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Abstract

Determining whether per capita output can be characterized by a stochastic trend is

complicated by the fact that infrequent breaks in trend can bias standard unit root tests

towards non-rejection of the unit root hypothesis. The bulk of the existing literature

has focused on the application of unit root tests allowing for structural breaks in the

trend function under the trend stationary alternative but not under the unit root null.

These tests, however, provide little information regarding the existence and number of

trend breaks. Moreover, these tests su¤er from serious power and size distortions due

to the asymmetric treatment of breaks under the null and alternative hypotheses. This

paper estimates the number of breaks in trend employing procedures that are robust to

the unit root/stationarity properties of the data. Our analysis of the per-capita GDP

for OECD countries thereby permits a robust classi�cation of countries according to

the �growth shift�, �level shift� and �linear trend� hypotheses. In contrast to the

extant literature, unit root tests conditional on the presence or absence of breaks do

not provide evidence against the unit root hypothesis.
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1 Introduction

Following the seminal work of Perron (1989), it is now well known that failure to account for

structural changes in the trend can bias unit root tests in favor of the unit root model when

the true process is subject to structural changes but is otherwise (trend) stationary within

regimes speci�ed by the break dates. Accordingly, it is now standard econometric practice to

test for the presence of unit roots while allowing for structural changes in the trend function

of the underlying time series. These testing procedures are typically based on the minimum

t-statistic corresponding to the unit root parameter over the set of permissible break dates

or alternatively computing this t-statistic at the break date that minimizes (or maximizes)

the t-statistic associated with the break parameter (or maximizes its absolute value).

Recent developments in the econometrics literature highlight major drawbacks of com-

monly used unit root tests based on search procedures. When the break dates are unknown,

it is useful to have information regarding the presence or absence of a change in order to

investigate the potential presence a unit root. Indeed, unit root tests routinely employed in

empirical analyses such as Zivot and Andrews (1992), Banerjee et al. (1992), Perron (1997)

and Vogelsang and Perron (1998) are not invariant to the magnitude of trend breaks if the

latter are present. Nunes et al. (1997), Lee and Strazicich (2001, 2003) and Kim and Perron

(2009), among others, demonstrate that such tests su¤er from serious power and size distor-

tions due to the asymmetric treatment of breaks under the null and alternative hypotheses.

For instance, the test of Zivot and Andrews (1992) assumes that if a break occurs, it only

does so under the alternative hypothesis of trend stationarity. As a result, the test may

reject the unit root null when the noise component is integrated but the trend is changing,

leading to spurious evidence in favor of broken trend stationarity.

On the other hand, testing whether a time series can be characterized by a broken trend

is complicated by the fact that the nature of persistence in the errors is usually unknown.

Indeed, inference based on a structural change test on the level of the data depends on

whether a unit root is present or not, given that asymptotic critical values are di¤erent

in the two cases. Further, tests based on di¤erenced data have very poor properties when

the series contains a stationary component (Vogelsang, 1998). A circular testing problem

therefore arises between tests on the parameters of the trend function and unit root tests.

To deal with this circular problem, various approaches have been suggested to test for

the stability of the trend function that are robust to the nature of persistence in the noise

component. Vogelsang (2001), building on prior work related to hypothesis testing on the
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coe¢ cients of a polynomial time trend reported in Vogelsang (1998), develops a Wald test

statistic for structural change in the coe¢ cients of a linear trend function with the same

asymptotic critical values in both the stationary [I(0)] and unit root [I(1)] cases. More

recently, Harvey et al. (2009a) [HLT henceforth] propose tests for a one-time break in

the slope of the trend function based on a weighted average of the regression t-statistics

appropriate for the case of I(0) and I(1) shocks. Perron and Yabu (2009a) [PY henceforth]

suggest an alternative approach to assess the presence of changes in slope based on a Feasible

Generalized Least Squares procedure that uses a super-e¢ cient estimate of the sum of the

autoregressive parameters � when � = 1. Based on Monte Carlo experiments, HLT and

PY show their respective procedures to be more powerful than that of Vogelsang (2001).

Building on the work of Perron and Yabu (2009a), Kejriwal and Perron (2009) propose a

sequential procedure that allows one to obtain a consistent estimate of the true number of

breaks in the slope of the trend, irrespective of whether the errors are I(1) or I(0). Finally,

Harvey et al. (2009b) propose robust tests for detecting multiple breaks in level conditional

on a stable underlying slope.

Recent developments have also investigated issues related to the treatment of the breaks

in the trend function when testing for the presence of a unit root. Harris et al. (2009)

suggest the use of a GLS detrending procedure similar to that used by Elliott et al. (1996)

and propose a unit root test that allows for a single change in the intercept and the slope of

the trend function under both the null and alternative hypotheses. An alternative approach

is advocated by Carrion et al. (2009), who propose extensions of theM class of tests analyzed

in Ng and Perron (2001) and the feasible point optimal statistic of Elliott et al. (1996) that

allow for multiple changes in the level and/or slope of the trend function. These tests have

been shown to possess superior size and power properties relative to those that only allow

for breaks under the alternative hypothesis.

A particularly important economic application where a broken trend model has received

considerable attention, and consequently where the circular problem discussed above becomes

relevant in practice, is the issue of determining whether output can be characterized by

a stochastic trend.1 Empirical evidence provided by commonly used unit root tests with

trend breaks, however, varies considerably depending on the models used and the countries

considered. Studies investigating US real GDP such as Perron (1989), Banerjee et al. (1990),

1Kilian and Ohanian (2002) report an exhaustive list of the applications of unit root tests with breaks in
the macroeconomic literature.
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Balke and Fomby (1991), Christiano (1992), Zivot and Andrews (1992), and Papell and

Prodan (2004), among others, show rather strong rejections of the unit root null hypothesis,

regardless of how many breaks are considered, how they are selected and whether the data

considered is aggregate or per capita. In contrast, studies focusing on international output

o¤er a less clear conclusion. Allowing for one break in the trend while considering real GDP,

Banerjee et al. (1992) and Bradley and Jansen (1995) can reject the unit root only for one

and three out of the seven countries considered, respectively. Allowing for one break in both

the level and the slope, Raj (1992) is able to reject the unit root null hypothesis for at least

half of the per capita real GDP series considered. As an alternative, Ben-David et al. (2003)

propose allowing for two breaks in the level and the slope and report rejections of the unit

root for 12 out of the 16 countries for aggregate and per capita real GDP while Papell and

Prodan (2009), allowing the �rst break to be in both the intercept and the slope while the

second only in the slope, reject the unit root hypothesis for 14 out of the 18 OECD countries

considered.

The aim of this paper is twofold. First, it proposes a formal econometric procedure that

enables (i) robust detection of breaks in the level and/or the slope of the trend function, (ii)

robust estimation of the number of breaks, (iii) reliable inference regarding the presence of a

unit root conditional on the presence/absence of breaks, and (iv) reliable estimation of the

break locations as well as the slope parameters in the regimes identi�ed by the estimated

break dates. Second, it applies this procedure to investigate the behavior of GDP per capita

for nineteen OECD countries over the period 1870-2006. Our analysis permits a robust

classi�cation of countries according to the �growth shift�(shifts in the slope with possible

shifts in the level), �level shift�(shifts in the level with no concurrent shifts in the slope) and

�linear trend�(no shifts in the level or the slope) hypotheses. Moreover, in sharp contrast

to the extant literature, results from unit root tests conditional on the presence or absence

of breaks provide strong evidence in favor of the unit root hypothesis.

The rest of the paper is organized as follows. Section 2 proposes and describes the

empirical methodology, including a discussion of the various limitations of the commonly

employed procedures in the literature. Section 3 presents a set of Monte Carlo experiments

to illustrate the merits of our procedure relative to those that have been routinely been

applied in the literature. Section 4 reports the empirical results. Section 5 contains a

discussion of our results and Section 6 o¤ers some concluding remarks.
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2 Methodology

The bulk of the current empirical literature investigating the persistence properties of macro-

economic time series has primarily focused on the application of unit root tests allowing for

structural breaks in the trend function followed by the estimation of a level or �rst-di¤erenced

speci�cation according to whether a unit root is present or not. These tests are generally

obtained by minimizing the t-statistic on the unit root parameter over the set of permissible

break dates or computing this t-statistic at the break date that minimizes (or maximizes)

the t-statistic associated with the break parameter (or maximizes its absolute value). In

order to provide the motivation for the econometric methodology advocated in this paper, it

is useful to �rst discuss the potential drawbacks associated with the testing procedures that

have typically been employed by existing studies.

First, the tests provide little information regarding the existence or number of trend

breaks. At an intuitive level, it seems more natural to be �rst able to ascertain if breaks are

at all present before proceeding to conduct unit root tests allowing for such breaks. In the

absence of breaks, these tests su¤er from low power due to the inclusion of extraneous break

dummies thereby potentially leading the researcher to estimate a di¤erenced speci�cation

when a level speci�cation is in fact more appropriate. Indeed, as stressed by Campbell and

Perron (1991), proper speci�cation of the deterministic components is essential to obtaining

unit root tests with reliable �nite sample properties. Second, the unit root tests typically

employed su¤er from serious power and size distortions due to the asymmetric treatment

of breaks under the null and alternative hypotheses. Moreover, if a break is present, this

information is not exploited to improve the power of the testing procedure (a detailed dis-

cussion of this issue together with Monte Carlo evidence demonstrating the �nite sample

problems associated with this type of tests can be found in Kim and Perron, 2009, Nunes et

al., 1997 and Lee and Strazicich, 2001 and 2003). Further, in most cases, the estimates of the

break dates are obtained by minimizing/maximizing these unit root tests over all possible

break dates which, in general, do not provide consistent estimates of the true break dates

(Vogelsang and Perron, 1998).

Third, based on the prescription of unit root tests, the existing procedures often estimate

a level speci�cation and evaluate the joint signi�cance of the intercept and slope dummies.

However, a joint test is likely to conclude in favor of unstable growth rates even if the

series has undergone a pure level shift, thereby making the interpretation of such tests quite

di¢ cult in practice (see section 3). Thus, if the objective is to distinguish between changes
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in the level and the slope, it is essential to test for the stability of the slope parameter while

allowing the intercept to vary across regimes and, conditional on the absence of slope shifts,

test for level shifts.

Fourth, another common strategy is to start (before testing for a unit root) with a general

level speci�cation that incorporates both a changing slope as well as a changing intercept

and then evaluate the signi�cance of the individual t-statistics on the dummy variables.

Depending on the outcome, the relevant model is estimated and used as the alternative

model when testing for a unit root. There are two problems with such an approach. First,

the limit distributions of the slope coe¢ cient dummy estimates are di¤erent depending on

whether a unit root is present so that prior information regarding the existence of a unit root

is essential to validate signi�cance based on t-statistics. Second, in the presence of a slope

shift, the level shift parameters are not identi�ed regardless of whether the noise component

is stationary or not (Perron and Zhu, 2005).

Our econometric methodology is aimed at addressing each of the limitations discussed

above and the proposed algorithm is summarized in Figure 1. The most general model

considered can be described as:

yt = �0 + �0t+
KX
i=1

�iDUit +
KX
i=1

�iDTit + ut; t = 1; :::; T (1)

ut = �ut�1 + vt; t = 2; :::; T; u1 = v1 (2)

where DUit = I(t > Ti); DTit = (t � Ti)I(t > Ti); i = 1; :::; K. A break in the trend

occurs at time Ti = [T�i] when �i 6= 0. The date of the breaks, Ti, and the number of

breaks, K, are treated as unknown . The error ut is allowed to be either I(0) (j�j < 1) or
I(1) (� = 1). The stochastic process fvtg is assumed to be stationary (but not necessarily
i.i.d. thereby permitting a general error structure for ut). We are interested in the null

hypothesis H0: �i = 0 against the alternative hypothesis H1: �i 6= 0.2

The �rst step tests for one structural break (that isK = 1 in (1)) in the slope of the trend

function using procedures that are robust to the stationarity/non-stationarity properties of

the data (HLT and PY). The tests employed are designed to detect a break in slope while

allowing the intercept to shift. A rejection by these robust tests can therefore be interpreted

2Strictly speaking, the null hypothesis must be re-stated as H0: �i = �i = 0 to obtain pivotal limiting
distributions for the test statistics (see section 4.2 in HLT). This, however, does not mean that the tests are
incorrectly sized in the presence of pure level shifts (see the simulation experiments in section 3).
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as a change in the growth rate regardless of whether the level has changed.3 Given evidence

in favor of a break by either of the single break tests, we then proceed to test for one versus

two slope breaks (that is K = 2 in (1)) using the extension of PY proposed by Kejriwal

and Perron (2009). Again, this latter test allows us to distinguish between one and two

breaks while being agnostic to whether a unit root is present. Given the number of sample

observations in our empirical analysis (137), we allow for a maximum of two breaks in our

empirical analysis.4 While this may appear restrictive, allowing for a large number of breaks

is not an appropriate strategy if one wants to determine if a unit root is present. The reason

is that a unit root process can be viewed as a limiting case of a stationary process with

multiple breaks, one that has a break (permanent shock) every period. Further, as discussed

in Kejriwal and Perron (2009), the maximum number of breaks should be decided with

regard to the available sample size. Otherwise, sequential procedures for detecting trend

breaks will be based on successively smaller data subsamples (as more breaks are allowed)

thereby leading to low power and/or size distortions. It is therefore important to allow for

a su¢ cient number of observations in each segment and choose the maximum number of

permissible breaks accordingly.5

A caveat associated with such a sequential procedure, as pointed out by Bai and Perron

(2006) and Prodan (2008), is that single break tests may su¤er from low power in �nite

samples in the presence of multiple breaks, especially if they are of opposite sign. To guard

against such a possibility, we report the results of the one versus two breaks test regardless

of whether a rejection is obtained from the single break tests.

Conditional on the presence of a stable slope at the initial step (that is �i = 0 in (1)

for i = 1; :::; K), the focus becomes potential changes in the level of the trend and the

hypotheses tested are H0: �i = 0 against the alternative hypothesis H1: �i 6= 0. Harvey

et al. (2009b) propose a test for detecting multiple level breaks that is robust to the unit

root/stationarity properties of the data.6 A rejection by this robust test can therefore be

interpreted as changes in the level of the series. These authors also develop a sequential

3A potential strategy in this case to dissociate a level from a slope shift could be to use a t-statistic to
test for the signi�cance of the level shift parameter. Such a strategy is, however, �awed since, as shown in
Perron and Zhu (2005), the level shift parameter is not identi�ed in this case.

4This assumption is common to the majority of existing empirical studies.
5If a unit root is indeed present, the estimates of the break dates (obtained from the �rst-di¤erenced

speci�cation) from an underspeci�ed model are consistent for those break dates inserting which allow the
greatest reduction in the sum of squared residuals and therefore correspond to the most dominant breaks in
this sense (see Chong, 1995, Bai and Perron, 1998).

6The level breaks are modeled as local to zero in the I(0) case and as increasing functions of sample size
in the I(1) case.
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procedure which allows reliable estimation of the number of breaks. It is important to note

here that the power issue associated with the sequential procedure for detecting slope shifts

is not relevant in this case since the alternative hypothesis for the test in the latter case is

that of at least one break in the level so that as the number of breaks increases, the test has

an increasing number of opportunities to detect a level break (see the discussion in section

4.3 of Harvey et al., 2009b).

Given evidence in favor of instability in the slope (that is �i 6= 0 in (1) for i = 1; :::; K),
we apply a new class of unit root tests which allows for breaks in the level and the slope

under both the null and alternative hypotheses (Harris et al., 2009 and Carrion et al., 2009).7

Such a symmetric treatment of breaks alleviates these unit root tests from size and power

problems that plague tests based on search procedures. Similarly, in the presence of at least

one level shift, we apply unit root tests which allow for breaks in the level under both the

null and alternative hypotheses (Carrion et al., 2009). If no evidence is found of instability

either in the level or in the slope, we apply standard (no break) unit root tests developed by

Elliott et al. (1996) and Ng and Perron (2001).

With breaks in the level and/or the slope, the trend coe¢ cients are estimated from a

�rst-di¤erenced or level speci�cation according to whether a unit root is present or not.

Perron and Zhu (2005) show, in the presence of a break in the slope, that the estimates of

the break dates as well as the parameters governing the slope of the trend function obtained

from the level speci�cation are consistent even in the presence of a unit root. However, more

e¢ cient estimates of the break dates (in terms of a faster rate of convergence to the true

value) can be obtained from estimating a speci�cation in �rst di¤erences in this case (see

section 3). The unit root tests thereby enable more precise estimation of the break dates.

In models with pure level shifts, consistent estimates of the break dates are obtained using

the procedure suggested by Harvey et al. (2009b) in the unit root case and by minimizing

the sum of squared residuals from the level speci�cation in the stationary case.

To obtain the trend parameter estimates in the stable linear trend case (that is �i = �i =

0 in (1) for i = 1; :::; K), we apply the robust procedures proposed by Harvey et al. (2007)

and Perron and Yabu (2009b). These procedures are simply the �no break� counterparts

of the HLT and PY procedures respectively and are therefore not discussed in detail in the

paper.

To ensure brevity of the main text as well as to enhance readability, we have relegated

7Note that Perron (1989, 1990) devised unit root testing procedures that are invariant to the magntiude
of the shift in level and/or slope but his analysis was restricted to the known break date case.
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the discussion of the various testing procedures including the notation for the di¤erent tests

and estimates to the Appendix.

3 Monte Carlo Experiments

This section explores two aspects of the proposed procedure vis-a-vis currently existing

procedures by means of Monte Carlo experiments: (1) the appropriateness of testing for

shifts in the slope while allowing for shifts in the level as opposed to joint tests for shifts

in both the level and the slope, when the objective is to detect shifts in the slope only and

(2) the relative e¢ ciency gains (in terms of mean squared error) obtained by estimating

the break dates from a level speci�cation when the noise component is stationary and a

�rst-di¤erenced speci�cation when a unit root is present.

To investigate these issues, we consider the following data generating process with a single

break:8

yt = �
0
0 + �

0
0t+ �

0
1I(t > T

0
1 ) + �

0
1(t� T 01 )I(t > T 01 ) + ut (3)

where the errors futgTt=1 are generated as

ut = �
0ut�1 + vt; t = 2; :::; T; u1 = v1 (4)

where fvtgTt=1 is a sequence of i.i.d. N(0; �2) random variables. We use the superscript

�0� to indicate the true value of a parameter. Regarding the choice of base parameter

values, we closely follow the design employed by Perron and Zhu (2005). We thus set

�00 = 1:72; �00 = 0:03; � = 0:01 when �0 = 1 and �2 = 0:1 otherwise. We consider �ve

values for the autoregressive parameter: �0 = 0:5; 0:6; 0:7; 0:8; 0:9; 1. Further, we set �01 = -

0:04;-0:02; 0; 0:02; 0; 04 and the break fraction �01 = 0:3; 0:5; 0:7: Results are reported for two

sample sizes: T = 150; 200.

3.1 Joint Tests versus Tests for Slope Shifts

Empirical research studying the stability of output growth has almost exclusively focused

on joint tests for the presence of shifts in the level and the slope. However, as discussed

in section 2, joint tests have power against processes which are characterized by shifts in

the level only and are therefore likely to reject the null of stability even when there is no

8The experiments were also performed on a data generating process with two breaks. Results were
qualitatively very similar and hence not reported. They are available upon request.
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change in the slope of the trend function. In other words, a rejection by these tests does not

provide useful information regarding whether a change in the slope is at all present. The

suggested procedure has the correct asymptotic size regardless of the presence of level shifts.

To illustrate the advantage of using the latter procedure, Table 1 and 2 report empirical

rejection frequencies of the one break tests of HLT and PY when the data generating process

(3) and (4) is characterized by a stable slope (�01 = 0) but a shift in the level (�
0
1 6= 0). For

comparison, we also present the rejection rates for the joint test on both the intercept and

the slope proposed in PY(denoted ExpWJ). Note that all three tests are robust to the nature

of persistence in the noise component.

When the errors are I(0); the joint test is subject to mild size distortions regardless of

the magnitude of the level shift. This is also true when the errors are I(1) but the level

shift component is small (j�01j � 0:02). However, when the level shift is large, the joint

test substantially over-rejects the null of stability. Importantly, these distortions are not

mitigated as the sample size increases. In contrast, the tests which are designed to purely

detect a break in the slope are much better sized for all values of the level shift although some

size distortions are apparent in the unit root case, especially for the Harvey et al. (2009b)

test.

3.2 E¢ ciency in Break Date Estimation

Perron and Zhu (2005) show that the estimate of the break date obtained from a level

speci�cation is consistent irrespective of whether the noise component is stationary or has

a unit root. The break fraction estimate based on the level speci�cation converges to the

true value at rate T when the errors are I(0) and at rate T 1=2 when the errors are I(1).

An improved rate of convergence in the I(1) case (rate T ) can, however, be obtained by

estimating the break date from the speci�cation in �rst di¤erences. This follows from the

results in Bai (1994), Bai (1997) and Bai and Perron (1998) who show that a shift in the mean

of an I(0) process can be estimated with a T rate of convergence. This improvement is likely

to provide �nite sample e¢ ciency gains from estimating a speci�cation in �rst di¤erences

compared to one in levels. In other words, information about the presence of a unit root can

be exploited to facilitate more accurate estimation of the break dates.

In order to provide a quantitative assessment of the potential e¢ ciency gains, we consider

the single break DGP given by (3) and (4) with �01 = �0:02; 0:02. Tables 3 and 4 reports
the ratio of mean squared errors (MSED=MSEL), where MSED and MSEL are the mean

squared errors of the estimated break dates from the speci�cation in �rst di¤erences and levels
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respectively. The results con�rm that knowledge regarding the presence/absence of a unit

root can be used to obtain improved break date estimates. When the errors are I(0); using

a level model results in much lower mean squared errors while the �rst di¤erenced model

dominates when a unit root is present.

4 Empirical Results

This section presents an empirical analysis of the stability of the trend function as well as

the notion of trend reverting behavior of long-run per capita output employing the proposed

procedure. Speci�cally, it focuses on the commonly used Maddison dataset, considering the

per capita GDP for nineteen OECD countries during the 1870-2006 period.9 An informal

inspection of the plot in Figure 2 suggests the possibility of at least one level and/or slope

shift in the trend function for most of the per-capita output series. For the sake of brevity,

we refer to the logarithm of per capita GDP as output for the rest of the paper.

Following Papell and Prodan (2009)�s classi�cation, we label a shifting slope with possible

shifts in the level the �growth shift" hypothesis, shifts in the level with no concurrent shifts in

the slope the �level shift" hypothesis and the absence of shifts in either the level or the slope

the �linear trend hypothesis�. Note that our statistical interpretation of the �growth shift"

hypothesis di¤ers from that of Papell and Prodan�s in that we allow for the possibility of level

shifts (rather than test for them) when testing for shifts in the slope. Indeed, as explained

in the previous section, joint tests of signi�cance on the slope and the level shift parameters

are likely to generate misleading results regarding the classi�cation of countries according to

these three hypotheses. The proposed methodology allows us to reliably distinguish between

the three hypotheses in addition to providing evidence regarding the potential presence of a

stochastic trend in output.

The initial step of the analysis tests for the presence and the number of breaks in the

trend function. The results are reported in Table 5. Evidence clearly favoring the growth

shift hypothesis is obtained for thirteen countries. In particular, Finland, Norway, Portugal,

Spain, Sweden and the UK show evidence of one break in slope while Austria, Belgium,

Germany, Italy, Japan, Netherlands and New Zealand report two slope breaks. The level

shift hypothesis is supported for USA and Denmark, with evidence of one and two level

breaks, respectively; while the results for Australia and Canada support the linear trend

hypothesis. Note that the results for France and Switzerland are not unambiguously in favor

9The dataset is obtained from Maddison (2009).
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of a particular hypothesis given that single break tests cannot reject the null of stability while

the test of one versus two breaks provides strong evidence of instability. Accordingly, for

these two countries, we present unit root test results as well as trend parameter estimation

results for both the stable trend case and the two slope breaks case.

Having categorized countries according to the above hypotheses, we next use this infor-

mation to test for the presence of a unit root in output. In addition to providing important

evidence about whether output can be characterized by a stochastic trend, the unit root

tests will also allow us to choose the appropriate speci�cation for estimating the model pa-

rameters. As shown in Table 6, none of the countries studied show any evidence of trend

stationarity or regime-wise trend stationarity (None of the tests are signi�cant at even the

10% level). This result is a clear departure from the commonly accepted notion that allowing

for breaks strengthens the rejection of the unit root null for GDP data. This issue is further

discussed in the next section.

Turning to the estimation results, we report estimates of the slope parameters and the

associated 95% con�dence intervals together with the estimates of the break dates. Estimates

for the level parameters are not presented as these parameters are not identi�ed in the

presence of a unit root component (see Hatanaka and Yamada, 1999 and Perron and Zhu,

2005). Table 7a reports the parameter estimates for countries exhibiting growth shifts while

Table 7b focuses on countries with pure level shifts and linear trends. In Table 7b, we denote

the �no break�counterparts to the HLT and PY procedures as HLT0 and PY0 respectively.

Both tables con�rm that major historical/economic events have had a clear impact on these

economies given that the break dates selected correspond to the two World Wars (WWI

and WWII) for most of the European countries, WWII for USA and Japan, the �rst oil

price shock for Japan and a change from colonial to independent dominion status as well

as after-Depression e¤ects for New Zealand. Interestingly, our results do not show WWI

and WWII to have had any signi�cant impact on growth rates in Portugal and Spain. For

Portugal, the break date corresponds to a change in the political regime with an emphasis

towards �nancial stability and therefore increased economic growth. Finally, the break for

Spain is associated with the onset of the Spanish Civil War.

Table 7a also highlights several interesting patterns across countries. All countries expe-

riencing a single change in the growth rate are subject to similar growth patterns: whether

the break is around the �rst World War (Finland, Norway, Sweden and the UK) or the

second (Portugal and Spain), the growth rate in the post-break period exceeds that in the

pre-break period. This increase is the largest for the latter break with an average growth
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ratio of 3.63 compared to 2.06 for countries with the earlier break.10 The two-break countries

con�rm such an outcome. The European countries corroborate the impact of the two World

Wars and, with the exception of Belgium, they all report their most productive phase after

the second break, that is after WWII. Japan also records its highest growth rate of 7.64%

after WWII, followed by a steep decline in growth to a rate of 2.76% engineered by the �rst

oil shock in 1973.

Growth ratios across regimes also provide some useful insights and a less homogenous

description of the changes. Countries such as Belgium and Japan report a strong growth

enhancement between the �rst and the second breaks with ratios of 4.91 and 4.42, respec-

tively. In contrast, Austria, France and New Zealand report a slowdown, with ratios less

than one, while Italy and the Netherlands observe a �meltdown�with a negative growth

rate in the second segment. The latter �ve countries, however, all experience their largest

growth improvement in the segment following the most recent break.

It is worth noting that the con�dence intervals, however, render some di¤erent conclusions

regarding the shorter term dynamics of output for several countries. Indeed, based on their

95% con�dence intervals, the slope estimates of Austria, France, Germany, and the Nether-

lands are not signi�cantly di¤erent from zero for the �rst two periods. The re-estimation

of the models with only one break in the trend con�rms the importance of WWII, that is,

the initial second break.11 Note that in all cases, the slope coe¢ cient estimate for the last

segment remains unchanged while the estimate in the �rst segment is still not signi�cantly

di¤erent from zero.

Overall, the short term variations in the output growth are country speci�c, yet the long

term behavior is quite similar across the OECD countries observing growth shifts: they all

report a strengthening of their growth when comparing the �rst and last segments, with an

average ratio of 3.11. Finally, none of the countries whether they support the growth shifts,

the level shifts or the linear trend hypothesis provide evidence of trend reversion in output.

5 Discussion

Our empirical results are generally not supportive of the neoclassical view that growth rates

remain stable in the long run.12 Rather, they are representative of the idea that the growth
10Ben-David and Papell (1995) reach a similar conclusion, although their ratios are smaller.
11Unit root tests allowing for a single break were computed for these countries and again did not provide

any evidence against the unit root null.
12According to the neoclassical growth model, changes in policy variables generate only temporary changes

in the growth rate.
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process is not continuous. Following Kuznets (1963) perspective on the need to provide a

distinct demarcation between di¤erent periods of growth, our empirical analysis is directed

towards identifying the time periods at which such discontinuities occur which allows us to

delineate and study distinct growth regimes. Rosenstein-Rodan�s (1943) theory of the �big

push�as well as Rostow�s (1961) theory of �takeo¤s�provide examples of growth disconti-

nuities. The results are also broadly consistent with the implication of endogenous growth

models such as Romer (1986) that growth rates tend to increase over time. Relatively high

postwar growth could be the result of a sustained movement towards the liberalization of

trade and the creation of institutions such as Bretton Woods and GATT whose objective was

to promote the �ow of goods across international boundaries. An alternative explanation is

advocated by Olson (1982), who suggests that major social upheavals can cause the elimina-

tion of old distributional coalitions resulting in a more e¢ cient reallocation of resources and

therefore increased economic growth. Our break dates corroborate commonly accepted con-

clusions among empirical studies on output over similar periods: major historical/economic

events, such as World Wars and the �rst oil shock had an important e¤ect on output growth

rates of OECD countries.

The application of the proposed methodology leads to a clear departure from standard

unit root test results when allowing for breaks in the trend function: none of the output

series studied report evidence of trend stationarity or regime-wise trend stationarity.13 As

shown in Tables 8a and 8b, several authors have studied the behavior of per capita GDP for

several OECD countries over a similar sample period. Raj (1992), using both Perron�s (1989)

and Zivot and Andrews�(1992) tests, reports evidence of regime-wise trend stationarity for

�ve out of nine countries when allowing for a break in the intercept and in the trend. Using

the latter test and two di¤erent break date selection methods, Zelhorst and De Haan (1995)

are able to reject the unit root null hypothesis for nine out of twelve countries. Using the

same test, Ben-David and Papell (1995) investigate the behavior of both aggregate and per

capita real GDP for 16 OECD countries. They consider a model that allows both the trend

and the intercept to change, unless one of the shift dummies is not signi�cant, in which case

it is dropped and the model is re-estimated. Rejection of the unit root null hypothesis is

obtained for twelve per capita real GDP series. Considering the same countries, Ben-David

et al. (2003) employ an extension of Zivot and Andrews (1992) to two breaks and report

13In a related paper, Murray and Nelson (2000) challenge evidence favoring trend stationarity by arguing
that false rejections of the unit root hypothesis can be triggered by size distortions associated with data-based
lag selection and departures from the maintained hypothesis of temporal homogeneity.
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results that depend on the models considered. If the model includes two breaks in both the

intercept and the trend, the unit root null is rejected for twelve countries. Using a restricted

version of the same test, Papell and Prodan (2004) show that the US reports evidence of

trend stationarity (i.e., no change in the slope). Finally, Papell et Prodan (2009) show that

�fteen out of the eighteen OECD countries considered report evidence of regime-wise trend

stationarity. All these studies agree on the direct relation between evidence of long run

output convergence and the inclusion of breaks in the model. Furthermore, Ben-David and

Papell (1995) demonstrate how essential is the ability to reject the unit root null hypothesis

when trying to link �ndings on output to the notion of stable growth and a steady state

path.14

A careful analysis of these studies allows us to emphasize their technical similarities, to

explain their corroborating conclusions as well as clarify ways in which ours di¤er. Clearly,

these studies share three major technical concerns: (i) none test for the existence and the

number of breaks but impose either one or two breaks under the (broken) trend stationary

alternative, (ii) the unit root tests used do not allow for break(s) under the unit root null,

and (iii) break date selection relies on maximizing the evidence against the unit root null.

All three issues were discussed in section 3 and are addressed by our testing procedure.

A comparison between our point estimates with the ones reported in Tables 8a and 8b

illustrates the relevance of these issues when dealing with real data. Testing for the presence

of breaks leads to di¤erences in the model chosen. For example, in our analysis, Australia

does not experience any breaks in the level or the trend. Its average growth rate is 1.4%

compared to regime-speci�c growth rates of 1.31%, 0.65% and 1.87% reported by Ben-David

et al. (2003) and 0.07% and 0.42% reported by Papell and Prodan (2009). The results for

other countries show the importance of obtaining accurate estimates for the break dates.

For instance, our study reports two breaks for France in 1917 and 1945, yet the slope in

the �rst two periods being not signi�cantly di¤erent from zero, the model can be reduced

to a single trend break model without any signi�cant change in the point estimates or the

break date estimate. The average growth rate of 0.42% and 2.96% in the two regimes can

be compared to 0.6% and 2.2% for Raj (1992), 0.53% and 1.68% for Ben-David et al. (1995)

with break date estimates of 1940 and 1939, respectively. Imposing two breaks, Ben-David

et al. (2003) report an average growth rate of 1.29% prior to 1939, 3.49% between 1940 and

14Ben-David and Papell (2000) investigate the stability of the growth process under the assumption that
output is (broken) trend stationary. They �nd that although there is some evidence of individual periods of
slowdowns, the overall tendency appears to be one of increasing steady state growth over the long run.
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1974, and 1.86% thereafter, thus leading to very di¤erent growth rate estimates relative to

the one break case.

An alternative approach is taken by Balke and Fomby (1991), Bradley and Jansen (1995),

and Darné and Diebolt (2004), who employ procedures designed for detecting outliers in

order to identify and isolate permanent and temporary shocks. Tests for the presence of a

unit root are then implemented on data corrected for outliers. The approach allows for the

possibility of multiple breaks in trend occurring at unknown dates. The disadvantages of

such procedures are that identi�cation of the type of outlier can be quite sensitive to the

original speci�cation of the ARIMA model. Moreover, the presence of outliers, primarily

level shifts, can cause the original ARIMA component to be misspeci�ed. This can cause

the procedure to incorrectly identify the types of outliers (see Balke and Fomby, 1991).

The econometric procedure advocated in this paper addresses several concerns commonly

encountered in the empirical literature assessing the long-term behavior of GDP. It allows

proper identi�cation of the number of breaks, precise estimation of the break dates as well as

an accurate assessment of the nature of the trend in per-capita real GDP. While our results

con�rm that major events have had an important impact on the level of GDP, they also

provide strong evidence supporting the stochastic nature of its trend. From a macroeconomic

perspective, the most important implication of the stochastic trend/unit root hypothesis is

that random shocks have a permanent e¤ect on the system. Contrary to the implications

of business cycle theories, �uctuations are not merely transitory deviations around a stable

deterministic trend but the secular component is itself subject to �uctuations. Furthermore,

the shocks are frequent in that they occur every observation period with relatively small

variance. In this context, trend breaks can be viewed as large, infrequent shocks or outliers.

Level shifts in output correspond to temporary changes in the drift of the unit root process

(the average growth rate) while slope shifts correspond to permanent changes in this drift.

6 Conclusion

This paper proposes and implements an econometric procedure that allows rigorous assess-

ment of the stability of the trend function of a univariate time series as well as whether the

series can be characterized by a stochastic trend. The break detection procedures used are

robust to the persistence of the noise component and can therefore be applied when no a

priori knowledge is available regarding whether the shocks are stationary or not. Contrary to

the existing literature, it enables a clear dissociation between signi�cant changes in the slope
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(while allowing for potential shifts in the level) from those in the level (with no concurrent

changes in the slope). Further, the unit root testing procedures employed are not subject

to �nite sample issues associated with empirical size and power that typically undermine

the use of currently popular tests. The methodology advocated allows consistent estimation

of the true number of changes, whether the changes occur in the slope or the level of the

trend function, reliable inference regarding the presence/absence of a unit root as well as

consistent and e¢ cient estimation of the slope parameters and break dates.

The analysis of historical data for nineteen OECD countries over 1870-2006 provides

evidence of an overall increase in the growth rate for �fteen of these countries while two report

evidence of pure shifts in the level. The estimated break dates emphasize the importance of

the two World Wars in determining the growth path of output as well as other world events

such as the �rst oil shock or more local events (such as the change in status for New Zealand).

Yet, the results for none of these countries indicate evidence of trend or regime-wise trend

stationarity.
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Appendix: Description of Testing Procedures

A.1 Robust Tests for Breaks in Trend

A.1.1 The Harvey et al. (2009a) Test for a Break in Slope

Harvey et al. (2009a) propose test statistics that are constructed by taking a weighted
average of the regression t-statistics from a regression in levels and a regression in di¤erences.
The weighting function is based on the KPSS stationarity statistics applied to the levels and
di¤erenced data. First di¤erencing (1) [for K = 1] yields

�yt = �0 + �1D1t + �1DU1t + "t; t = 2; :::; T (A.1)

where "t = �ut; D1t = I(t = T1 + 1) and DU1t = I(t > T1). Consider the t-statistics

t0(�1) =
�̂1(�1)q

!̂21(�1)
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t=1 xL1;t(�1)xL1;t(�1)
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t1(�1) =
e�1(�1)qe!21(�1) �fPt=1 xD1;t(�1)xD1;t(�1)
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�
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(A.3)

In (A:2); xL1;t(�1) = f1; t; DU1t; DT1tg ; DT1t = (t � T1)I(t > T1); �̂1(�1) is the OLS
estimate of �1 from (1) and !̂

2
1(�1) is an estimate of the long-run variance based on the OLS

residuals ût(�1) = yt � �̂0(�1) � �̂0(�1)t � �̂1(�1)DU1t � �̂1(�1)DT1t. In (A:3); xD1;t(�1) =
f1; D1t; DU1tg and e�1(�1) is the OLS estimate of �1 from (A:1) and e!21(�1) is an estimate of
the long-run variance based on the residuals e"t(�1) = yt� e�0(�1)� e�1(�1)D1t� e�1(�1)DT1t.
The following long-run variance estimators are used:
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�
. Next, consider stationarity statistics S0(�1) and S1(�1) calculated

from the residuals fût(�1)gTt=1 and fe"t(�1)gTt=2 respectively:
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The next step is to choose a weight function which converges to unity when ut is I(0) and to
zero when ut is I(1). Based on the properties of the stationarity statistics, the weight function
�(S0(�1); S1(�1)) = exp [�fg1S0(�1)S1(�1)gg2 ] is recommended. Finally, the proposed test
statistic is

t� =
n
�(S0(�̂1); S1(�̂1))

o
t0(�̂1) +m�

nh
1� �(S0(�̂1); S1(�̂1))

io
t1(e�1) (A.4)

where �̂1 = arg sups2�1
��t0( sT )�� ; e�1 = arg sups2�1

��t1( sT )�� with �1 = [�T; (1 � �)T ]. The
parameter � determines the level of trimming used. The positive constant m� is chosen
such that, for a signi�cance level � under H0; the asymptotic critical value in the I(0) and
I(1) cases coincide. This ensures that the asymptotic null critical values of t� are the same
regardless of whether ut is I(0) or I(1). Based on a range of Monte Carlo simulations
on the �nite sample size and power of the tests, they recommend choosing g1 = 500 and
g2 = 2 for the construction of the weight function �(:). Note that both stationarity statistics
are evaluated at the breakpoint estimator �̂1; this being a consistent estimator of the true
break fraction irrespective of whether ut is stationary or not.

A.1.2 The Perron and Yabu (2009a) Test for a Break in Slope

Perron and Yabu (2009) propose an alternative approach to testing the stability of the trend
function based on a Feasible Quasi Generalized Least Squares procedure. First, the OLS
estimate of � is obtained from the autoregression

ût = �ût�1 +
kX
i=1

� i�ût�i + etk (A.5)

where k is chosen using the Bayesian Information Criterion (BIC) (k is allowed to be in the
range [0; [12(T=100)1=4]]). The corresponding estimate is denoted e�. To improve the �nite
sample properties of the tests, Perron and Yabu use a bias-corrected version of e�; denotede�M , proposed by Roy and Fuller (2001) (See Perron and Yabu, 2009a for details of the bias
correction procedure). Next, Perron and Yabu propose the use of the following super-e¢ cient
estimate of �:

e�MS =

8<: e�M if je�M � 1j > T�1=2
1 if je�M � 1j � T�1=2

It is shown that using such a super-e¢ cient estimate is crucial for obtaining procedures with
nearly identical limit properties in the I(0) and I(1) cases. This estimate is then used to
construct the quasi-di¤erenced regression

(1� e�MSL)yt = (1� e�MSL)x
0
L1;t	+ (1� e�MSL)ut; t = 2; :::; T

y1 = x0L1;1	+ u1 (A.6)
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where 	 = (�0; �0; �1; �1)
0. Denote the resulting estimates by e	FG = (e�FG0 ; e�FG0 ; e�FG1 ; e�FG1 )0.

The Wald test WQF (�1) for a particular break fraction �1; where the subscript QF stands
for Quasi Feasible GLS, is given by

WQF (�1) =

�e�FG1 (�1)
�2

qehv(�1) [(X�0X�)�1]44

whereX� = fxL1;1; (1�e�MSL)xL1;2; :::; (1�e�MSL)xL1;Tg0. The quantity ehv(�1) is an estimate
of (2� times) the spectral density function of vt = (1 � �L)ut at frequency zero. When
je�MSj < 1; a kernel-based estimator

ehv(�1) = T�1 TX
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v̂2t (�1) + 2T
�1

T�1X
j=1

k(j;el) TX
t=j+1
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is used where v̂t(�1) are the OLS residuals from (A:6). The function k(j;el) is the quadratic
spectral kernel and the bandwidth el is selected according to the plug-in method advocated
by Andrews (1991) using an AR(1) approximation. When je�MSj < 1; the estimate suggested
is a autoregressive spectral density estimate that can be obtained from the regression

v̂t =
kX
i=1

� iv̂t�i + etk (A.7)

Denoting the estimate by �̂(L) = 1� �̂1L� :::� �̂kLk and �̂2ek = (T � k)�1
PT

t=k+1 ê
2
tk;
ehv =

�̂2ek=�̂(1)
2. The order of the autoregression (A:7) is again selected using the BIC.

Following Andrews (1993) and Andrews and Ploberger (1994), Perron and Yabu consid-
ered the Mean, Exp and Sup functionals of the Wald test for di¤erent break dates. They
found that with the Exp functional, the limit distributions in the I(0) and I(1) cases are
nearly identical. They thus recommend the test statistic

ExpW = log

"
T�1

X
�12�1

exp

�
1

2
WQF (�1)

�#

A.1.3 The Harvey et al. (2009b) Test for Breaks in Level

Harvey et al. (2009b) propose a robust procedure for detecting multiple level breaks while
accommodating a linear trend in the underlying data generating process. The model con-
sidered is

yt = �0 +
nX
i=1

�iI(t > Ti) + �0t+ ut
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The null hypothesis is H0: �i = 0 for i = 1; :::; n while the alternative is that of at least one
break in level; that is H1: �i 6= 0 for at least one i 2 f1; :::; ng. Let �̂0 denote the estimator
of the trend coe¢ cient, �0, from the OLS regression of yt on f1; tg; t = 1; :::; T . The proposed
test statistic is based on the quantities

M = max
t2�1

���Mt;[mT ] � �̂0[
m

2
T ]
���

S0 = (!̂v)
�1T�1=2M

S1 = (!̂u)
�1T 1=2M

where

M
t;[mT ]

=

P[m
2
T ]

i=1 yt+i �
P[m

2
T ]

i=1 yt�i+1
[m
2
T ]

and !̂v; !̂u denoting long-run variance estimates appropriate for the case of I(1) and I(0)
shocks, respectively (see Harvey et al., 2009b for details on the construction of these es-
timates). Based on the �nite sample properties of the procedure, the choice m = 0:10 is
recommended for practice. The proposed test is

U = max

(
S1;

 
cv1�
cv0�

!
S0

)

where cv1� and cv
0
� denote the �-level asymptotic critical values of S1 under I(1) errors

and S0 under I(0) errors, respectively. The computed value of U is then compared with
��cv1� ; where �� =cv

max
� =cv1� ; where cv

max
� is the �-level critical value from the limit distrib-

ution of max
n
S1;
�
cv1�
cv0�

�
S0

o
.

A.2 Procedures for Selecting the Number of Breaks

A.2.1 The Kejriwal and Perron (2009) Sequential Procedure for Slope Breaks

Buliding on the work of Perron and Yabu (2009a), Kejriwal and Perron (2009) propose a
sequential procedure that allows one to obtain a consistent estimate of the true number of
breaks irrespective of whether the errors are I(1) or I(0). The �rst step is to conduct a
test for no break versus one break. Conditional on a rejection, the estimated break date is
obtained by a global minimization of the sum of squared residuals. The strategy proceeds by
testing each of the two segments (obtained using the estimated partition) for the presence of
an additional break and assessing whether the maximum of the tests is signi�cant. Formally,
the test of one versus two breaks is expressed as

ExpW (2j1) = max
1�i�2

�
ExpW (i)
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where ExpW (i) is the one break test in segment i. We conclude in favor of a model with
two breaks if ExpW (2j1) is su¢ ciently large.1

A.2.2 The Harvey et al. (2009b) Sequential Procedure for Level Breaks

Harvey et al. (2009b) also propose the following sequential procedure for selecting the
number of level breaks in addition to the U test discussed above. First, if S1 > ��cv1� ; denoteet1 = argmaxt2�1(!̂v)

�1T�1=2
���Mt;[mT ] � �̂0[m2 T ]

���. Then, denoting �2 = [et1 � [mT ] + 1;et1 +
[mT ]�1]; if maxt2�1��2(!̂v)�1T�1=2

���Mt;[mT ] � �̂0[m2 T ]
��� �cv1� ; we conclude that the procedure

based on S1 selects one break; otherwise, two breaks are selected. The number of breaks
is denoted n01. A similar procedure based on S0 gives n00 breaks. The number of breaks
selected by the sequential procedure based on U is then nU = max(n01; n

0
0). For a given

number of breaks, consistent estimates of the break dates in the presence of I(1) errors are
also suggested (See Harvey et al., 2009b for details).

A.3 Unit Root Tests

A.3.1 The Harris et al. (2009) Test

Harris et al. (2009) propose a test for a a unit root in the presence of a possible trend
break based on a GLS detrending procedure similar to that used by Elliott et al. (1996)
in the stable trend case. Consider the model given by (1) and (2). The �rst step is to
obtain an estimate of the break fraction by minimizing the sum of squared residuals from
OLS estimation of the �rst di¤erenced regression (A:1). This is denoted e�1. Applying a
quasi-di¤erenced transformation to (1) yields

(1� �(e�1)L)yt = (1� �(e�1)L)x0L1;t(e�1)	 + (1� �(e�1)L)ut; �(e�1) = 1� c(e�1)T (A.8)

where c(e�1) denotes the value at which the asymptotic Gaussian local power envelope for
a break fraction e�1 at a given signi�cance level has power equal to .50. Letting e	c(e�1) andeut;c(e�1) denote the OLS estimate and residuals from (A:8); the next step is to estimate the
Augmented Dickey -Fuller type regression

�eut;c(e�1) = �eut�1;c(e�1) + k1X
j=1

�j�eut�j;c(e�1) + ek1;t; t = k1 + 2; :::; T (A.9)

1For the general model with k breaks, the estimated break points are obtained by a global minimization
of the sum of squared residuals. The strategy proceeds by testing each k + 1 segment (obtained using the
estimated partition) for the presence of an additional break. The test thus amounts to the application of
k + 1 tests of the null hypothesis of no change versus the alternative hypothesis of a single change and
assessing whether the maximum is signi�cant. See Kejriwal and Perron (2009) for more details.
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The unit root statistic, denoted H; is then the t-statistic for � = 0 in (A:9). The lag length
k1 is selected using the modi�ed Akaike Information Criterion (MAIC) proposed in Ng and
Perron (2001).

A.3.2 The Carrion et al. (2009) Tests

Carrion et. al (2009) propose an alternative testing procedure which allows for multiple
structural breaks in the level and/or slope of the trend function under both the null and
alternative hypotheses. The tests are extensions of the M class of tests analyzed in Ng and
Perron (2001) and the feasible point optimal statistic of Elliott et al. (1996). We will provide
a brief description of the tests for the two breaks model. The model is

yt = �0 + �0t+ �1DU1t + �1DT1t + �2DU2t + �2DT2t + ut

where DUit = I(t > Ti); DTit = (t�Ti)I(t > Ti) (i = 1; 2) and the errors ut are generated as
in (2). First, the estimates of the break fractions � = (�1; �2) and the regression parameters
are obtained by minimizing the sum of squared residuals from the quasi-di¤erenced regression
analogous to (A:8). The sum of squared residuals evaluated at these estimates is denoted

S(�(�̂); �̂) with �(�̂) = 1� c(�̂)
T
. The feasible point optimal statistic is then

P glsT (�̂) =
S(�(�̂); �̂)� �(�̂)S(1; �̂)

s2(�̂)

where s2(�̂) is an autoregressive estimate of the spectral density of vt at frequency zero:

s2(�̂) = s2ek=(1� b̂(1))2 (A.10)

where s2ek = (T � k)�1
PT

t=k+1 ê
2
tk; b̂(1) =

Pk
j=1 b̂j; with b̂j and êtk obtained from the OLS

estimation of

�eyt = b0eyt�1 + kX
j=1

bj�eyt�j + etk
with

eyt = yt � 	̂02xL2;t(�̂); xL2;t(�̂) = n1; t; DU1t(�̂); DU2t(�̂); DT1t(�̂); DT2t(�̂)o (A.11)

and 	̂2 being the OLS estimate obtained from the quasi-di¤erenced regression.
Carrion et al. (2009) also consider extensions of the M -class of tests analyzed in Ng and
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Perron (2001). These are given by

MZgls� (�̂) = (T�1ey2T � s2(�̂))(2T�2 TX
t=2

ey2t�1)�1
MSBgls(�̂) = (T�2

TX
t=2

ey2t�1)1=2=s2(�̂)
MZglst (�̂) = (T�1ey2T � s2(�̂))(4s2(�̂)T�2 TX

t=2

ey2t�1)�1=2
MP glsT (�̂) = [c2(�̂)T�2

TX
t=2

ey2t�1 + (1� c(�̂))T�1ey2T ]=s2(�̂) (A.12)

where s2(�̂) and eyt are as de�ned in (A:10) and (A:11). These test statistics (with obvious
modi�cations) are also used to detect pure level breaks with a stable slope parameter. See
Carrion et al. (2009) for details.
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Table 1: Empirical Size of Joint and Individual Tests, T  150

b  . 5  . 6  . 7  . 8  . 9   1

ExpWJ ExpW t ExpWJ ExpW t ExpWJ ExpW t ExpWJ ExpW t ExpWJ ExpW t ExpWJ ExpW t

(A)   0.3
-.04 .10 .09 .06 .10 .07 .08 .10 .07 .09 .07 .04 .11 .05 .02 .09 .60 .11 .19

-.02 .09 .09 .06 .09 .07 .08 .10 .07 .09 .08 .04 .12 .05 .02 .09 .16 .11 .19

.02 .09 .09 .07 .09 .07 .08 .09 .07 .09 .07 .05 .12 .05 .02 .09 .16 .11 .20

.04 .09 .09 .06 .09 .07 .07 .09 .07 .09 .07 .05 .12 .05 .02 .09 .61 .12 .20

(B)   0.5
-.04 .10 .08 .07 .09 .07 .08 .09 .07 .10 .07 .04 .11 .05 .02 .09 .64 .11 .16

-.02 .10 .09 .06 .09 .06 .08 .09 .07 .10 .07 .04 .12 .05 .02 .09 .14 .11 .19

.02 .09 .08 .06 .09 .07 .08 .10 .07 .09 .07 .04 .12 .05 .02 .09 .15 .11 .18

.04 .09 .08 .06 .09 .07 .08 .09 .07 .09 .07 .04 .12 .05 .02 .09 .60 .11 .20

(C)   0.7
-.04 .09 .09 .07 .09 .07 .07 .09 .07 .09 .07 .05 .12 .05 .02 .10 .61 .09 .18

-.02 .09 .09 .07 .09 .07 .08 .09 .07 .10 .07 .05 .12 .05 .02 .09 .14 .10 .18

.02 .09 .08 .06 .10 .07 .08 .10 .07 .10 .08 .04 .12 .05 .02 .09 .14 .12 .20

.04 .09 .08 .06 .10 .07 .08 .10 .07 .09 .08 .04 .12 .05 .02 .09 .14 .11 .20



Table 2: Empirical Size of Joint and Individual Tests, T  200

b  . 5  . 6  . 7  . 8  . 9   1

ExpWJ ExpW t ExpWJ ExpW t ExpWJ ExpW t ExpWJ ExpW t ExpWJ ExpW t ExpWJ ExpW t

(A)   0.3
-.04 .09 .08 .09 .07 .08 .11 .09 .07 .11 .06 .04 .15 .05 .03 .09 .57 .11 .17

-.02 .09 .08 .09 .07 .07 .11 .09 .07 .11 .06 .04 .15 .05 .03 .09 .12 .12 .16

.02 .09 .08 .09 .07 .07 .10 .08 .07 .12 .06 .05 .15 .05 .03 .09 .14 .11 .16

.04 .09 .08 .09 .08 .07 .10 .09 .07 .11 .06 .05 .15 .05 .03 .09 .62 .10 .15

(B)   0.5
-.04 .09 .08 .09 .07 .07 .10 .09 .07 .12 .07 .04 .15 .05 .03 .09 .59 .10 .14

-.02 .09 .08 .10 .07 .07 .10 .09 .07 .12 .06 .04 .15 .05 .03 .09 .13 .11 .15

.02 .09 .08 .09 .08 .07 .07 .09 .06 .09 .06 .04 .06 .05 .03 .05 .13 .12 .13

.04 .09 .08 .09 .07 .08 .10 .09 .07 .11 .06 .05 .15 .05 .03 .09 .58 .12 .15

(C)   0.7
-.04 .09 .08 .09 .08 .07 .10 .09 .07 .11 .06 .04 .15 .05 .03 .09 .60 .11 .17

-.02 .09 .08 .10 .07 .07 .10 .08 .07 .11 .06 .04 .15 .05 .03 .09 .14 .12 .18

.02 .09 .08 .09 .07 .08 .10 .09 .07 .12 .06 .04 .15 .05 .03 .09 .14 .11 .17

.04 .10 .08 .09 .07 .07 .10 .08 .07 .11 .06 .07 .15 .05 .04 .09 .57 .10 .16



Table 3: MSE-Ratio (MSED=MSEL); T = 150

�01 �01 �0= :5 �0= :6 �0= :7 �0= :8 �0= :9 �0= 1

(A) �01 = 0:3
-0.04 2.219 1.764 1.409 1.204 1.189 0.0105
-0.02 2.148 1.599 1.288 1.107 1.043 0.2045

-0.02 0.00 2.040 1.695 1.378 1.165 1.063 0.3775
0.02 2.150 1.674 1.342 1.161 1.107 0.2982
0.04 2.092 1.672 1.339 1.198 1.074 0.0979
-0.04 2.187 1.679 1.393 1.234 1.202 0.0754
-0.02 2.083 1.647 1.342 1.147 1.049 0.3696

0.02 0.00 2.172 1.608 1.304 1.086 1.034 0.4002
0.02 2.129 1.682 1.400 1.171 1.119 0.1636
0.04 2.121 1.638 1.385 1.191 1.075 0.0282

(B) �01 = 0:5
-0.04 1.652 1.370 1.198 1.097 1.178 0.0096
-0.02 1.672 1.436 1.210 1.118 1.157 0.1291

-0.02 0.00 1.681 1.362 1.179 1.099 1.169 0.3860
0.02 1.695 1.382 1.182 1.044 1.118 0.3219
0.04 1.645 1.372 1.181 1.083 1.145 0.1122
-0.04 1.683 1.378 1.198 1.091 1.161 0.1262
-0.02 1.681 1.433 1.231 1.164 1.183 0.3394

0.02 0.00 1.738 1.399 1.196 1.084 1.126 0.3945
0.02 1.703 1.426 1.162 1.083 1.161 0.1129
0.04 1.587 1.369 1.188 1.073 1.159 0.0239

(C) �01 = 0:7
-0.04 2.197 1.680 1.365 1.124 1.047 0.0036
-0.02 2.314 1.861 1.496 1.282 1.207 0.0915

-0.02 0.00 2.195 1.706 1.356 1.201 1.167 0.3262
0.02 2.248 1.744 1.362 1.183 1.163 0.3645
0.04 2.282 1.806 1.432 1.186 1.183 0.1821
-0.04 2.076 1.578 1.328 1.109 1.030 0.1984
-0.02 2.105 1.655 1.392 1.242 1.206 0.3674

0.02 0.00 2.313 1.756 1.499 1.269 1.153 0.3455
0.02 2.334 1.811 1.491 1.195 1.186 0.0888
0.04 2.102 1.687 1.402 1.229 1.180 0.0085

MSED and MSEL are the mean squared errors of the estimated
break dates from the speci�cation in �rst di¤erences and levels



Table 4: MSE-Ratio (MSED=MSEL); T = 200

�01 �01 �0= :5 �0= :6 �0= :7 �0= :8 �0= :9 �0= 1

(A) �01 = 0:3
-0.04 4.854 3.095 2.012 1.358 1.164 0.0139
-0.02 4.456 3.030 1.958 1.416 1.131 0.1051

-0.02 0.00 4.817 2.943 1.973 1.382 1.098 0.2686
0.02 4.889 3.164 1.996 1.401 1.101 0.2393
0.04 4.702 3.073 2.037 1.416 1.147 0.0782
-0.04 4.716 3.132 2.050 1.444 1.207 0.0637
-0.02 4.869 3.106 1.986 1.411 1.201 0.2520

0.02 0.00 4.537 3.032 2.018 1.428 1.174 0.2670
0.02 4.695 2.990 1.936 1.434 1.096 0.1062
0.04 4.774 3.236 2.090 1.447 1.212 0.0122

(B) �01 = 0:5
-0.04 3.170 2.359 1.678 1.273 1.164 0.0019
-0.02 3.055 2.146 1.569 1.206 1.121 0.0901

-0.02 0.00 3.122 2.293 1.673 1.278 1.148 0.2784
0.02 2.980 2.185 1.620 1.249 1.151 0.2473
0.04 2.999 2.195 1.553 1.189 1.116 0.0953
-0.04 3.162 2.234 1.648 1.255 1.105 0.0823
-0.02 3.002 2.213 1.585 1.188 1.118 0.2661

0.02 0.00 3.083 2.290 1.668 1.276 1.150 0.2689
0.02 3.061 2.238 1.605 1.270 1.147 0.0848
0.04 3.011 2.170 1.569 1.238 1.128 0.0067

(C) �01 = 0:7
-0.04 4.491 2.963 1.985 1.443 1.098 0.0064
-0.02 4.427 3.072 1.979 1.352 1.127 0.0722

-0.02 0.00 4.397 2.925 2.052 1.479 1.204 0.2545
0.02 4.157 3.008 1.988 1.428 1.205 0.3096
0.04 4.302 2.894 1.957 1.463 1.156 0.1549
-0.04 4.808 3.246 2.180 1.529 1.138 0.1159
-0.02 4.239 3.023 2.033 1.410 1.168 0.2961

0.02 0.00 4.615 3.175 2.017 1.451 1.142 0.2211
0.02 4.419 3.029 2.092 1.489 1.242 0.0802
0.04 4.413 3.136 2.125 1.486 1.166 0.0039

MSED and MSEL are the mean squared errors of the estimated
break dates from the speci�cation in �rst di¤erences and levels



Table 5: Robust Tests for Breaks in Trend

Slope Breaks Level Breaks

Country\Test ExpW ExpW2|1 t #Breaks U #Breaks

Australia 0.87 0.41 2.67 0 0.37 0

Austria 2.82* 235.78* 5.06* 2 - -

Belgium 2.36* 13.18* 5.89* 2 - -

Canada -0.21 -0.03 1.50 0 0.50 0

Denmark 0.38 1.90 2.63 0 0.56 2

Finland 3.41* 0.05 4.30* 1 - -

France 1.56 14.34* 2.87 0/2 0.52 0

Germany 0.40 8.14* 3.18* 2 - -

Italy 0.99 12.70* 3.36* 2 - -

Japan 2.50* 26.79* 3.82* 2 - -

Netherlands 1.36 7.64* 3.08* 2 - -

Norway 2.35* 0.07 5.96* 1 - -

New Zealand -0.01 5.84* 3.76* 2 - -

Portugal 4.85* 1.02 4.10* 1 - -

Spain 4.99* 1.03 3.82* 1 - -

Sweden 1.80* 1.33 3.08* 1 - -

Switzerland -0.04 29.52* 1.47 0/2 0.44 0

UK 12.67* 0.12 2.23 1 - -

USA -0.05 0.68 1.38 0 0.57 1

Here ’*’ denotes significance at the 5% level.



Table 6: Unit Root Tests

Slope Breaks Level Breaks No Breaks

Country\Test MZ
gls MSBgls MZt

gls PT
gls MPT

gls H MZ
gls MSBgls MZt

gls PT
gls MPT

gls MZ
gls MSBgls MZt

gls PT
gls MPT

gls

Australia - - - - - - - - - - - -5.09 0.29 -1.47 18.12 17.37

Austria -21.34 0.15 -3.21 11.76 10.08 - - - - - - - - - - -

Belgium -14.81 0.18 -2.66 14.49 14.03 - - - - - - - - - - -

Canada - - - - - - - - - - - -6.94 0.27 -1.85 13.64 13.15

Denmark - - - - - - -2.02 0.48 -0.98 52.78 43.54 - - - - -

Finland -14.68 0.18 -2.68 7.19 7.14 -2.81 - - - - - - - - - -

France -14.29 0.18 -2.62 16.06 14.57 - - - - - - -4.07 0.34 -1.38 23.00 21.79

Germany -17.21 0.17 -2.86 12.05 12.02 - - - - - - - - - - -

Italy -13.32 0.19 -2.49 19.00 15.62 - - - - - - - - - - -

Japan -19.38 0.16 -3.10 10.53 10.06 - - - - - - - - - - -

Netherlands -13.57 0.19 -2.59 16.16 15.16 - - - - - - - - - - -

Norway -15.21 0.17 -2.72 7.07 6.92 -2.83 - - - - - - - - - -

New Zealand -11.54 0.21 -2.39 18.63 17.62 - - - - - - - - - - -

Portugal -7.70 0.24 -1.89 13.15 12.90 -1.92 - - - - - - - - - -

Spain -6.94 0.26 -1.86 15.22 14.21 -2.10 - - - - - - - - - -

Sweden -7.13 0.25 -1.82 14.33 14.40 -1.61 - - - - - - - - - -

Switzerland -12.07 0.20 -2.39 17.98 17.19 - - - - - - -7.84 0.25 -1.94 11.80 11.72

UK -14.57 0.18 -2.62 7.71 7.47 -2.76 - - - - - - - - - -

USA - - - - - - -7.84 0.25 -1.97 12.81 11.66 - - - - -



Table 7a: Parameter Estimates - Countries with Breaks in Slope (in Percentage)

One Break Two Breaks

Country\Estimate ̂0 ̂0̂1 ̂0̂1/̂0 Date ̂0 ̂0̂1 ̂0̂1̂2 ̂0̂1/̂0 ̂0̂1̂2/̂0̂1 ̂0̂1̂2/̂0 Date 1 Date 2

Austria
−0.59,2.76

1.08
2.38,6.07

4.23 3.90 1945
−0.58, 3.47

1.44
−1.20, 3.65

1.22
2.53, 5.93

4.23 0.85 3.47 2.94 1913 1944

Belgium - - - -
−0.55, 1.69

0.57
1.12, 4.47

2.80
1.49, 3.38

2.43 4.91 0.87 4.26 1917 1939

Finland
−0.09, 2.29

1.10
2.16,3.87

3.02 2.75 1917 - - - - - - - -

France
−0.91, 1.76

0.42
1.47,4.45

2.96 7.05 1946
−0.64,2.61

0.98
−1.88,2.41

0.26
1.52,4.40

2.96 0.27 11.38 3.02 1917 1945

Germany
−0.18,2.57

1.20
2.13,5.20

3.67 3.06 1946
−0.67, 2.96

1.14
−0.54, 5.05

2.25
1.97,5.36

3.67 1.97 1.63 3.22 1922 1945

Italy - - - -
0.22, 3.18

1.70
−2.63, 1.48
−0.57

2.51, 5.14
3.82 -0.34 -6.70 2.25 1918 1944

Japan - - - -
0.95,2.52

1.73
6.36, 8.92

7.64
0.99, 3.39

2.19 4.42 0.29 1.27 1944 1973

Netherlands
0.48,1.02
−0.03

1.35,4.17
2.76 −79.96 1946

−1.11,1.92
0.41

−3.71,0.42
-1.65

1.41,4.12
2.76 -4.02 -1.67 6.73 1918 1945

New Zealand - - - -
0.06,2.87

1.47
−1.55, 1.74

0.09
0.60,2.65

1.63 0.06 18.11 1.11 1907 1935

Norway
0.40, 2.39

1.40
2.10,3.62

2.86 2.04 1921 - - - - - - - -

Portugal
−0.22,1.57

0.67
2.15,3.90

3.02 4.51 1937 - - - - - - - -

Spain
0.16,2.17

1.17
2.24,4.17

3.21 2.74 1936 - - - - - - - -

Sweden
0.47,2.04

1.26
1.95,3.07

2.51 1.99 1917 - - - - - - - -

Switzerland - - - -
0.45,2.63

1.54
0.32,3.17

1.74
0.90,2.79

1.84 1.13 1.06 1.19 1916 1944

U.K.
0.26,1.97

1.11
1.15,2.42

1.78 1.60 1919 - - - - - - - -



Table 7b: Parameter Estimates - Countries with a Stable Slope (in Percentage)

One Level Break Two Level Breaks No Level Breaks

Country\Estimate ̂0 Date ̂0 Date 1 Date 2 ̂0 (HLT0) ̂0 (PY0)

Australia - - - - -
0.85,2.10

1.47
0.53,2.42

1.48

Canada - - - - -
1.31,2.67

1.99
1.85,2.09

1.97

Denmark - -
1.54,2.58

2.06 1914 1939 - -

France - - - - -
0.76,2.92

1.84
0.50,3.17

1.84

Switzerland - - - - -
1.30,2.32

1.81
1.08,2.49

1.79

USA
1.07,3.05

2.06 1945 - - - - -



Table 8a: Studies of the Maddison Dataset allowing for One Endogenous Break

Raj (1992) Zelhorst et al. (1995) Ben-David et al. (1995)

Country Date �̂0

1X
i=0

�̂i Date Date �̂0

1X
i=0

�̂i

Australia 1928 0.1 0.7 1927 1927* 0.16 0.65

Austria - - - - 1944* 0.4 2.23

Belgium - - - - 1939* 0.29 1.08

Canada 1930* 0.9 1.7 1928* 1928* 1.00 1.26

Denmark 1940* 0.8 1.6 1939* 1939* 0.66 1.19

Finland - - - 1913* 1913* 0.40 0.75

France 1940* 0.6 2.2 1939* 1939* 0.53 1.68

Germany - - - 1946/1953* 1955* 1.67 2.46

Italy 1943 0.4 0.7 1945/1942* 1939 0.27 0.81

Japan - - - - 1944* 1.02 3.17

Netherlands - - - 1945/1939 1939 0.71 1.49

Norway - - - 1944/1939 1939 0.33 0.68

Sweden 1917 0.6 0.8 1915* 1916* 0.47 0.91

Switzerland - - - - 1944 0.26 -

UK 1919* 0.3 0.5 1918* 1918* 0.29 0.52

USA 1930* 1.1 1.3 1929* 1929* 0.9 1.13

Note: Here �*�denotes rejection of the unit root hypothesis.



Table 8b: Studies of the Maddison Dataset allowing for Two Endogenous Breaks

Ben-David et al. (2003) Papell and Prodan (2009)

Country (Date 1,Date 2) �̂0

1X
i=0

�̂i

2X
i=0

�̂i (Date 1,Date 2) �̂0

1X
i=0

�̂i

2X
i=0

�̂i

Australia (1891,1927)* 1.31 0.65 1.87 1931* 0.07 0.42 -

Austria (1944,1959)* 1.09 8.73 3.11 (1944,1976)* 0.29 12.86 1.00

Belgium (1916,1939)* 0.90 1.63 2.62 (1939,1976)* 0.29 1.12 0.61

Canada (1908,1928)* 1.98 1.76 2.35 (1930,1940)* 0.46 2.25 0.49

Denmark (1939,1975)* 1.53 2.70 1.53 (1939,1969)* 0.77 1.65 0.82

Finland (1916,1943)* 1.11 3.20 3.38 - - - -

France (1939,1974)* 1.29 3.49 1.86 (1939,1972)* 0.62 2.24 0.81

Germany (1944,1958) 1.83 6.81 2.76 (1944,1950)* 0.2 9.74 0.33

Italy (1942,1966) 1.03 4.15 2.84 (1942,1948)* 0.19 5.27 0.32

Japan (1944,1973)* 1.69 7.68 3.29 (1944,1972)* 1.23 5.38 1.60

Netherlands (1939,1975) 1.09 2.87 1.09 (1943,1946)* 0.24 27.71 0.65

Norway (1917,1939)* 1.10 3.14 3.21 - - - -

Spain - - - - (1935,1972)* 0.18 1.01 0.54

Sweden (1916,1963)* 1.27 2.93 2.11 (1916,1968)* 0.48 1.07 0.55

Switzerland (1921,1944) 0.98 1.21 2.27 1944* 0.25 0.23 -

UK (1918,1945)* 1.12 1.13 2.13 1918* 0.26 0.45 -

USA (1929,1955)* 1.77 2.13 1.85 (1929,1942)* 0.61 2.00 0.71

Note: Here �*�denotes rejection of the unit root hypothesis.
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