .000 .000 .854 .146

1.0 .000 .000 .733 .267 .000 .000 .793 .207 .000 .000 .850 .150 .000 .000 .867 .133 .000 .000 .872 .128 .000 .000 .877 .123

T = 360
0.5 .000 .026 .673 .301 .000 .002 .818 .180 .000 .000 .895 .105 .000 .000 .901 .099 .000 .000 .900 .100 .000 .000 .904 .096

0.6 .000 .000 .746 .254 .000 .000 .838 .162 .000 .000 .894 .106 .000 .000 .889 .111 .000 .000 .897 .103 .000 .000 .915 .085

0.7 .000 .000 .771 .229 .000 .000 .872 .128 .000 .000 .919 .081 .000 .000 .918 .082 .000 .000 .912 .088 .000 .000 .903 .097

0.8 .000 .000 .787 .213 .000 .000 .894 .106 .000 .000 .914 .086 .000 .000 .916 .084 .000 .000 .897 .103 .000 .000 .904 .096

0.9 .000 .000 .822 .178 .000 .000 .893 .107 .000 .000 .910 .090 .000 .000 .894 .106 .000 .000 .903 .097 .000 .000 .905 .095

1.0 .000 .000 .804 .196 .000 .000 .890 .110 .000 .000 .899 .101 .000 .000 .895 .105 .000 .000 .882 .118 .000 .000 .902 .098


