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Abstract5

In this paper, we derive explicit characterizations of convex and concave envelopes of several6

nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained7

by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be8

constructed easily. In particular, we use these techniques to derive, in closed-form, the concave9

envelopes of concave-extendable supermodular functions and the convex envelopes of disjunctive10

convex functions.11

1 Introduction and Motivation12

A significant amount of research has been devoted to developing concave overestimators and convex13

underestimators of nonlinear functions f(x) over the hypercube. One of the motivations for such14

research is that, whenever an optimization problem involves maximizing f(x) (resp. minimizing15

f(x)) or contains an inequality f(x) ≥ r (resp. f(x) ≤ r), replacing f(x) by a concave overestimator16

(resp. convex underestimator) yields a convex relaxation of the problem. Such a relaxation can, for17

instance, be used in branch-and-bound algorithms for global optimization where convex relaxations18

must be constructed over successively refined partitions of the original variable space; see [37] for19

an exposition.20

In order for branch-and-bound algorithms to produce globally optimal solutions, certain mild21

technical conditions are typically needed; see [16]. In particular, if one can guarantee that for a22

minimization problem the node with the lowest lower bound is chosen periodically, the volume23

of partition elements tends to zero, and the relaxations approach the original functions when the24

volume of the partition elements goes down to zero, branch-and-bound converges to a globally25

optimal solution. It is well-known, see for example [3], that the concave (resp. convex) envelope,26

i.e. the lowest (resp. highest) concave overestimator (resp. convex underestimator) of a function27

over a specified region, converges to this function as partition elements become smaller. As a28

result, deriving concave and convex envelopes of nonlinear functions over partition elements is a29

problem that is commonly encountered in the implementation of branch-and-bound algorithms for30

nonlinear programs. Further, since among all partitioning schemes in branch-and-bound algorithms,31

the rectangular partitioning scheme in which partition elements are hyper-rectangles is used most32

often, computing convex and concave envelopes of general functions f(x) over a hyper-rectangle is33

a problem of crucial practical importance.34

∗The work was supported by NSF CMMI 0900065 and 0856605.
†Krannert School of Management, Purdue University. Email: mtawarma@purdue.edu. Corresponding author.
‡Department of Industrial and Systems Engineering, University of Florida.
§Krannert School of Management, Purdue University.

1



Since it is NP-Hard to maximize/minimize a multilinear function over the unit hypercube, see35

[9], finding the concave/convex envelope of a generic function f(x) is provably hard. Nevertheless,36

for many practically useful functions, such as bilinear terms [1], various types of multilinear functions37

[24, 30, 27, 5, 3], and the fractional term [36], concave envelopes have been derived in the literature.38

Further, general theoretical frameworks for the construction of such envelopes [2, 10, 32, 7, 31,39

38, 21, 23] have been proposed. It is noticeable however that, despite recent progress in the field,40

there remain many practically useful functions for which concave envelopes are not known. As41

an example, consider the function d(x) = 1
a0+

∑n
i=1 aixi

over the unit hypercube. This function42

appears, for instance, in the formulation of the consistent biclustering problem [6]. If we assume43

that a0 +
∑n

i=1 aixi > 0 whenever 0 ≤ x ≤ 1, then f is well-defined over the relevant domain. A44

standard procedure to relax z = d(x) is to first introduce a new variable y = a0 +
∑n

i=1 aixi and45

then to relax z = 1
y by constructing the convex and concave envelopes of 1

y . This leads to the46

relaxation z ≥ 1
y and z ≤ 1

yL
+ yL−y

yUyL
. Here, yL and yU are computed respectively by minimizing and47

maximizing a0 +
∑n

i=1 aixi over the unit hypercube. Assuming ai 6= 0 for i = 1, . . . , n and n > 1,48

this procedure yields a concave overestimator of d(x) that is weaker than the concave envelope of49

d(x).50

In this paper, we develop techniques for identifying the convex/concave envelopes of nonlinear51

functions by investigating polyhedral subdivisions of the hyper-rectangle. Following this approach,52

we provide streamlined and unified generalizations of a variety of results from the literature and53

expose new convex/concave envelope characterizations and separation results for them. In Section 2,54

we develop a general set of tools for the convexification of polyhedral functions providing a common55

framework for the derivation of earlier results in [24, 30, 3]. In particular, we show that computing56

the value of the concave envelope at a point is equivalent to solving a certain optimization problem.57

Insights derived from this result allow us to describe polynomial separation procedures for a variety58

of functions. For example, we show that the concave (resp. convex) envelopes of a maximum59

(resp. minimum) of a collection of functions is polynomially separable if the concave (resp. convex)60

envelopes of the individual functions are polynomially separable. The remainder of the paper studies61

a variety of polyhedral subdivisions of the hyper-rectangle and gives insights regarding the classes62

of functions for which they describe the convex/concave envelopes.63

In Section 3, we show that by combining the results of [19, 42, 38] concave envelopes of super-64

modular concave-extendable functions can be developed over a lattice family. This result gener-65

alizes the explicit characterizations of convex/concave envelopes for specific functions described in66

[30, 8, 5, 21, 26]. In addition, we show that this result has many, as yet unrealized, applications67

in improving relaxations of factorable programs beyond the classical technique of [20] and its more68

recent variants implemented in global optimization software [40, 18, 4]. To support this claim,69

consider the function d(x) described above. This function is of the form f(x) = c (a0 +
∑n

i=1 aixi).70

Our results allow the derivation of the concave (resp. convex) envelope of f over a hyper-rectangle71

if c(·) is a convex (resp. concave) function. In factorable programming, products of variables are72

replaced with new variables until a function of the form of f(x) is obtained. Then, a variable, say73

y, is introduced to replace a0 +
∑n

i=1 aixi and c(y) is overestimated using a linear function over74

[yL, yU ] where the bounds yL and yU are derived from the bounds on xi and the defining expression75

for y. Assume n > 1, c(·) is strictly convex, and without loss of generality that ai > 0 for all76

i. Then, the factorable relaxation is clearly weaker than the aforementioned envelope because the77

concave envelope matches the function value at (xU1 , . . . , x
U
n−1, x

L
n) whereas the factorable relaxation78

overestimates the function value. This illustrates that exploiting the closed-form concave envelopes79

we develop in this paper will help strengthen relaxations in commercial global optimization solvers.80

In Section 4, we show that the orthogonal disjunctions theory [23] can be used to develop con-81
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vex envelopes of functions of the form xg(y) over the unit hypercube when g(·) is a non-increasing82

convex function. These relaxations are piecewise-conic and have a variety of applications in global83

optimization. For example, we show that a variety of fractional, logarithmic, and polynomial func-84

tions can be convexified using the approach. We also develop polyhedral subdivisions to convexify85

a symmetric function of binary variables generalizing prior results in [30]. We then study situa-86

tions where the envelope of a function obtained over the unit hypercube is similar/dissimilar to87

its envelope over a subset of the hypercube. In particular, we describe two extreme situations. In88

the first case, the envelope changes over the entire subregion and therefore an entirely new proof is89

required. In the second case, the envelope remains the same over a portion of the feasible region90

and, therefore, we leverage the proof of the envelope over the hyper-rectangle in our construction.91

Throughout the section, we provide examples and sample illustrations of our results. We conclude92

in Section 5 with comments on the applicability of the results developed in this paper and directions93

of future research.94

2 Preliminaries95

In this section, we review and unify existing literature regarding the derivation of concave envelopes96

over hyper-rectangles.97

Definition 2.1. For a function f : S 7→ R, where S is a nonempty convex subset of Rn, the function98

g(x) : S → R is the concave envelope of f(x) over S if99

1. g(x) is concave over S100

2. g(x) ≥ f(x) for all x ∈ S101

3. If h(x) is any concave function over conv(S) that satisfies h(x) ≥ f(x) for all x ∈ S, then102

h(x) ≥ g(x) for all x ∈ S.103

We denote the concave envelope of f over a set S by concS(f). If the region is clear from the104

description, we sometimes will omit the subscript S.105

In words, concS(f) is the lowest concave overestimator of the function f(x) over S. Similarly,106

the convex envelope of a function is the highest convex underestimator of the function f over S. In107

the remainder of the text, we will refer to the convex envelope as convS(f).108

We consider a continuous function f(x) = f(x1, x2, . . . , xn) over the hyper-rectangle xLi ≤ xi ≤109

xUi . The conjugate of f is denoted as f∗. We assume without loss of generality (wlog) that xUi > xLi110

for i = 1, . . . , n. Otherwise, the dimension of x can be reduced by fixing variables xi with xUi = xLi .111

We further assume that, for every i, xUi = 1 and xLi = 0, or else, the following linear transformation112

can be used to transform x into x′:113

x′ = T (x) = T (x1, . . . , xn) =

(

x1 − xL1
xU1 − xL1

, . . . ,
xn − xLn
xUn − xLn

)

(1)114

where 0 ≤ x′ ≤ 1. Transformation (1) will typically be without loss of generality for our study115

although we mention that it might not preserve all useful properties of f . In the remainder of this116

paper, we refer to the unit hypercube in Rn as Hn, i.e. Hn = [0, 1]n.117

Concave envelopes can often be constructed by restricting the domain of the definition of f to118

the extreme points of the hypercube. Definition 2.2, which is inspired by previous work on convex119

extensions [37], formalizes this notion.120
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Definition 2.2. A function f(x) : P → R, where P is a polytope, is said to be concave-extendable121

(resp. convex-extendable) from X ⊆ P if the concave (resp. convex) envelope of f(x) is only122

determined by X, i.e., conc(f) over P is also the concave envelope of f̂ over P , where f̂ is the123

restriction of f to X that is defined as follows:124

f̂(x) =

{

f(x) x ∈ X
−∞ otherwise.

125

126

It follows from Definition 2.2 that conv(X) = P . In particular, we will often encounter functions127

that are concave-extendable or convex-extendable from the vertices of the unit hypercube, i.e.128

P = [0, 1]n and X = vert([0, 1]n). Clearly, convex functions are always concave-extendable from129

vertices. Examples of functions that are not convex but still concave-extendable from vertices130

include multilinear functions [24] and, more generally, functions that are convex when restricted131

to the space of each variable, i.e., the space created when all other variables are fixed to arbitrary132

values within their domain. The concave envelope of any function that is concave-extendable from133

vertices is polyhedral since it is completely determined by a finite number of points. A partial134

converse is also known to be true: all continuously differentiable functions that have a polyhedral135

concave envelope over the unit hypercube are concave-extendable from vertices; see Theorem 1.1 in136

[24].137

Concave envelopes of functions that are concave-extendable from the vertices of P are intimately138

related to certain partitions of P . We describe these relations next.139

Definition 2.3 ([17]). Let S ⊆ Rn. A set of n-dimensional polyhedra S1, . . . , Sm ⊆ S is a polyhedral140

subdivision of S if S =
⋃m

i=1 Si and Si ∩ Sj is a (possibly empty) face of both Si and Sj.141

In particular if each polyhedron in the subdivision is a simplex, then the polyhedral subdivision142

is called a triangulation. In the optimization literature, triangulations are also known as simplicial143

covers; see [5] for example. Observe that there is no requirement in Definition 2.3 that the extreme144

points of Si are also extreme points of S. However, in this paper, we will be most interested in145

subdivisions where the extreme points of each polyhedron are also extreme points of S. We say146

that these subdivisions do not add vertices.147

Consider a finite collection of points (v1, . . . , vm) ∈ Rn such that aff(conv(v1, . . . , vm)) = Rn.148

Consider the corresponding matrix V ∈ Rn×m, whose jth column Vj satisfies Vj = vj , We denote149

the submatrix of V that consists of columns in an index set J as V (J). For simplicity of notation150

and because it will be clear from the context, we also denote the set of points vj corresponding151

to the index set J as V (J) and therefore we use conv(V (J)) to represent conv
(

⋃

j∈J vj

)

. Let152

f(V ) = (f(v1), . . . , f(vm)) and let e denote the vector of all ones. Consider the following primal-153

dual pair of linear programming problems:154

P (x) : min
(a,b)

aTx+ b

s.t. aTV + be ≥ f(V )
a ∈ Rn, b ∈ R

D(x) : max
λ

f(V )Tλ

s.t. V λ = x

eTλ = 1
λ ≥ 0.

155

The constraints of the primal problem P (x) express that for the linear inequality aTx+b to be valid156

for the concave envelope of f over conv(V ), its value at each of the points vj must be larger than157

f(vj). Given a point x ∈ Rn, the dual problem searches to find, among all ways of describing x as a158

convex combination of vectors vj, one that yields the largest interpolated value. Let F denote the159
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feasible region of P (x). Observe that F does not depend on x and that F is nonempty since b can160

be chosen arbitrarily large. Since D(x) is feasible if x ∈ conv(V ) and since the feasible region of161

D(x) is bounded, it follows from strong duality in linear programming that the optimal values of162

P (x) and D(x) are finite and equal for each x ∈ conv(V ). We denote this optimal value by z(x).163

For a given (a, b) ∈ F , we let J(a, b) denote the index set of constraints of F that are tight at (a, b)164

and let R(a, b) = conv
(

V
(

J(a, b)
)

)

. It follows from complementarity slackness conditions that if165

(a, b) is optimal for P (x), then all optimal solutions λ to D(x) belong to R(a, b). In the following166

theorem, we record some relations between the above primal-dual pair and conc(f)(x). Similar167

results have appeared in the literature. We will discuss these connections after the proof.168

Theorem 2.4. Consider a function f : V 7→ Rn and let conc(f) be its concave envelope over169

conv(V ). Also define R =
{

R(a′, b′) | (a′, b′) ∈ vert(F )
}

. Then,170

1. z(x) = conc(f)(x) for x ∈ conv(V ).171

2. Let (a∗, b∗) ∈ vert(F ). Then, (a∗, b∗) is optimal for P (x) if and only if x ∈ R(a∗, b∗). Fur-172

ther, the extreme points of F are in one-to-one correspondence with the non-vertical facets of173

conc(f)(x).174

3. For each (a′, b′) ∈ vert(F ), a′x+ b′ ≥ f(x) defines a facet of conc(f) over R(a′, b′).175

4. R is a polyhedral subdivision of conv(V ). Further, conc(f) can be computed by interpolating176

f affinely over each element of R.177

Proof. To prove (1), we consider x′ ∈ conv(V ). Let λ′ be any feasible solution of D(x′), then178

conc(f)(x′) = conc(f)(V λ′) ≥ conc(f)(V )Tλ′ ≥ f(V )Tλ′ (2)179

where the equality follows from feasibility of λ′, the first inequality holds from concavity of conc(f)180

and the second inequality is satisfied because conc(f)(x) ≥ f(x) for all x ∈ conv(V ). This implies181

that conc(f)(x′) ≥ z(x′) since λ′ can be chosen to be an optimal solution of D(x′) in (2). Further,182

if (a′, b′) is feasible to F , then a′Tx + b′ ≥ f(x) for all x ∈ {v1, . . . , vm}. Since affine functions are183

concave, we know that a′x′ + b′ ≥ conc(f)(x′). This implies that conc(f)(x′) ≤ z(x′) since (a′, b′)184

can be chosen to be an optimal solution of P (x′). We conclude that conc(f)(x′) = z(x′).185

We now prove (2). Since aff(conv(v1, . . . , vm)) = Rn and rank(V | e) = n + 1, by Minkowski’s186

representation theorem (see Theorem 4.8 in [22]), there exists an optimal solution (a∗, b∗) to P (x)187

that is an extreme point of F . Consider any point x′′ ∈ R(a∗, b∗). Since x′′ can be expressed as a188

convex combination of vj , j ∈ J(a∗, b∗), there exists a solution λ′′ that is feasible to D(x′′) and that189

satisfies complementary slackness conditions with (a∗, b∗). Therefore, (a∗, b∗) must be optimal to190

P (x) for every x ∈ R(a∗, b∗). Further, since (a∗, b∗) is an extreme point of F , at least n + 1 of the191

points in V
(

J(a∗, b∗)
)

are affinely independent. This implies that a∗x+ b∗ ≥ f(x) defines a facet of192

conc(f). On the other hand, (a∗, b∗) cannot be optimal to P (x′′) if x′′ 6∈ R(a∗, b∗) since there does193

not exist a complementary dual feasible solution.194

Consider a non-vertical facet G defined by ãx+ b̃ ≤ f(x) and consider a point (x̃, ãx̃+ b̃) in the195

relative interior of this facet. First, note that (ã, b̃) is feasible to F and ãx̃+ b̃ = conc(f)(x̃) = z(x̃).196

Therefore, (ã, b̃) is optimal to P (x̃). Since any underestimating inequality of f(x) that is tight at197

(x̃, ãx̃ + b̃) is also tight everywhere on G and dim(G) = n, it follows that the optimal solution for198

P (x̃) is unique. Since P (x̃) always has an extreme point solution, (ã, b̃) must be an extreme point199

of F . Hence, there is a one-to-one correspondence between extreme points and facets of conc(f).200

We have shown that for each x ∈ conv(V ) there is an extreme point of F that optimizes P (x)201

and the optimal value is z(x). Therefore, R is the subdivision of conv(V ) obtained by projecting202

5



the hypograph of z(x) to x-space. As proven above, the concave envelope is affine over each R(a, b)203

if (a, b) ∈ vert(F ) and ax+ b > conc(f)(x) if x 6∈ R(a, b). Projecting the hypograph of a polyhedral204

function yields a (regular) polyhedral subdivision of the domain; see [17]. Further, for each extreme205

point, (a′, b′), of F , V
(

J(a′, b′)
)

⊆ R(a′, b′) consists of at least n + 1 affinely independent points.206

Therefore, (a′, b′) can be recovered from R(a′, b′) by solving the corresponding constraints of F .207

Any polyhedral subdivision can be refined into a triangulation [17]. Therefore, by Theorem 2.4208

there exists a triangulation of the domain that is such that conc(f) is affine over each simplex of the209

triangulation and conc(f)(x) = f(x) at all extreme points x of the simplices of the triangulation.210

Theorem 2.4 can be partially extended to general nonlinear functions by expanding the set of211

constraints to include an inequality for each feasible point (or, more precisely, each point in the212

generating set); see [37] for details. The main idea is that since b ≥ f(x)− aTx for all x, it follows213

that the objective is minimized when b = (−f)∗(−aT ); see [25]. Then, inf{aTx + b} = inf{aTx +214

(−f)∗(−aT )} = − sup{−aTx − (−f)∗(−aT )} = −(−f)∗∗(x). If the underlying set is compact and215

f(x) is upper-semicontinuous, f(x) is bounded from above. Therefore, −(−f)∗∗(x) = conc f(x) by216

Theorem 1.3.5 in [14]. The advantage of restricting the result to finite point sets is that F has217

finitely many constraints, and, as a result, one can identify the facets of the concave envelope as218

well as the simplices of the corresponding triangulation by studying the basic feasible solutions of F .219

When Theorem 2.4 is applied to functions that are concave-extendable from vertices of a hypercube,220

the number of constraints defining F is exponentially large, since a constraint is created for each221

extreme point of the hypercube. As a result, identifying the basic feasible solutions of F can be222

computationally difficult. In this paper, we identify situations where these basic feasible solutions223

can be identified explicitly. We now relate Theorem 2.4 to existing results in the literature.224

Concave-extendability has been used in [3] to develop an algorithmic approach for the derivation225

of concave envelopes. In particular, the authors designed a column-generation algorithm to find a226

facet of the concave envelope of a function that is concave-extendable from vertices by separating227

the envelope from a pre-specified point. They also proved, using a slightly different proof technique,228

the following result that establishes the correspondence between the facets of the concave envelope229

and the basic solutions of P (x).230

Corollary 2.5 (Theorem 2.4 in [3]). z = a∗Tx + b∗ defines a non-vertical facet of the concave231

envelope of the multilinear function f(x) over P =
∏n

i=1 [li, ui] if and only if (a∗, b∗) is a basic232

feasible solution of the following linear programming problem:233

min
(a,b)

aTx+ b

s.t. aT vj + b ≥ f(vj) ∀ vj ∈ vert(P )

a ∈ Rn, b ∈ R.

(3)234

Proof. Multilinear functions are concave-extendable from vertices of hypercubes; see [24]. Letting235

V = vert(P ), the result follows directly from Theorem 2.4.236

Corollary 2.6 (Lemma 1.1 in [24]). Let f(x) be a continuously differentiable function on an n-237

dimensional convex polytope P . Assume conc(f)(x) over P is a polyhedral function. Let h(x) =238

ax+b be an affine function and assume that there exist vi, i = 1, . . . , n+1, n+1 affinely independent239

vertices of P , such that h(vi) = f(vi), i = 1, . . . , n+ 1 and h(x) ≥ f(x) for all x ∈ vert(P ). Then,240

h(x) is an element of conc(f) and, in particular, h(x) defines the concave envelope of f(x) over241

conv(v1, . . . , vn+1).242
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Proof. For a continuously differentiable function, conc(f) is polyhedral if and only if f is concave-243

extendable from vertices; see Theorem 1.1 in [24]. Note that ax+ b ≥ f(x) for all x ∈ vert(P ) and244

aT vi + b = f(vi) for n+ 1 affinely independent vertices establish that (a, b) is an extreme point of245

F . Since conv(v1, . . . , vn+1) ⊆ R(a, b), the result follows from Theorem 2.4.246

We now exploit Theorem 2.4 to study functions constructed by affine extensions over triangula-247

tions. Formally, let S = (S1, . . . , Sm) be a triangulation of conv(V ) that does not add new vertices,248

where Si is a simplex for each i and Ji denotes the index set of vertices of Si. We construct the249

function fS : S 7→ R by interpolating the function f affinely over each simplex Si. More precisely,250

given a point x ∈ S, there exists an i such that x ∈ Si. Since Si is a simplex, there exists a unique251

λ that is feasible to D(x) and is such that λj = 0 for all j 6∈ Ji. Then, we define fS(x) = f(V )Tλ.252

Note that this definition is consistent because if x ∈ Si ∩ Si′ , then x belongs to a common face of253

Si and Si′ , and λj = 0 for all j 6∈ Ji ∩ Ji′ .254

Corollary 2.7. Consider a function f : V 7→ R, and let S be a triangulation of conv(V ) that does255

not add vertices. Then, fS is the concave envelope of f over conv(V ) if and only if fS is concave.256

Proof. Clearly, fS is a concave envelope of f only if it is concave. Now, we show the converse.257

By construction, fS(x) is the objective value of a feasible solution in D(x). Then, it follows from258

Theorem 2.4 that for any x ∈ conv(V ), fS(x) ≤ conc(f)(x). Further, fS(x) = f(x) whenever x ∈ V259

and so fS(x) ≥ f(x). Since fS is concave, fS(x) ≥ conc(f)(x). Therefore, for any x ∈ conv(V ),260

fS(x) = conc(f)(x).261

The ideas in Corollary 2.7 can be extended to more general settings using the notion of barycen-262

tric coordinates or inclusion certificates; see [34]. Theorem 2.4 was proven with a finite point set263

and can be used to construct concave envelopes of functions restricted to this set. If the optimal264

value function of P (x) turns out to be the concave envelope of the unrestricted f over conv(V ),265

then it follows that f must be concave-extendable from V . This observation is formalized below.266

Corollary 2.8. Consider a function f : conv(V ) 7→ R. Then, there exists a triangulation S using267

only the vertices in V such that fS is the concave envelope of f over conv(V ) if and only if f is268

concave-extendable from V .269

Proof. If f is concave-extendable from V , then the result follows directly from Theorem 2.4 and270

the fact that any polyhedral subdivision can be refined into a triangulation. For the converse,271

let S be a triangulation for which fS is the concave envelope of f over conv(V ). It follows that,272

fS(x) ≤ z(x) ≤ conc(f)(x) = fS(x), where the first inequality is satisfied because fS(x) corresponds273

to a feasible solution for D(x), the second inequality follows from Theorem 2.4 where it is shown274

that z(x) is the concave envelope of f restricted to V , and the last equality holds because of our275

assumption. Therefore, the equality holds throughout. Then, z(x) = conc(f)(x) which in turn276

implies by Theorem 2.4 that f is concave-extendable from V .277

Consider the problem M(r, s) = max{f(x) − rtx − s | x ∈ V }. The ability to construct the278

concave envelope of f(x) is closely related to the ability to solve M(r, s).279

Corollary 2.9. If M(r, s) can be solved in polynomial time, then P (x) can also be solved in poly-280

nomial time. Further, if there is a polynomial-time separation algorithm for conv(V ), a polynomial-281

time algorithm to find an optimal solution for D(x), and a polynomial-time algorithm to solve P (x),282

then M(r, s) can be solved in polynomial time.283
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Proof. We first show the first statement of the corollary. Assume there exist a polynomial-time284

algorithm to solveM(r, s). We show that a polynomial-time separation algorithm can be constructed285

for P (x). For any solution (a, b), we solve M(a, b). If the optimal value M(a, b) is nonpositive, then286

f(x) ≤ aT v + b for all v ∈ V and therefore (a, b) ∈ F . Otherwise, the optimal solution of M(a, b)287

gives a hyperplane separating (a, b) from F . Therefore, the optimization oracle for M(r, s) yields a288

separation oracle for P (x). Then, the result follows from Theorem 6.4.9 in [12].289

We now prove the second statement of the corollary. DefineM ′(r, s) as max{conc(f)(x)−rtx−s |290

x ∈ conv(V )}, where conc(f)(x) is the concave envelope of f(x) over conv(V ). We show that the291

optimal value of M(r, s) is the same as that of M ′(r, s). Clearly, the optimal value of M(r, s) is292

no larger than that of M ′(r, s). For the converse, consider the optimal solution x′ to the M ′(r, s).293

Let λ′ be the optimal solution to D(x′). Then,
(

conc(f)(x′) − rtx′ − s
)

et ≥ f(V )T − rtV − set,294

where e ∈ Rm is a vector of all ones. Since
(

conc(f)(x′)− rtx′ − s
)

etλ′ = conc(f)(x′)− rtx′ − s =295
(

f(V )T − rtV −set
)

λ′, it follows that conc(f)(x′)− rtx′−s = f(v)− rtv−s for any v in the support296

of λ′. Therefore, given the optimal solution to M ′(r, s), λ′ can be computed in polynomial time and,297

as a result, a solution to M(r, s) can be computed. Now, we solve M ′(r, s) by reformulating it as298

M ′′(r, s) which is defined as max{t | conc(f)(x)−rtx−s−t ≥ 0, x ∈ conv(V )}. Using Theorem 6.4.9299

in [12], it suffices to construct a strong separation oracle for M ′′(r, s). Given (t̄, x̄), if x̄ 6∈ conv(V )300

we can use the separation algorithm for conv(V ). Otherwise, solve P (x̄) and let (ā, b̄) be its optimal301

solution. Then, define a′ = ā−r and b′ = b̄−s− t̄. It follows that a′tx+b′ ≥ conc(f)(x)−rtx−s− t̄302

for all x ∈ conv(V ) and a′tx̄ + b′ = conc(f)(x̄) − rtx − s − t̄. Therefore, a′tx̄ + b′ ≥ 0 if and only303

if (t̄, x̄) is feasible. Otherwise, if a′tx̄ + b′ < 0, we find a separating hyperplane a′tx + b′ ≥ 0 that304

separates the feasible region of M ′′(r, s) from (t̄, x̄).305

Although the proof that an algorithm to solve M(r, s) can be used to solve P (x) uses the306

ellipsoid algorithm, it is possible develop a Dantzig-Wolfe decomposition algorithm (albeit without307

polynomial time complexity) for the solution of D(x) using the algorithm for M(r, s); see Bao308

et al. [3] for details. The proof technique used to show that M(r, s) can be solved using algorithms309

for separation of conv(V ) and optimization routines for D(x) and P (x) is similar to that used in310

[12] for showing that submodular function minimization is polynomially solvable. Corollary 2.9311

is also related to Theorem 1 in [33] in that the author discusses the equivalence of the concave312

envelopes of two functions f and f ′ if the optimization problems max{f(x)− rtx− s | x ∈ V } and313

max{f ′(x)− rtx− s | x ∈ V } have the same optimal value.314

The formulation of the concave envelope as in Theorem 2.4 enables one to compute the concave315

envelope for functions defined as a maximum of other functions. Consider fi : V 7→ R, i ∈ 1, . . . , k.316

We denote P (x), D(x), and F associated with fi as P (fi, x), D(fi, x), and F (fi) respectively.317

Corollary 2.10. Consider a collection of functions fi : V 7→ R, i ∈ 1, . . . , k. If there exists a318

polynomial-time algorithm to solve P (fi, x) for each i and x ∈ conv(V ), and a polynomial-time319

strong separation algorithm for conv(V ), then there exists a polynomial-time algorithm to optimize320

a linear function over F
(

max{f1, . . . , fk}
)

, and hence to solve P
(

max{f1, . . . , fk}, x
)

.321

Proof. Consider the optimization problem P ′(fi, x, r) defined as min{aTx + br | (a, b) ∈ F (fi)}.322

Denote its optimal value by z(fi, x, r). We first construct a strong optimization oracle for P ′(fi, x, r)323

[12], i.e., an oracle that provides an optimal solution if one exists, otherwise it returns a recession324

direction in which the objective function decreases. Since F (fi) 6= ∅, the recession cone of F (fi),325

denoted as 0+
(

F (fi)
)

, is given by
{

(a, b)
∣

∣ av + b ≥ 0 for all v ∈ V
}

.326

Since z(fi, x, r) is positively homogeneous in (x, r), by scaling if necessary, we may assume that327

r is 1, −1, or 0. If x ∈ conv(V ) and r = 1, the oracle is assumed to be available. If x 6∈ conv(V )328

and r = 1, then using the separation routine for conv(V ) we can find in polynomial time a ρ329
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such that ρTx < c and ρT v ≥ c for all v ∈ V . Then, (ρT ,−c) ∈ 0+
(

F (fi)
)

and is the desired330

recession direction. Now, we assume that r = 0. If x = 0 then the optimal solution of P (fi, 0)331

is optimal to P ′(fi, x, r). Otherwise, there exists an xk such that xk 6= 0. If xk < 0, use the332

strong separation oracle of conv(V ) to compute xLk = min
{

x′k | x′ ∈ conv(V )
}

; see Theorem333

6.4.9 in [12]. Then, vk − xLk ≥ 0, for all v ∈ V and therefore (eTk ,−xLk ) ∈ 0+(F ) is the desired334

recession direction, where ek is the kth principal vector. On the other hand, if xk > 0, then compute335

xUk = max
{

x′k | x′ ∈ conv(V )
}

and, as before, (−eTk , x
U
k ) is the desired recession direction. Now,336

assume that r = −1. Then, (0, 1) ∈ 0+
(

F (fi)
)

is the desired recession direction.337

Since F
(

max{f1, . . . , fk}
)

=
⋂k

i=1 F (fi), the strong optimization oracles can be used to opti-338

mize a linear function over F
(

max{f1, . . . , fk}
)

and hence to solve P
(

max{f1, . . . , fk}, x
)

using the339

ellipsoid algorithm; see Corollary 14.1d in [28].340

In most applications, the underlying polyhedron conv(V ) will typically be simple and so the341

corresponding separation algorithm will be trivial. We will describe, in the forthcoming sections,342

various types of functions for which concave envelopes can be obtained in polynomial time. It follows343

from Corollary 2.10 that the concave envelope of the maximum of any subset of these functions can344

also be computed in polynomial time.345

The above algorithm is polynomial-time only if k is treated as part of the input. Otherwise,346

as we will describe later, the convex envelope over [0, 1]n of a function that is submodular when347

restricted to {0, 1}n can be expressed as a maximum of exponentially many linear functions. Since348

conv(f) ≤ f , it follows easily that conc(conv(f)) ≤ conc(f). Further, since each point in {0, 1}n349

belongs to vert([0, 1]n), it follows that conv(f) = f at each v ∈ V . Therefore, conc(conv(f)) ≥350

conc(f). Combining, conc(conv(f)) = conc(f). If k was not part of input, Corollary 2.10 would351

imply that P (x) can be solved in polynomial time for a submodular function, giving a polynomial-352

time separation routine for maximizing a submodular function. This, in turn, is not possible unless353

P = NP .354

Corollary 2.10 can also be proven using disjunctive programming if an explicit polynomial-sized355

characterization of the facets of fi is available for each i. The main idea would be to express356

the hypograph of max{f1, . . . , fk} as the convex hull of the union of hypographs for each fi in a357

lifted space; see Theorem 16.5 in [25]. This would provide an explicit polynomial-sized polyhedral358

representation of the concave envelope in a higher-dimensional space.359

3 Supermodular function that is concave-extendable from vertices360

In this section, we use a result of Lovász [19] to derive the triangulation associated with the concave361

envelope of supermodular functions. This allows us to construct closed-form expressions for the362

concave envelopes of supermodular functions over the hypercube assuming that these functions are363

concave-extendable from vertices. We then demonstrate the utility of this construction in two ways.364

First, we provide a direct and unified derivation of many recent results in the literature (each of365

which was initially proven using a different technique) as a consequence of this simple construction.366

Second, we show that it can be used to improve the relaxations currently used in existing factorable367

programming solvers; see [39, 18, 4]. In particular, factorable programming techniques [20] typically368

use variable substitution to relax a function expressed as a composition of a convex function with a369

linear function during the construction of relaxations. We will show, among many other examples,370

that the techniques described in this section apply to this structure.371

It follows from our discussion in Section 2 that the facets of the concave envelope of any function372

that is concave-extendable from the vertices of a polytope P can be obtained through the solution of373

a linear program, P (x), which has a constraint for every vertex of P . As a result, the linear program374
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typically has an exponential number of constraints, limiting the applicability of the technique.375

However, if the function under study is well-structured, we show that it is sometimes possible376

to deduce the triangulation associated with its concave envelope by explicitly characterizing the377

solution of the linear program. Supermodularity is one such function structure that permits an378

a-priori derivation of the corresponding triangulation.379

Definition 3.1 ([42]). A function f(x) : S ⊆ Rn → R is said to be supermodular if f(x′ ∨ x′′) +380

f(x′ ∧ x′′) ≥ f(x′) + f(x′′) for all x′, x′′ ∈ S, where x′ ∨ x′′ denotes the component-wise maximum381

and x′ ∧ x′′ denotes the component-wise minimum of x′ and x′′.382

An important special case of the above definition is encountered when S = {0, 1}n. In this383

case, any element x of S is of the form x =
∑

i∈K ei where ei is the ith unit vector in Rn and384

K ⊆ {1, . . . , n}. Then, f can also be viewed as a set function in the following way. We define385

f ′ : 2N → R as f ′(K) = f(
∑

j∈K ej). Then, f(x) is supermodular if and only if f ′(A ∩B) + f ′(A ∪386

B) ≥ f ′(A) + f ′(B).387

Given a function f : {0, 1}n 7→ R that is supermodular, it follows from Theorem 2.4 that there388

is a triangulation of the hypercube that yields the concave envelope of f . We show in Theorem 3.3389

that this triangulation is in fact Kuhn’s triangulation. A triangulation K = {∆1, . . . ,∆n!} is said390

to be Kuhn’s triangulation of the hypercube, [0, 1]n, if the simplices of K are in a one-to-one391

correspondence with the permutations of {1, . . . , n} as discussed next. Given a permutation, π of392

{1, . . . , n}, the n + 1 vertices of the corresponding simplex ∆π are
{

(0, . . . , 0) +
∑k

j=1 eπ(j) | k =393

0, . . . , n
}

; see [17]. Observe that the origin is a vertex of each of the simplices composing Kuhn’s394

triangulation.395

We define the Lovász extension [19] of a function f(x) as fK(x). Given any x ∈ [0, 1]n, we can396

find a permutation π of {1, . . . , n} such that xπ(1) ≥ xπ(2) ≥ . . . ≥ xπ(n) by sorting the components397

of x. It is clear that x belongs to ∆π since it can be expressed as the following convex combination398

of its extreme points: x = (1 − xπ(1))0 +
∑n−1

j=1 (xπ(j) − xπ(j+1))
(

∑j
r=1 eπ(r)

)

+ xn
(
∑n

r=1 eπ(r)
)

. It399

follows that400

fK(x) = (1− xπ(1))f(0) +

n−1
∑

j=1

(

xπ(j) − xπ(j+1)

)

f

(

j
∑

r=1

eπ(r)

)

+ xπ(n)f

(

n
∑

r=1

eπ(r)

)

401

=
n
∑

i=1



f





i
∑

j=1

eπ(j)



− f





i−1
∑

j=1

eπ(j)







xπ(i) + f(0) (4)402

for all x ∈ ∆π.403

We next present a result that is crucial in developing the concave envelope of a supermodular404

function that is concave-extendable from the vertices of the unit hypercube. Because it plays an405

important role in the subsequent development, we provide here a self-contained proof using the406

techniques of Section 2. We note however that this lemma was first stated, although not explicitly407

proven, in Lovász [19].408

Lemma 3.2 (Proposition 4.1 in [19]). fK is concave if and only if f restricted to {0, 1}n is super-409

modular.410

Proof. Given S ⊆ {1, . . . , n}, let χ(S) be the indicator vector of S. Consider two arbitrary subsets,411

X and Y , of {1, . . . , n}. Then, if fK is concave, the following argument shows that f restricted to412
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{0, 1}n is supermodular:413

1

2
f
(

χ(X)
)

+
1

2
f
(

χ(Y )
)

=
1

2
fK
(

χ(X)
)

+
1

2
fK
(

χ(Y )
)

≤ fK

(

1

2

(

χ(X) + χ(Y )
)

)

= fK

(

1

2
χ(X ∪ Y ) +

1

2
χ(X ∩ Y )

)

=
1

2
f
(

χ(X ∪ Y )
)

+
1

2
f
(

χ(X ∩ Y )
)

.
414

Here, the first inequality follows from concavity of fK(x), the second equality is satisfied since415

χ(X) +χ(Y ) = χ(X ∪ Y )+χ(X ∩ Y ), and the last equality holds because fK is affine over the line416

segment
[

χ(X ∩Y ), χ(X ∪Y )
]

since this line segment is completely contained in at least one of the417

simplices ∆π.418

Now, we argue that if f restricted to {0, 1}n is supermodular then fK(x) is concave. To this419

end, we will show that fK(x) = z(x), where z(x) is the optimal value of P (x). Since z(x) is the420

minimum of affine functions of x, one for each (a, b) ∈ F , it will follow that fK(x) is concave.421

Consider x′ ∈ [0, 1]n and assume without loss of generality, by reordering the components of x′422

if necessary that x′1 ≥ · · · ≥ x′n. Since the multipliers (1 − x′1), (x
′
1 − x′2), . . . , x

′
n yield a feasible423

solution to D(x′), it follows from weak duality that fK(x′) ≤ z(x′).424

To show that z(x′) ≤ fK(x′), we show that a′i = f
(

∑i
r=1 er

)

−f
(

∑i−1
r=1 er

)

and b′ = f(0) solves425

P (x′) and has objective value fK(x′). To this end, we show first that (a′, b′) ∈ F , i.e., a′T v + b′ ≥426

f(v) for all v ∈ {0, 1}n by induction on ||v||1. The base case is clear since v = 0 is the only vector427

with ||v||1 = 0 and since b′ = f(0). For the inductive step, consider v ∈ {0, 1}n and assume that428

the result holds for all w ∈ {0, 1}n with ||w||1 < ||v||1. Define k to be the largest index for which429

vk = 1. Then,430

a′T v + b′ = a′T (v − ek) + b′ + a′T ek ≥ f
(

v − ek

)

+ f

(

k
∑

r=1

er

)

− f

(

k−1
∑

r=1

er

)

431

= f

(

v ∧
k−1
∑

r=1

er

)

+ f

(

v ∨
k−1
∑

r=1

er

)

− f

(

k−1
∑

r=1

er

)

≥ f(v),432

where the first inequality follows from the inductive hypothesis and the definition of a′k, the second433

equality follows from the definition of k, and the second inequality holds because of the supermod-434

ularity of f . By construction, see also (4), a′Tx′ + b′ = fK(x′) and therefore z(x′) ≤ fK(x′).435

It seems that Lemma 3.2 was originally motivated by Edmonds’ greedy algorithm for optimizing436

linear function over extended polymatroids [11]. Although, in the proof of Lemma 3.2, we replaced437

this optimization problem with P (x), the proof still makes use of Edmonds’ algorithm implicitly.438

We discuss the connections next. First, note that F reduces to an extended polymatroid when b is439

restricted to be zero and V = {0, 1}n. In general, if b is assumed to be zero in P (x), then the optimal440

value function z(x) of P (x) yields the tightest positively homogeneous concave overestimator of f441

instead of its concave envelope; see, for example, Proposition 2 in [23]. If f(x) is supermodular, the442

concave envelope is positively homogeneous as long as f(0) = 0, an assumption that can be made443

without loss of generality by translating f if necessary. For more general functions, however, the444

concave envelope may not be positively homogeneous over the domain and assuming b = 0 would445

be restrictive in those cases. If f(x) is supermodular, in the light of Theorem 2.4, the above proof446

shows that fK(x) = conc(f)(x). This fact can be derived from Lemma 3.2 using Corollary 2.7.447

Theorem 3.3. Consider a function f : [0, 1]n 7→ Rn. The concave envelope of f over [0, 1]n is448

given by fK(x) if and only if f is supermodular when restricted to {0, 1}n and concave-extendable449

from the vertices of the unit hypercube.450
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Proof. If f is concave-extendable from the vertices of the unit hypercube and supermodular when451

restricted to {0, 1}n then it follows from Lemma 3.2 and Corollary 2.7 that fK(x) is the concave452

envelope of f(x). On the other hand, if fK(x) is the concave envelope of f(x), then it follows453

from Lemma 3.2 and Corollary 2.8 that f restricted to {0, 1}n is supermodular and f is concave-454

extendable from {0, 1}n.455

Theorem 3.3 establishes that the concave envelope of a function that is concave-extendable from456

the vertices of the unit hypercube and that is supermodular when restricted to {0, 1}n is its Lovász457

extension. It follows from the proof of Lemma 3.2 that each of the linear functions (4) is valid for458

conc[0,1]n f(x) and therefore459

conc
[0,1]n

f(x) = min
π∈Π

n
∑

i=1



f





i
∑

j=1

eπ(j)



− f





i−1
∑

j=1

eπ(j)







xπ(i) + f(0) (5)460

where Π is the set of permutations of {1, . . . , n}. By encoding the permutations differently, we can461

also establish that462

conc
[0,1]n

f(x) = min
π∈Π

n
∑

i=1



f





∑

j|π(j)≤π(i)

ej



− f





∑

j|π(j)<π(i)

ej







xi + f(0) (6)463

an expression that is sometimes easier to use.464

Next, we show that supermodularity can also help to obtain the concave envelope of certain465

functions over sets other than the unit hypercube (or more generally a hyper-rectangle). To this466

end, consider a directed graph G = (V,E) where V = {1, . . . , n} and let I0 and I1 be non-intersecting467

subsets of {1, . . . , n}. Consider the sets C =
⋂

(i,j)∈E{x | xi ≥ xj}, C0 =
⋂

i∈I0
{x | xi = 0}, and468

C1 =
⋂

i∈I1
{x | xi = 1}. Define469

S = [0, 1]n ∩ C ∩ C0 ∩ C1.470

The matrix associated with the constraints in C is composed of the node-edge incidence matrix of a471

directed graph appended with identity matrices. Therefore, it is totally unimodular. It follows that,472

whenever S is nonempty, its vertices are binary. Further, Kuhn’s triangulation gives a polyhedral473

subdivision of S. This can be seen by considering a point x ∈ S. Sort the coordinates of x in a474

non-decreasing order extending the pre-order defined by G. If σ is the corresponding permutation475

of {1, . . . , n}, then x clearly belongs to the associated simplex of Kuhn’s triangulation, i.e. x ∈ ∆σ.476

Let T be the face of ∆σ such that x ∈ ri(T ). Let v ∈ vert(T ). Then, it can be verified that477

v ∈ {0, 1}n ∩S. Further, note that if x and y belong to S, then so do x∨ y and x∧ y. Thus, the set478

S is the convex hull of the incidence vectors of a lattice family, where a lattice family is a family of479

sets C such that if A,B ∈ C, then A ∩ B and A ∪ B also belong to C. By a slight modification of480

Proposition 10.3.3 in Grötschel et al. [12], it can be shown that the incidence vectors of a finitely-481

sized lattice family can be expressed as the vertices of S by appropriately defining C, C0, and C1. A482

function f is said to be supermodular for a lattice family C or the corresponding incidence vectors,483

vert(S), if f(A ∩B) + f(A ∪B) ≥ f(A) + f(B) for all A,B ∈ C.484

Corollary 3.4. Let f : S 7→ Rn be supermodular when restricted to vert(S) and concave-extendable485

from the vertices of S. Then, for any x ∈ S, fK(x) is well-defined and forms the concave envelope486

of f over S.487

Proof. Because of the form of S and the Corollary’s assumption, f restricted to vert(S) can be488

extended to f̄ : {0, 1}n 7→ R in such a way that f̄ is supermodular when restricted to {0, 1}n; see489
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Theorem 49.2 in [29]. Let x′ ∈ S. Then, x′ ∈ ri(T ) where T is a face of ∆σ and σ is an ordering490

of coordinates of x′ consistent with the pre-ordering of coordinates defining S and such that the491

coordinates of x′ are sorted in non-decreasing order. Since the vertices of T belong to S, it follows492

that fK(x′) is well-defined and f̄K(x′) = fK(x′). Let h(x) be the concave envelope of f(x) over S.493

By Theorem 3.3, f̄K(x) is the concave envelope of f̄ over [0, 1]n. Therefore, by concave-extendability494

of f from vert(S), it follows that fK(x′) = f̄K(x′) ≥ h(x′). However fK(x′) is also a feasible solution495

to D(x′) for V = vert(S). Therefore, fK(x′) ≤ h(x′). In other words, fK(x′) = h(x′).496

As was exploited in the proof of Corollary 3.4, an extension of f restricted to vert(S), say f̄ , can497

be constructed that is supermodular when restricted to {0, 1}n. Instead, if f itself can be extended498

to [0, 1]n such that the resulting function is not only supermodular when restricted to {0, 1}n but499

is also concave-extendable from {0, 1}n, then the concave-extendability of f from vert(S) follows.500

This is because f̄K(x) = conc[0,1]n f̄(x) ≥ concS f(x) ≥ fK(x), where the first equality follows from501

Theorem 3.3, the first inequality since S ⊆ [0, 1]n, and the second inequality since fK(x) is a feasible502

solution to D(x). But, as argued above, fK(x) = f̄K(x). Therefore, the equality holds throughout503

and, as a result, f is concave-extendable from vert(S).504

Remark 3.5. Consider a polyhedral subdivision of conv(V ), namely
⋃

i∈I Si, which defines the con-505

cave envelope of f(x) : V 7→ Rn. Let V ′ ⊆ V and S′
i be a polytope that is a subset of Si and whose506

vertices belong to V ′. Then, concS′
i
(f) ≤ concconv(V ′)(f). Note that concS′

i
(f) = concSi

(f) =507

concconv(V )(f) where the first equality follows by affinity of concSi
(f) and the second from the508

structure of the polyhedral subdivision. It follows that concS′
i
(f) = concconv(V ′)(f). Therefore if509

V ′ =
⋃

i∈I S
′
i, then the concave envelope of f over V ′ is obtained by restricting the concave envelope510

of f over V to V ′. This observation was the key to the proof of Corollary 3.4. We will encounter511

various other applications of this observation in the remainder of the paper.512

It can be shown that Theorem 3.3 and Corollary 3.4 generalize many results that have been513

developed for specific functions. To demonstrate the applicability of Theorem 3.3, we will now derive514

a variety of results from the literature as a consequence. Theorem 3.3 asserts that, for a given f , the515

concave envelope of f over the unit hypercube is fK(x) if and only if f is supermodular and concave-516

extendable from vertices. Proofs in the literature typically demonstrate that fK(x) is the concave517

envelope directly. However, the latter properties are often much easier to prove as we illustrate518

below. In these discussions, the following result is useful in establishing the supermodularity of519

nonlinear functions.520

Lemma 3.6 (Lemma 2.6.4 in [42]). Consider a lattice X and let K = {1, . . . , k}. Let fi(x), i ∈ K,521

be increasing supermodular (resp. submodular) functions on X, and Zi, i ∈ K, be convex subsets522

of R. Assume Zi ⊇ {fi(x) | x ∈ X}. Let g(z1, . . . , zk, x) be supermodular in (z1, . . . , zk, x) on Z1 ×523

· · · ×Zk ×X. If for all i ∈ K, z̄i′ ∈ Zi′ for i′ ∈ K\{i}, and x̄ ∈ X, g(z̄1, . . . , z̄i−1, zi, z̄i+1, . . . , z̄k, x̄)524

is increasing (decreasing) and convex in zi on Zi , then g
(

f1(x), . . . , fk(x), x
)

is supermodular on525

X.526

By choosing g(z1, . . . , zk, x) appropriately as z1z2 · · · zk or −z1z2 · · · zk, it follows easily that a527

product of nonnegative, increasing (decreasing) supermodular functions is also nonnegative increas-528

ing (decreasing) and supermodular; see Corollary 2.6.3 in [42]. Also, it follows trivially that a conic529

combination of supermodular functions is supermodular.530

We now use Theorem 3.3 and Corollary 3.4 to derive the concave envelope of some multilinear531

functions over certain polytopes and apply this general result to derive various results of the liter-532

ature. More precisely, we define G ⊆ R
∑n

i=1
di , where each y ∈ G is expressed as (y1, . . . , yn), and533
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yi = (yi1, . . . , yidi) ∈ Rdi , as:534

G =

{

y ∈ R
∑n

i=1
di

∣

∣

∣

∣

di
∑

r=1

yir ≤ 1∀i; yir ≥ 0∀(i, r)

}

,535

i.e. G is a set of points in R
∑n

i=1 di that satisfy n non-overlapping generalized upper bound con-536

straints. Note that since we can choose di = 1 for all i, G also include hypercubes. For each i, let537

Di = {1, . . . , di} and Ti be a chain (by inclusion) of subsets of Di where ∅ = Ti0 ⊂ · · · ⊂ Tidi = Di.538

Without loss of generality, by relabeling the variables if necessary, we assume that Tir = {1, . . . , r}.539

Consider the multiset M where each i in {1, . . . , n} has di copies. Let Π denote the set of dis-540

tinct arrangements of M . Then, each π ∈ Π is a permutation of {1, . . . ,
∑n

i=1 di}, where we may541

additionally assume that, for each i ∈ {1, . . . , di}, πi1 ≥ · · · ≥ πidi . For r ∈ {1, . . . , di}, we let542

e(i, r) ∈ R
∑n

i=1
di represent the rth principal vector in the ith subspace. Further, let e(i, di + 1) be543

the zero vector in R
∑n

i=1
di . For a given π, i and i′ in {1, . . . , n}, and r ∈ {1, . . . , di}, if there exists544

an index j ∈ {1, . . . , di′} such that πi′j ≤ πir, we define wir
π (i

′) = min{j | πi′j ≤ πir}, otherwise we545

set wir
π (i

′) = di′ + 1.546

Next we introduce an example we will use to illustrate the above notation and the result of547

Corollary 3.8.548

Example 3.7. Consider the function549

f̂(y11, y12, y21, y22) = 2(1 + y11)(2 + y21 + y22) + 3(y11 + y12)y21550

over the polytope551

Ĝ = {y ∈ R4
+ | y11 + y12 ≤ 1, y21 + y22 ≤ 1}.552

For the set above, the arrangements (π11, π12, π21, π22) in Π are (2, 1, 4, 3), (3, 1, 4, 2), (3, 2, 4, 1),553

(4, 1, 3, 2), (4, 2, 3, 1) and (4, 3, 2, 1). In particular, for π = (4, 1, 3, 2), we have w11
π (1) = 1, w12

π (1) =554

2, w21
π (1) = 2, w22

π (1) = 2 and w11
π (2) = 1, w12

π (2) = 3, w21
π (2) = 1, w22

π (2) = 2.555

Corollary 3.8. Consider the function f(y) =
∑

k∈K ak
∏n

i=1

(

bik +
∑

j∈Tirik
yij

)

over G, where for556

each k, rik ∈ Di ∪ {0}, ak ≥ 0, and bik ≥ 0. Then, the concave envelope of f(y) over G is given by:557

min
π∈Π

n
∑

i=1

di
∑

j=1

yij





di
∑

p=j

(

f

(

n
∑

i′=1

e
(

i′, wip
π (i′)

)

)

− f

(

n
∑

i′=1

e
(

i′, wip
π (i′)

)

− e(i, p) + e(i, p + 1)

))



+ f(0).

(7)558

In particular, consider f ′(y) =
∑

k∈K ak
∏

i∈Ik

∑

j∈Tirik
yij, where, for each k, Ik ⊆ {1, . . . , n}.559

Then, the concave envelope of f ′ over G is:560

∑

k∈K

ak min
i∈Ik





∑

j∈Tirik

yij



 . (8)561

Proof. Consider the invertible linear transformation of G obtained by defining Yir =
∑r

j=1 yij for562

r = 1, . . . , di and by setting Yi0 to zero for notational convenience. The linear transformation G′ of563

G has the form:564

G′ =
{

Y ∈ R
∑n

i=1
di
∣

∣ 0 ≤ Yi1 ≤ · · · ≤ Yidi ≤ 1∀i
}

.565

It is easy to verify that f̄ defined over G′ is computed as f̄(Y ) =
∑

k∈K ak
∏n

i=1 (bik + Yirk) satisfies566

f̄(Y ) = f(y). Clearly f̄ is supermodular since it is a conic combination of multilinear terms (see567
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Lemma 3.6 and the following discussion) and concave-extendable over 0 ≤ Y ≤ 1 (see Theorem 2.1568

in [24]). It follows from Corollary 3.4 that the concave envelope of f̄ over G′ is obtained as f̄K(Y ).569

Therefore, for any permutation π in Π, we obtain a corresponding facet of the concave envelope in570

the space of Y variables using the expression (6). In particular, for i ∈ 1, . . . , n and j ∈ {1, . . . , di},571

the coefficient αij of variable Yij is given by572

αij = f̄





∑

(i′,j′) |πi′j′≤πij

e(i′, j′)



− f̄





∑

(i′,j′) |πi′j′<πij

e(i′, j′)





573

= f̄





n
∑

i′=1

∑

j′ |πi′j′≤πij

e(i′, j′)



− f̄





n
∑

i′=1

∑

j′ | πi′j′≤πij

e(i′, j′)− e(i, j)





574

= f̄





n
∑

i′=1

di
∑

j′=wij
π (i′)

e(i′, j′)



− f̄





n
∑

i′=1

di
∑

j′=wij
π (i′)

e(i′, j′)− e(i, j)





575

= f

(

n
∑

i′=1

e(i′, wij
π (i

′))

)

− f

(

n
∑

i′=1

e(i′, wij
π (i

′))− e(i, j) + e(i, j + 1)

)

.576

577

It then remains to convert this expression back to the space of y variables. For i ∈ 1, . . . , n and578

j ∈ {1, . . . , di}, the coefficient that yij receives is
∑di

p=j αij showing (7).579

Now, consider f ′ and its term f ′
k = ak

∏

i∈Ik

(

∑

j∈Tirk
yij

)

. Then, f ′
k

(

∑n
i′=1 e

(

i′, wip
π (i′)

)

)

= ak580

if πi′ri′k ≤ πi,p for all i′ ∈ Ik and 0 otherwise. Similarly,581

fk

(

n
∑

i′=1

e
(

i′, wip
π (i′)

)

− e(i, p) + e(i, p − 1)

)

=

{

0 πi′ri′k > πi,p for some i′ ∈ Ik\i or p ≥ rik
ak otherwise.

582

Simplifying (7), the result follows.583

Note that (7) gives the concave envelope of any function that is supermodular in Yir for i =584

1, . . . , n and r = 1, . . . , di over G
′, which is a lattice family, and concave-extendable from the vertices585

of G′.586

Example 3.9. Consider the function f̂ of Example 3.7. Applying the result of Corollary 3.8, we587

obtain for π = (4, 1, 3, 2) that588

απ
11 = f(e(1, 1) + e(2, 1)) + f(e(1, 2) + e(2, 3)) − f(e(1, 2) + e(2, 1)) − f(e(2, 3) + e(1, 3)) = 6589

απ
12 = f(e(1, 2) + e(2, 3)) − f(e(2, 3) + e(1, 3)) = 0590

απ
21 = f(e(1, 2) + e(2, 1)) + f(e(1, 2) + e(2, 2)) − f(e(1, 2) + e(2, 2)) − f(e(1, 2) + e(2, 3)) = 5591

απ
22 = f(e(1, 2) + e(2, 2)) − f(e(1, 2) + e(2, 3)) = 2.592

It follows that 6y11 + 5y2,1 + 2y22 + 4 defines a facet of the concave envelope of f̂ over Ĝ.593

Next, we discuss several results in the literature that are a special case of Corollary 3.8. Let594

D = {1, . . . ,
∑n

i=1 di}. For d ∈ D, let i(d) = min{i |
∑i

i′=1 di ≥ d} and j(d) = d −
∑i(d)−1

i′=1 di′ . For595

an element d of D, the pair (i(d), j(d)) yields the index of the variable of G that would be in dth596

position if the variables were ordered as y1,1, . . . , y1,d1 , . . . , yn1, . . . , yndn .597
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Corollary 3.10 (Theorem 4 and Theorem 6 in [30]). Consider the function φm(y) : vert(G) 7→ R598

defined as
∑

J⊆D,|J |=m

[
∏

d∈J yi(d),j(d)
]

, where m ≤ n. The concave envelope of φm(y) over G is599

given by:600

min







n
∑

k=m

(

k − 1

m− 1

)
dik
∑

j=1

yikj

∣

∣

∣

∣

{im, . . . , in} ⊆ {1, . . . , n}







.601

If di = 1 for all i, then concvert(G) φ
m(y) is also the concave envelope of φm(y) : G 7→ R over G.602

Proof. Let N = {1, . . . , n}. We may restrict the summation in φm(y) to those subsets J of D that603

are such that, for any d and d′ in J , i(d) 6= i(d′). This is because if a certain subset J does not604

satisfy this condition, then
∏

d∈J yi(d),j(d) equals zero for every y ∈ vert(G). If di = 1 for all i, this605

condition holds trivially.606

Therefore, we may rewrite607

φm(y) =
∑

U={i1,...,im}⊆N

di1
∑

j1=1

di2
∑

j2=1

. . .

dim
∑

jm=1

yi1,j1yi2,j2 . . . yim,jm =
∑

U⊆N,|U |=m





∏

i∈U

di
∑

j=1

yi,j



 .608

The concave envelope of φm(y) is of the form (8) derived in Corollary 3.8:609

∑

U⊆N,|U |=m

min
i∈U





di
∑

j=1

yij



 =
∑

U⊆N,|U |=m

min
i∈U

(Si)610

where Si =
∑di

j=1 yi,j and S = (S1, . . . , Sn). Let {π1, . . . , πn} be the permutation of {1, . . . , n} that611

sorts Si in increasing order, i.e. Sπ1
≤ Sπ2

≤ . . . ≤ Sπn . Since Sπp is the pth smallest among all Ss,612

it will be minimum in every subset U that does not contain {π1, π2, . . . , πp−1}. Observe that there613

are
(n−p
m−1

)

such sets when 1 ≤ p ≤ n−m+ 1 and 0 otherwise. It follows that the concave envelope614

is given by615

min
π∈Π

n−m+1
∑

p=1

(

n− p

m− 1

)

Sπp = min
π∈Π

n
∑

k=m

(

k − 1

m− 1

)

Sπn−k+1
,616

where Π is the set of permutations of {1, . . . , n}. The expression in the Corollary follows by noticing617

that the underestimating affine function does not depend on the permutation but only on the subset618

{π1, . . . , πn−m+1}.619

Note that it is necessary to restrict φm(x) to the extreme points of G when di is not equal to620

1 for some i. For example, consider xy over {(x, y) ∈ R2 | x + y ≤ 1, x, y ≥ 0}. The function in621

Corollary 3.10 can be reduced to this case by setting n = 1, d1 = 2, and m = 2. It can be argued622

that the concave envelope is xy
x+y if x+y > 0 and 0 if (x, y) = (0, 0). This function is non-polyhedral623

and not concave-extendable from vertices.624

Corollary 3.11 ([21]). Let N = {1, . . . , n} and Γ = 2N . The concave envelope of φ(x) =625

∑

T⊆Γ aT
∏

i∈T xi where aT ≥ 0 for all T ⊆ Γ over the unit hypercube is given by:626

∑

T⊆Γ

aT min{xi : i ∈ T}.627

Proof. Follows directly from Corollary 3.8 by setting di = 1 for all i.628
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Corollary 3.12 (Theorem 1 in [26]). Consider the set:629

X =







(x, t) ∈ Rn+1

∣

∣

∣

∣

∣

∣

t ≤
∑

1≤i<j≤n

qijxixj , x ∈ {0, 1}n







630

where qij ≥ 0 for i, j = 1, . . . , n and qij = qji. Then,631

conv(X) =







(x, t) ∈ Rn+1

∣

∣

∣

∣

∣

∣

t ≤
n
∑

i=2

i−1
∑

j=1

qπ(j)π(i)xπ(i), x ∈ [0, 1]n∀π ∈ Π







632

where Π is the set of permutations of {1, . . . , n}.633

Proof. Follows directly from Corollary 3.11 by allowing only quadratic terms.634

Observe that the result of Corollary 3.12 can be trivially extended to allow terms of the form635

qiix
2
i where qii > 0 since the function is still concave-extendable and therefore qiix

2
i can be replaced636

with qiixi before the envelope is constructed. The supermodularity of the resulting function follows637

directly.638

Corollary 3.13 (Theorem 1 in [5]). The concave envelope of m(x) =
∏n

i=1 xi over
∏n

i=1[Li, Ui],639

where Li ≥ 0 for all i, is given by:640

min
π∈Π

n
∑

i=1









∏

π(j)<π(i)

Uj









∏

π(j)>π(i)

Lj



 (xi − Li)



 (9)641

where Π is the set of permutations of {1, . . . , n}.642

Proof. Clearly, m(x) is supermodular and concave-extendable from
∏n

i=1{Li, Ui}. Let m′(x′) =643

m(x) where x′ = T (x); see (1). This transformation does not alter supermodularity or concave-644

extendability. Therefore, it follows that the concave envelope can be constructed as in Theorem 3.3.645

Then, following (6), the concave envelope of m′ over [0, 1]n is given by646

min
π∈Π

n
∑

i=1









∏

π(j)≤π(i)

Uj









∏

π(j)>π(i)

Lj



−





∏

π(j)<π(i)

Uj









∏

π(j)≥π(i)

Lj







x′i.647

Factoring out
(

∏

π(j)<π(i) Uj

)(

∏

π(j)>π(i) Lj

)

and substituting x′i =
xi−Li

Ui−Li
, we obtain (9).648

Linear transformations can often be used to make functions supermodular. For example, Corol-649

lary 3.8 uses a transformation that maps G to S and uses supermodularity of the corresponding650

transformed function. Another useful transformation, which we refer to as switching, involves trans-651

forming a variable from x to 1− x. For a given x ∈ Rn and T ⊆ {1, . . . , n}, we denote by x(T ) the652

vector in Rn obtained as x(T )i = 1− xi if i ∈ T and x(T )i = xi otherwise. Further, for a function653

f : {0, 1}n 7→ R we define f(T ) : {0, 1}n 7→ R such that f(T )(x) = f(x(T )). It is easy to verify that654

conc(f)(x) = conc(f(T ))(x(T )). Let S =
⋃

i∈I Pi be a polyhedral subdivision of [0, 1]n, where each655

Pi is a polyhedron. Then for each i, define Pi(T ) = {x | x(T ) ∈ Pi}. and let S(T ) =
⋃

i∈I Pi(T ) be656

the corresponding polyhedral subdivision of [0, 1]n.657

As we discussed in Section 1, functions of the type f(a0 +
∑n

i=1 aixi) appear commonly as an658

intermediate step in the construction of relaxations of factorable programs. Typically, the weakening659
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step of substituting a0 +
∑n

i=1 aixi with a new variable y is performed before the actual relaxation660

is obtained. In the following corollary, we show that such a step is unnecessary by deriving the661

concave envelope of f(a0+
∑n

i=1 aixi) over the unit hypercube. We show later in Example 3.23 that662

the relaxation obtained by using Corollary 3.14 indeed has the potential to improve the relaxations663

used in factorable programming.664

Corollary 3.14. Let g(x) = f(L(x)) : [0, 1]n 7→ R where f is convex and L(x) = a0 +
∑n

i=1 aixi.665

Let T = {i | ai < 0}. Then, g(T )(x) is concave-extendable from {0, 1}n and supermodular. The666

concave envelope of g(x) is determined by K(T ).667

Proof. The convexity of g and, hence, of g(T ) follows from the assumptions in the corollary. There-668

fore, g(T ) is concave-extendable from {0, 1}n. First assume that T = ∅. Let x′, x′′ ∈ [0, 1]n and as-669

sume without loss of generality that L(x′) ≤ L(x′′). Then, L(x′∧x′′) ≤ L(x′) ≤ L(x′′) ≤ L(x′∨x′′).670

Further, L(x′) + L(x′′) = L(x′ ∧ x′′) + L(x′ ∨ x′′) since L(·) is affine. Using Hardy-Littlewood-671

Polyá/Karamata’s inequality, we obtain that f(L(x′)) + f(L(x′′)) ≤ f(L(x′ ∧ x′′)) + f(L(x′ ∨ x′′))672

since the sequence (L(x′ ∧ x′′), L(x′ ∨ x′′)) is majorized by (L(x′), L(x′′)) and f is convex; see673

Section 3.17 in [13]. The result then follows from Theorem 3.3. Now, assume that T 6= ∅.674

Applying the corollary to g(T ), we conclude that the concave envelope of g(T ) is defined by K.675

Since conc(g)(x) = conc(g(T ))(x(T )), we conclude that conc(g)(x) is described by the triangulation676

K(T ).677

The following result is a direct consequence of Theorem 3.3 that is well suited for applications678

involving disjunctions.679

Corollary 3.15. Consider a function f(y, x) = f(y, x1, . . . , xn) : {0, 1}
n+1 7→ R and define f0(x) :=680

f(0, x) and f1(x) := f(1, x). Then, f(y, x) is supermodular if and only if f0 and f1 are supermodular,681

and f1(x) − f0(x) is a non-decreasing function of x. Assume f0 and f1 are supermodular and682

f1(x) − f0(x) is monotone. Then, the concave envelope of f over [0, 1]n+1 is described by K(T )683

where T = ∅ if f1(x)− f0(x) is non-decreasing and T = {1} if f1(x)− f0(x) is non-increasing.684

Proof. For the direct implication, note that f0 and f1 have to supermodular if f is supermodular.685

Further, for any x′ ≥ x, f(1, x) + f(0, x′) ≤ f(1, x′) + f(0, x) as f is supermodular and x ∨ x′ = x686

and x ∧ x′ = x′. This shows that f1(x) − f0(x) is non-decreasing. For the reverse implication,687

consider two arbitrary points (y′, x′) and (y′′, x′′) in {0, 1}n. If y′ = y′′, then f(y′, x′) + f(y′′, x′′) ≤688

f((y′, x′)∧(y′′, x′′))+f((y′, x′)∨(y′′, x′′)) by supermodularity of f0 and f1. Without loss of generality,689

we assume y′ = 0 and y′′ = 1. Then,690

f(y′, x′) + f(y′′, x′′) = f0(x
′) + f0(x

′′) + f1(x
′′)− f0(x

′′)691

≤ f0(x
′ ∧ x′′) + f0(x

′ ∨ x′′) + f1(x
′ ∨ x′′)− f0(x

′ ∨ x′′)692

= f0(x
′ ∧ x′′) + f1(x

′ ∨ x′′)693

= f((y′, x′) ∧ (y′′, x′′)) + f((y′, x′) ∨ (y′′, x′′)),694

where the first inequality holds because f0 is supermodular and because f1(x) − f0(x) is non-695

decreasing and the last equality holds because y′ ∧ y′′ = 0 and y′ ∨ y′′ = 1. The rest of the result696

follows from Theorem 3.3 after switching y if f1(x)− f0(x) is non-increasing.697

In the statement of Corollary 3.15, we emphasize that the polyhedral subdivision K({1}) is698

obtained from Kuhn’s triangulation by switching the first variable of the function f , i.e. it is699

obtained by switching the variable y and not the variable x1.700

Corollary 3.15 also applies to certain nonlinear functions that do not intrinsically exhibit a701

disjunctive structure. Consider f(y, x) = f0(x) + y(f1(x) − f0(x)). When x is fixed, the function702
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is linear in y. Therefore, it suffices to restrict y ∈ {0, 1}. Then, Corollary 3.15 yields the concave703

envelope of f(y, x) when f0(·) and f1(·) are supermodular and concave-extendable from vertices and704

f1(·)− f0(·) is non-decreasing. In fact, the proof of Corollary 3.15 can be easily generalized to show705

that f(y, x) = f0(x) + y(f1(x) − f0(x)) is supermodular over [0, 1]n+1. Assume 0 ≤ y′ ≤ y′′ ≤ 1.706

Then,707

f(y′, x′) + f(y′′, x′′) = f(y′, x′) + f(y′, x′′) + f(y′′, x′′)− f(y′, x′′)708

≤ f(y′, x′ ∨ x′′) + f(y′, x′ ∧ x′′) + (y′′ − y′)(f1(x
′′)− f0(x

′′))709

≤ f(y′, x′ ∨ x′′) + f(y′, x′ ∧ x′′) + (y′′ − y′)(f1(x
′ ∨ x′′)− f0(x

′ ∨ x′′))710

= f(y′, x′ ∨ x′′) + f(y′, x′ ∧ x′′) + f(y′′, x′ ∨ x′′)− f(y′, x′ ∨ x′′)711

= f(y′′, x′ ∨ x′′) + f(y′, x′ ∧ x′′),712

where the first inequality follows from the supermodularity of f0(x) and f1(x) and the second713

inequality follows since y′′ ≥ y′, f1(x) − f0(x) is non-decreasing, and x′ ∨ x′′ ≥ x′′. Since the714

concave-extendability of f(yL, x) and f(yU , x) follows from [35], it follows that we can develop the715

concave envelope of f(y, x) over [yL, yU ]× [0, 1]n using Theorem 3.3 for 0 ≤ yL ≤ yU ≤ 1.716

In Corollary 3.16, we particularize the result of Corollary 3.15 to situations where f(y, x) =717

yg(x), for example y
1+

∑n
i=1 xi

and y log
(

1 +
∑n

i=1 xi
)

. The result also applies to y
y+

∑n
i=1 xi

and718

y log
(

y +
∑n

i=1 xi
)

if one restricts the region to y +
∑n

i=1 xi ≥ 1. This is a natural restriction719

when the variables y and xi are binary; see [6] for applications in consistent biclustering problems.720

The supermodularity of these functions for a fixed y follows from Corollary 3.14 and, therefore,721

Corollary 3.15 applies.722

Corollary 3.16. Consider a function f(y, x) = f(y, x1, . . . , xn) : {0, 1}
n+1 7→ R, where f(0, x) = 0723

and f(1, x) = f1(x). Assume f1(x) is non-increasing and supermodular. Then, conc[0,1]n+1(f) is724

described by K({1}). Let W = {(y, x) ∈ [0, 1]n+1 | y +
∑n

i=1 xi ≥ 1}. Then, for any (y, x) ∈ W ,725

concW (f)(y, x) = conc[0,1]n+1(f)(y, x).726

Proof. It follows from Corollary 3.15 that conc[0,1]n+1(f)(y, x) is described by K({1}). Since W ⊆727

[0, 1]n+1, conc[0,1]n+1(f)(y, x) ≥ concW (f)(y, x). Observe that conc[0,1]n+1(f)(y, x) is linear for x ∈728

Y = {(y, x) | 0 ≤ x1, . . . , xn ≤ 1−y ≤ 1}. However, Y is obtained as a union of simplices in K({1}).729

In particular, if Kπ is the simplex associated with permutation π (after replacing y with 1 − ȳ),730

then Y =
⋃

π∈Π′ Kπ, where Π′ is the set of permutations of {1, . . . , n + 1} that are restricted to731

have 1 as the first element. Let W ′ = cl([0, 1]n+1\Y ). Since vert(W ) = vert(W ′) and W is convex,732

it follows that W = conv(W ′). Let W ′′ = Y ∩ {(y, x) | y +
∑n

i=1 xi ≥ 1}. It is easy to see that733

W ′′ is the convex hull of
{

(0, x) ∈ [0, 1]n+1 |
∑n

i=1 xi ≥ 1
}

and (1, 0). Therefore, W ′′ has binary734

extreme points. It can now be easily verified that, for any (y, x) ∈ W , conc[0,1]n+1(f)(y, x) is a735

feasible solution to D(y, x). Therefore, conc[0,1]n+1(f)(y, x) ≤ concW (f)(y, x). It follows that, for736

any (y, x) ∈ W , concW (f)(y, x) = conc[0,1]n+1(f)(y, x).737

Corollary 3.16 can also be derived as a consequence of Theorem 3.3 applied to f1(x) along with738

Theorem 4.1, which will be proven later and describes the concave envelope of yg(x) under more739

general conditions.740

Example 3.17. Let g(z) be a convex non-increasing function and f(y, x) = yg (
∑n

i=1 xi). Assume741

x ∈ {0, 1}n. Then, g(
∑n

i=1 xi) is supermodular by Corollary 3.14. By definition, it is concave-742

extendable from the vertices. The concave envelope is therefore given by Corollary 3.16. In par-743

ticular, if Π is the set of permutations of {1, . . . , n} then
⋃

π∈Π,0≤m≤n S(π,m) gives the polyhedral744

division of {0, 1}n that defines the concave envelope of f(y, x) where S(π,m) =
{

(y, x)
∣

∣ x ∈745

Kπ, xπ(m) ≥ 1 − y ≥ xπ(m+1)

}

. Here, we assume xπ(0) = 1 and xπ(n+1) = 0. Further the concave746
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envelope of f(y, x) can be computed as minπ∈Π,0≤m≤n h
S(π,m)(y, x) where hS(π,m)(y, x) is the facet747

of conc[0,1]n+1 that is tight over S(π,m) and is given by:748

hS(π,m)(y, x) = g(0) +
m
∑

i=1

(g(i) − g(i − 1))xπ(i) − g(m)(1 − y).749

The restriction of the concave envelope to W = {(y, x) ∈ [0, 1]n+1 | y +
∑n

i=1 xi ≥ 1} gives the750

concave envelope over W . In particular, consider f(y, x) = y
y+

∑n
i=1

xi
where (y, x) ∈ W ∩ {0, 1}n+1.751

Then, the concave envelope of f(y, x) over W is given by:752

min
π∈Π,0≤m≤n

(

1−
m
∑

i=1

1

i(i+ 1)
xπ(i) −

1

m+ 1
(1− y)

)

. (10)753

This fractional function appears in the formulation of consistent biclustering problems [6]. The754

standard factorable relaxation introduces z = 1
y+

∑n
i=1

xi
and w = yz. Let u(x, y) = y +

∑n
i=1 xi.755

Then, z = 1
u(x,y) is relaxed over u(x, y) ∈ [1, n+1] as z ≤ n+2

n+1 −
u(x,y)
n+1 . Finally, w ≤ min

{

y, 1
n+1y+756

z − 1
n+1

}

which, equivalently, yields w ≤ min
{

y, 1
n+1y − 1

n+1u(x, y) + 1}. The same relaxation is757

obtained if the concave envelope of y
u(x,y) is constructed directly over [0, 1] × [1, n + 1]; see [36].758

Clearly, the concave envelope developed in (10) is tight when y = 1 and xi = 1 for all i ∈ I,759

where ∅ ( I ( N (evaluates to 1
1+|I|) whereas the factorable relaxation is not tight at these points760

(evaluates to n+1−|I|
n+1 ). It can also be directly verified that the concave envelope is tighter relative to761

the factorable relaxation at these points by observing that (n − |I|)|I| > 0 for 1 ≤ |I| ≤ n− 1.762

Corollary 3.16 exemplifies a situation where restricting attention to y+
∑n

i=1 xi does not result763

in a substantial change in the triangulation. This may appear surprising when one considers the764

origin is a vertex of every simplex in Kuhn’s triangulation. However, a more careful observation765

reveals that the removing the origin does not have a significant impact in Corollary 3.16 because766

the triangulation is given after switching y, i.e., it is K({1}) and not K.767

When the concave envelope is determined by Kuhn’s triangulation, the envelope will typically768

change drastically if the origin is removed from the underlying region. We next describe a situa-769

tion that illustrates this phenomenon. Corollary 3.14 shows that if f(·) is a convex function then770

f (
∑n

i=1 xi) is supermodular and concave-extendable from vertices and, therefore, its concave en-771

velope is defined by Kuhn’s triangulation. In various situations, it will be useful to construct the772

concave envelope over
∑n

i=1 xi ≥ 1, a situation where the origin is no longer an extreme point of the773

underlying polytope. Next, we study this situation by considering the slightly more general case774

where we seek to determine the concave envelope of f (
∑n

i=1 xi) assuming that f(·) that is convex775

over [1, n] but (n−1)
n f(0) + 1

nf(n) < f(1), i.e., f is nonconvex because its value at 0 is below what776

is required for convexity.777

We first introduce a polyhedral subdivision of [0, 1]n that we will prove in Theorem 3.18 yields778

the concave envelope of f . For k = 0, . . . , n we define Πk to be the set of permutations of exactly779

k elements of {1, . . . , n}. In other words, π belongs to Πk if π : {1, . . . , k} → {1, . . . , n} and780

π(i) 6= π(j) for i 6= j. For such a permutation, we set |π| = k and use the notation i /∈ π to signify781

that i /∈ {π(1), π(2), . . . , π(k)}. We also use the notation Π̃ =
⋃max(n−2,0)

k=0 Πk. For π ∈ Π̃, we define782

Sπ =























x ∈ Rn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ xπ(1) ≤ · · · ≤ xπ(|π|) ≤ 1
∑

i 6∈π

xi ≥ 1 + (n − |π| − 1)xπ(|π|)

∑

i 6∈π

xi ≤ 1 + (n − |π| − 1)xj ,∀j /∈ π























,783
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where xπ(0) is assumed to be 0. Let ∆ =
{

x ∈ [0, 1]n |
∑n

i=1 xi ≤ 1
}

. Next, we define K−0 =784

{∆,
⋃

π∈Π̃ Sπ}. We will prove in Theorem 3.18 that K−0 is a polyhedral subdivision of [0, 1]n.785

Here, we argue the weaker result that K−0 covers [0, 1]n by constructing, for each x ∈ [0, 1]n\∆, a786

permutation π̄ ∈ Π̃ for which x ∈ Sπ̄. For an arbitrary x ∈ [0, 1]n\∆, we first sort the components787

of x in increasing order, thereby obtaining a permutation π of {1, . . . , n} for which 0 ≤ xπ(1) ≤788

· · · ≤ xπ(n) ≤ 1. For j = 0, . . . , n − 1, define C(j) =
∑n

i=j+1(xπ(i) − xπ(j)) − (1 − xπ(j)). Clearly,789

C(j) is decreasing in j. Further, since x ∈ [0, 1]n\∆, it follows that C(0) > 0 and C(n − 1) ≤ 0.790

Define now j̄ = max{j | C(j) > 0}. It is easy to see that x ∈ Sπ̄ where π̄ is the permutation of791

{1, . . . , j̄} where π̄(t) = π(t) for t = 1, . . . , j̄.792

It can be verified that, for all π ∈ Π̃, Sπ is a simplex with vol(Sπ) = n−1−|π|
n! . Further, the793

vertices of Sπ are ei for all i /∈ π,
∑

i/∈π ei +
∑|π|

j=|π|+1−r eπ(j) for r = 0, . . . , |π|. Given a function f ,794

we define795

h∆(x) = (f(1)− f(0))

n
∑

i=1

xi + f(0),796

to be the interpolation of f over the vertices of ∆ and, for each π ∈ Π̃,797

hπ(x) =

|π|
∑

i=1

(

f(n− i+ 1)− f(n− i)
)

xπ(i) +
f(n− |π|)− f(1)

n− |π| − 1

∑

i 6∈π

xi +
(n− |π|)f(1) − f(n− |π|)

n− |π| − 1
.798

to be the interpolation of f over the vertices of Sπ.799

Theorem 3.18. Let g(x) = f (
∑n

i=1 xi) where f(z) is a convex function over z ∈ [1, n]. Assume800

that g is concave-extendable from {0, 1}n and that (n− 1)f(0) ≤ nf(1)− f(n). Then, conc[0,1]n(f)801

is described by the polyhedral subdivision K−0 and802

conc
[0,1]n

f(x) = min

{

h∆(x),min
π∈Π̃

hπ(x)

}

.803

Proof. Consider the following sets804

W1 =























x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xπ(1) = · · · = xπ(|π|) = 0
∑

i 6∈π

xi ≥ 1

∑

i 6∈π

xi ≤ 1 + (n− |π| − 1)min
i 6∈π

xi























and W2 =







x

∣

∣

∣

∣

∣

∣

0 ≤ xπ(1) ≤ · · · ≤ xπ(|π|−1) ≤ 1

xπ(|π|) = 1

xi = 1 ∀i 6∈ π







.805

Then, by introducing variables x̄i = 1− xi for i 6∈ π, W1 and W2 become orthogonal sets. It is easy806

to verify by using Theorem 1 in [41] that Sπ = conv(W1∪W2). Further, hπ is tight at all the extreme807

points of W1 and W2. Therefore, if we prove that hπ(x) ≥ f(x), it will follow from Theorem 2.4808

that hπ defines the concave envelope of f(x) over Sπ. First, we verify that f(0) ≤ hπ(0). Since f809

is convex, (n−|π|)f(1)−f(n−|π|)
n−|π|−1 is increasing in |π|. Therefore, the minimum value is attained when810

|π| = 0. However, by assumption (n − 1)f(0) ≤ nf(1) − f(n), therefore, f(0) ≤ hπ(0). Without811

loss of generality, we may assume that π = (1, . . . , |π|). Then, by convexity of f , it follows that812

f(n− |π|) − f(1)

n− |π| − 1
≤ f(n− |π|+ 1)− f(n− |π|) ≤ · · · ≤ f(n)− f(n− 1).813

Therefore, hπ(x) may be rewritten as: c0 +
∑n

i=1 ci
∑

j≥i xj where ci ≥ 0 for all i ∈ [1, n]. In814

particular, it is easy to verify that min{hπ(x) |
∑n

i=1 xi = y} = r(y) = c0 +
∑n

i=1 ci(i − n + y)+,815
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where r(y) = f(y) for y ∈ {1, n−|π|, . . . , n}. Since, r(y) is linear between consecutive integer values,816

it follows that r(y) ≥ f(y). In other words, hπ(x) ≥ f (
∑n

i=1 xi). If f(·) is a strictly convex function817

for i ∈ [1, n] and (n − 1)f(0) < nf(1) − f(n) then it is easy to verify that this inequality is strict818

when x 6∈ vert(W1) ∪ vert(W2). Therefore, it follows that ∆ ∪
⋃

π∈Π Sπ is a polyhedral subdivision819

of [0, 1]n that defines conc[0,1]n f .820

Example 3.19. Consider the function f : {0, 1}5 → R where f(x) = 3 − log2

(

∑5
i=1 xi

)

when821

x 6= 0 and f(x) = 0 when x = 0. Clearly, this function satisfies the assumptions of Theorem 3.18.822

We now derive two facets of conc[0,1]5(f). For πa ∈ Π0, we have823

Sπa =
{

x ∈ R5 |x1 + x2 + x3 + x4 + x5 ≥ 1, x1 + x2 + x3 + x4 + x5 ≤ 1 + 4xj,∀j = 1, . . . , 5
}

.824

The corresponding facet of conc[0,1]5(f) is given by825

hπa(x) =
f(5)− f(1)

4

5
∑

i=1

xi +
5f(1) − f(5)

4
= −

log2(5)

4
(x1 + x2 + x3 + x4 + x5) +

log2(5)

4
+ 3826

For πb ∈ Π2 with πb(1) = 1, πb(2) = 2 we have827

Sπ =
{

x ∈ R5 | 0 ≤ x1 ≤ x2, x3 + x4 + x5 ≥ 1 + 2x2, x3 + x4 + x5 ≤ 1 + 2xj ,∀j = 3, . . . , 5
}

.828

The corresponding facet of conc[0,1]5(f) is given by829

hπb(x) = (f(5)− f(4))x1 + (f(4)− f(3))x2 +
f(3)− f(1)

2

5
∑

i=3

xi +
3f(1)− f(3)

2
830

= −(log2(5)− 2)x1 − (2− log2(3))x2 −
log2(3)

2
(x3 + x4 + x5) +

log2(3)

2
+ 3.831

Example 3.20. Let g(x) = 1∑n
i=1

xi
where xi ∈ {0, 1} and

∑n
i=1 xi ≥ 1. We define g(0) = 0.832

Since Sπ ⊆ W ⊆ [0, 1]n, it follows that concSπ g(x) ≤ concW g(x) ≤ conc[0,1]n g(x). For each833

x ∈ W , there exists π such that x ∈ Sπ and, by Theorem 3.18, concSπ g(x) = conc[0,1]n g(x); see also834

Remark 3.5. Therefore, maxπ∈Π concSπ g(x) = concW g(x). Incidentally, the same concave envelope835

is also obtained if xi ∈ [0, 1] since g(x) is a convex function and, therefore, concave-extendable from836

the vertices.837

Although it is in general NP-Hard to identify supermodular functions [9], some special classes838

of functions can be easily identified to be supermodular. It is well-known, for instance, that the839

function840
∑

J⊆N

aJ
∏

j∈J

xi +
∑

I⊆N

bI
∏

i∈I

(1− xi) (11)841

is supermodular if aJ , bI are nonnegative for all I, J ⊆ N ; see also Lemma 3.6 and the following842

discussion. A multilinear function is called unimodular if by switching variables xi in some subset843

K of N , it can be recast into the form (11). It is shown in [9] that unimodular functions can844

be recognized by solving a linear programming problem. This linear program yields a polynomial845

time recognition technique for unimodular functions. Combined with Theorem 3.3, this allows846

construction of concave envelopes of many multilinear functions. In certain cases, it is easy to847

recognize that the function is unimodular. The following result illustrates one such example.848
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Corollary 3.21 (Theorem 15 in [8]). Consider f(x, y) =
∑n

i=1

∑m
j=1 aijxiyj where x ∈ [0, 1]n and849

y ∈ [0, 1]m. Then conc[0,1]n+m(f)(x, y) =
∑n

i=1

∑m
j=1 aij min{xi, yj} and conv[0,1]n+m(f)(x, y) =850

∑n
i=1

∑m
j=1 aij(xi + yj − 1)+.851

Proof. The concave envelope follows directly from Corollary 3.11. Now, switch the y variables to852

write f(x, ȳ) =
∑n

i=1

∑m
j=1 aijxi(1 − ȳj). Since f(x, ȳ) is submodular (negative of a supermodular853

function), the convex envelope follows directly from Corollary 3.11.854

Example 3.22. Let f(x) =
∑k

i=1 ai
∏

j∈Ji
fij(xj) where ai ≥ 0, each fij is nonnegative, convex and855

for each i, either fij(xj) is increasing or decreasing for all j ∈ Ji. The convexity of fij(·) implies856

that f(x) is concave-extendable from the vertices of the hypercube. Since the product of nonnegative857

increasing (decreasing) univariate functions is supermodular, the concave envelope of f(x) follows858

from Theorem 3.3. As a concrete example, we may set fij(xj) = x
qij
j where qij ≥ 1 for all j or859

qij < 0 for all j. Observe that this example extends the class of functions treated in (11) and in860

Corollary 3.11.861

Example 3.23. Let f(x) =
∑k

i=1 gi

(

ai +
∑n

j=1 aijxj

)

where for each j either aij ≥ 0 or aij ≤ 0862

for all i, and, for each i, gi is a convex function. It follows from Corollary 3.14 that the concave863

envelope of f(x) is given by K(T ) where T = {j | aij ≤ 0∀i}. As an example, let ci ≥ 0 for all i and864

set gi(·) = −ci log(·). In particular, consider hs62 from globallib which was originally formulated865

in [15].866

min −32.174

(

255 log

(

0.03 + x+ y + z

0.03 + 0.09x+ y + z

)

+ 280 log

(

0.03 + y + z

0.03 + 0.07y + z

)

867

+ 290 log

(

0.03 + z

0.03 + 0.13z

))

868

s.t. x+ y + z = 1869

x, y, z ≥ 0.870

If we solve the factorable relaxation, we obtain a lower bound of −83126.9. Instead, constructing871

the concave envelope of872

f(x, y, z) = 255 log

(

1

0.03 + 0.09x + y + z

)

+ 280 log

(

1

0.03 + 0.07y + z

)

+ 290 log

(

1

0.03 + 0.13z

)
(12)873

using Corollary 3.14 gives a lower bound of −52944.9. Observe that the above technique does not874

give the concave envelope of (12) over the feasible region. Instead, if one further realizes that the875

triangle {(x, y) | x + y + z = 1, x, y, z ≥ 0} can be transformed to a lattice family (in a manner876

similar to Corollary 3.8) by introducing u = x, v = x+ y and w = x+ y + z = 1, then (12) can be877

written as:878

255 log

(

1

0.12 − 0.91u

)

+ 280 log

(

1

1.03 − 0.07u − 0.93v

)

+ 290 log

(

1

0.16− 0.13v

)

. (13)879

The feasible region in the (u, v) space is given by {(u, v) | 0 ≤ u ≤ v ≤ 1}. Since the coefficients of880

u and v are nonpositive, we introduce ū = 1−u and v̄ = 1− v. Notice that a lattice family remains881

a lattice family if all the sets are complemented. Then, the concave envelope of (13) and hence (12)882

over the feasible region can be developed using Theorem 3.3 as:883

f(x, y, z) ≥ 535 log(103) − 490 log(2) − 1650 log(5) +
(

825 log(3)− 535 log(103) − 650 log(2)
)

x884

+
(

280 log(5)− 280 log(103) − 880 log(2) + 290 log(3)
)

y.885
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The concave envelope could have also been developed simply by realizing that (12) is convex and the886

feasible region is a triangle. However, we chose to develop it in the above way to demonstrate the887

techniques developed in this section. With the concave envelope introduced into the formulation, the888

lower bound improves to −42429.2. The global minimum has an objective value of −26272.5. It is889

interesting to observe that the proposed relaxation leads to a 53% improvement without recognizing890

the lattice family and 71.5% improvement after recognizing the lattice family when compared to the891

standard factorable relaxation.892

4 Convex envelopes of disjunctive functions893

As shown in Sections 2 and 3, if the envelope of a nonlinear function is polyhedral, it can be described894

using polyhedral subdivisions. However, it may not be apparent that polyhedral subdivisions also895

play an important role in characterizing non-polyhedral envelopes of certain functions. In this896

section, we provide an example by considering a function of the form xf(y) where f(·) is convex897

and non-increasing. Such a function is typically not convex, even in the simple case where f(y) =898

−y. However, since xf(y) is convex for any fixed x, the convex envelope can be formed over899

the hypercube using disjunctive programming. This structure appears commonly in factorable900

programming. However, it is not typically exploited since the convex envelope can only be described901

in a lifted space. In Theorem 4.1, we show that the convex envelope can be written in the original902

space without introducing additional variables when f(y) is non-increasing and the lower bound on903

x is 0. In this description, we use the recession function f0+(y) of f where f0+(y) = sup{f(x +904

y)− f(x) |x ∈ dom f}; see Section 8 in [25].905

Theorem 4.1. Consider a function g(x, y) = xf(y) where (x, y) ∈ [0, 1] × [0, 1]n. Let f(y) be906

a convex non-increasing function and (x′, y′) be a point in the domain. Let y′′ = (y′′i )
n
i=1, where907

y′′i = min(y′i, x
′). Then,908

conv(g)(x′, y′) = h(x′, y′) =















x′f

(

y′′

x′

)

if x′ > 0

f0+(y′′) if x′ = 0
∞ otherwise.

(14)909

Proof. Since xf(y) is linear in x for any fixed value of y ∈ [0, 1]n, it suffices to consider x ∈ {0, 1}910

when building the convex envelope of this function over [0, 1]n+1 For a given subset J of N define911

W0(J) = {(0, y) ∈ [0, 1]n+1 | yi = 0,∀i ∈ J} and W1(J) = {(1, y) ∈ [0, 1]n+1 | yi = 1, i 6∈ J}. First,912

we construct the convex envelope of g(x, y) over W ′ = conv
(

W0(J)∪W1(J)
)

. This convex envelope913

is obtained by convexifying the two disjunctions914

z = 0
x = 0
yJ = 0
0 ≤ yN\J ≤ 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

z ≥ xf
(y

x

)

x = 1
0 ≤ yJ ≤ 1
yN\J = 1.

915

Observe that the above two sets are orthogonal and h(x′, y′) is a closed positively homogeneous916

function (see Theorem 8.2 in [25]). Therefore, by Theorem 1 in [41], it follows that the convex917

envelope (highest convex underestimator that is lower-semicontinuous) of g(x, y) over W ′ = {(x, y) |918

0 ≤ yi ≤ x ≤ yj ≤ 1 ∀i ∈ J, j ∈ N\J} has the form of (14). For y ≥ 0,919

f0+(y) = lim
λ↑∞

f(λy)− f(0)

λ
≤ 0920
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Figure 1: Convex Envelope of x
1+y over [0, 1]2

where the equality follows by definition (see Corollary 8.5.2 in [25]) and the inequality because921

f is non-increasing and λy ≥ 0. Since the convex envelope is independent of yN\J and g(x, y)922

is non-increasing in y, it follows that convW ′(g)(x, y) ≤ g(x, y) for all (x, y) ∈ {0, 1} × [0, 1]n.923

Since convW ′(g) is convex, convW ′(g)(x, y) ≤ conv[0,1]n+1(g)(x, y). However, W ′ ⊆ [0, 1]n+1.924

Therefore, convW ′(g)(x, y) ≥ conv[0,1]n+1(g)(x, y). Combining these results, we conclude that925

convW ′(g)(x, y) = conv[0,1]n+1(g)(x, y).926

We next provide some geometrical insights into the proof of Theorem 4.1, discuss settings in927

which it can be generalized, and describe some applications.928

The convex envelope of xf(y) developed in Theorem 4.1 has an interesting structure. It is929

expressed as the maximum of a finite set of positively homogeneous functions. Each function930

attains the maximum over one of the polytopes in the subdivision
⋃

J⊆N SJ of [0, 1]n+1, where931

SJ = {(x, y) | 0 ≤ yj ≤ x∀j ∈ J, x ≤ yj ≤ 1∀j ∈ N\J}. We illustrate this feature on the following932

example.933

Example 4.2. Consider the function g : [0, 1]2 7→ R defined as g(x, y) = x
1+y . The convex envelope934

of g can be obtained by convexifying its restrictions to x = 0 and x = 1, restrictions that are depicted935

as red thick lines in Figure 1. The proof of Theorem 4.1 argues that the convex envelope of g can936

be obtained by first constructing the convex envelope of g over S∅ = {(x, y) | 0 ≤ x ≤ y ≤ 1}, which937

is depicted in cyan, and gluing it to the convex envelope of g over S{1} = {(x, y) | 0 ≤ y ≤ x ≤ 1},938

which is depicted in gray. More precisely, applying the formulas described in Theorem 4.1 yields939

that conv[0,1](g)(x, y) =
x2

x+min{x,y} if x > 0 and conv[0,1](g)(x, y) = 0 if x = 0.940

Note that the convex envelope derived in Example 4.2 was obtained earlier in [36] in a more gen-941

eral setting using disjunctive programming. We used this example solely to illustrate the polyhedral942

subdivision that is at the core of the proof.943

We next describe settings for which Theorem 4.1 can be adapted and/or generalized. First944

observe that, if f(y) is non-decreasing, the convex envelope of xf(y) over the unit hypercube can945

still be derived using Theorem 4.1 by replacing yi with 1 − ȳi. Second, note that if y′ > y′′ and946
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f(·) is non-increasing, then xf
(min(y′,x)

x

)

≤ xf
(min(y′′,x)

x

)

. Therefore, Theorem 4.1 can be applied947

sequentially to convexify functions such as f(y)
∏m

i=1 xi. Further, the result of Theorem 4.1 also948

applies to more general functions g(x, y) that are such that (i) g(0, y) = 0, (ii) conv[0,1]n+1 g(1, y) is949

known explicitly and non-increasing, (iii) g(x, y′) is concave as a function of x for a fixed y is fixed950

at y′. Next we demonstrate applications of Theorem 4.1 in such contexts.951

Corollary 4.3. Let g : [0, 1]n+1 7→ R be defined as g(x, y) = x
ax+

∑n
i=1

biyi+c where a ∈ R, b ∈ Rn,952

and c ∈ R. Define N = {1, . . . , n}, N+ = {i ∈ N | bi ≥ 0}, and N− = N\N+. Assume that953

c+
∑

i∈N− bi > 0 and a ≥ 0. Then,954

conv
[0,1]n+1

g(x, y) =

{

x2

(a+c)x+
∑

i∈N+ bi min{x,yi}+
∑

i∈N− bi(x+yi−1)+ if x > 0

0 if x = 0.
955

Proof. Note that min{ax+
∑n

i=1 biyi+ c | x ∈ [0, 1], y ∈ [0, 1]n} = c+
∑

i∈N− bi > 0. Therefore, the956

function g(x, y) is well-defined over [0, 1]n+1. Further, observe that957

∂2g(x, y)

∂x2
= −

2a (c+
∑n

i=1 biyi)

(ax+
∑n

i=1 biyi + c)3
≤ 0.958

The inequality follows since a ≥ 0, c+
∑n

i=1 biyi > 0 and ax+
∑n

i=1 biyi + c > 0. Therefore, g(x, ȳ)959

is concave in x for any fixed ȳ. The result then follows from Theorem 4.1 after complementing the960

variables yi for i ∈ N−.961

An argument similar to Corollary 4.3 yields the concave envelope of g(x, y) = x log
(

ax +962

∑n
i=1 biyi + c

)

. In this case, using the proof technique on −g(x, y) we obtain963

conc
[0,1]n+1

g(x, y) =







−x log(x) +
x log

(

(a+ c)x+
∑

i∈N+ bi min{x, yi}+
∑

i∈N− bi(x+ yi − 1)+
)

if x > 0
0 if x = 0.

964

Observe that the concave envelope of x
ax+

∑n
i=1

biyi+c and the convex envelope of x log
(

ax+
∑n

i=1 biyi+965

c
)

can also be obtained by using Corollary 3.16. Next, we show that Theorem 4.1 yields convex966

envelopes of many polynomial functions over the unit hypercube.967

Corollary 4.4. Consider a function g(x, y) = x
(

c+
∑n

i=1

∑k
j=1 aijy

pij
i

)

where aij ∈ R+ and968

pij − 1 ∈ R+. Then the concave envelope of g(x, y) over [0, 1]n+1 is given by:969

conv(g)[0,1]n+1(x, y) =











cx+

n
∑

i=1

k
∑

j=1

aijx
1−pij max[x+ yi − 1, 0]pij if x > 0

0 if x = 0.

970

The concave envelope of g(x, y) over [0, 1]n+1 is given by:971

conc(g)[0,1]n+1(x, y) = cx+

n
∑

i=1

min[yi, x]

k
∑

j=1

aij.972

Proof. The convex envelope is obtained using Theorem 4.1 after complementing the variables yi.973

For the concave envelope, note that g(x, y) is supermodular and concave-extendable from vertices.974

Therefore, the result follows from Theorem 3.3.975
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Theorem 4.1 easily yields polyhedral subdivisions defining the convex envelope of xf(·) if f(·)976

has a polyhedral convex envelope. We consider a special case of f(y) where yi are binary valued to977

expose the techniques involved. First, we will consider certain symmetric convex functions of binary978

variables and develop their convex envelopes. These functions appear by themselves in nonlinear979

integer programming and we discuss some of these applications. Then, we develop convex envelopes980

of xf(y), where f(y) is such a symmetric function and y are binary. Subsequently, we will discuss981

applications of this disjunctive form and consider alterations to the polyhedral subdivision when982

the underlying region is restricted to a subset of the hypercube.983

In order to develop the convex envelope of the symmetric function, we will need an exclusion984

property that helps in identifying the convex envelopes of convex functions restricted to nonconvex985

sets. Although, we will not need the full power of Proposition 4.5 in our subsequent development,986

we include it here for other potential applications.987

Proposition 4.5. Consider a closed set X and an upper-semicontinuous (lower-semicontinuous)988

concave (convex) function f : conv(X) 7→ R. Let f |X be the restriction of f to X. There exists a989

V ⊆ X, where conv(V )\V ∩X = ∅, and |V | = dim(V ) + 1 such that the optimal solution z(x) of990

D(x) (D′(x)) equals conc(f |X)(x). Here D′(x) is the same as D(x) except that the maximization991

is replaced with minimization.992

Proof. We denote the problem D(x) with vertex set V as DV (x) and the corresponding optimal993

value as zV (x). The existence of a V ′ such that zV ′(x) = conc(f |X)(x) and |V ′| = n+ 1 follows by994

Carathéodory’s theorem. Let V be such that conv(V ) is the minimum volume simplex in conv(V ′)995

that satisfies this property. There exists a minimum since each point is chosen from a compact996

feasible region conv(V ′)\X, the multipliers are chosen from a compact set, and V Tλ and volume997

are continuous functions, and f(V )Tλ is upper-semicontinuous. If this volume is zero, first note998

that we can drop one point from V since any extreme solution of DV (x) will have a support999

at no more than dim(V ) + 1 points. We now reiterate to find the minimum volume simplex,1000

where volume is now computed in aff(V ). Therefore, we may assume that there does not exist1001

V ′′ such that conv(V ′′) ( conv(V ) and zV ′′(x) = conc(f)(x). Assume now, by contradiction, that1002

x′ ∈ conv(V )\V ∩X. Let λ be the optimal solution of DV (x). By minimality of volume, it follows1003

that λi > 0 for all i. Let λ′ be a feasible solution of D(x′) and r = mini
{

λi

λ′
i
| λ′

i > 0
}

. Further, let1004

i′ be the index that achieves this minimum. Clearly, 0 < r. Then,1005

conc(f)(x) = f(V )Tλ = f(V )T (λ− rλ′) + rf(V )T (λ′) ≤ f(V )T (λ− rλ′) + rf(x′) ≤ conc(f)(x),1006

where the first inequality follows from concavity of f and the second inequality since x′ ∈ X,1007

λ − rλ′ ≥ 0, and eT (λ − rλ′) + r = 1. Therefore, equality holds throughout. This yields a1008

contradiction since V ′′ = V \{vi′}∪x′ is such that conv(V ′′) ( V and zV ′′(x) equals conc(f)(x).1009

In Theorem 4.6 we consider a symmetric function of binary variables, f(‖x‖1), where f is a1010

convex function, and show that its convex envelope is easy to characterize.1011

Theorem 4.6. Consider a function g(x) : [0, 1]n 7→ R, that is convex-extendable from vertices.1012

Then, the polyhedral subdivision [0, 1]n =
⋃n

i=1 Pi, where Pi = {x | i− 1 ≤
∑n

j=1 xi ≤ i, 0 ≤ x ≤ 1}1013

describes the convex envelope of g(x) if and only if its restriction to {0, 1}n can be written as1014

f(
∑n

i=1 xi) +
∑n

i=1 aixi for some convex function f . The corresponding convex envelope is:1015

max
i∈{1,...,n}

(f(i)− f(i− 1))
n
∑

j=1

xj + if(i− 1)− (i− 1)f(i) +
n
∑

j=1

ajxj . (15)1016
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Proof. (⇐) Since g(x) is convex-extendable from {0, 1}n it suffices to restrict g(x) to {0, 1}n and1017

therefore we may assume that g(x) = f(
∑n

i=1 xi)+
∑n

i=1 aixi for some convex function f . Consider1018

the set Wi = {x ∈ Rn |
∑n

j=1 xi = i}. The function g(x) is linear over Wi. Since, each extreme1019

point of Wi is also an extreme point of [0, 1]n, the convex envelope is tight at each such point.1020

Therefore, the convex envelope is also tight over each Wi. In other words, the convex envelope is1021

the convex envelope of g(x) restricted to
⋃n

i=0 Wi. It follows from Proposition 4.5 that the convex1022

envelope is then described by
⋃n

i=1 Pi.1023

(⇒) For the direct implication, consider any function g(x) whose convex envelope is described1024

by
⋃n

i=1 Pi. Therefore, the function is convex-extendable from {0, 1}n and the restriction of g(x) to1025

{0, 1}n must be linear over each Pi. Let li(x) = ai0 +
∑n

j=1 a
i
jxj equal g(x) at the extreme points1026

of Pi. Note that P1 is a simplex. Therefore, l1(x) is uniquely defined by the extreme points of P1.1027

Then, since li(x) and li+1(x) match at the extreme points of Wi, it follows that they also match1028

everywhere on aff(Wi). In other words, li+1(x) − li(x) = αi+1
(
∑n

j=1 xj − i
)

for i = 1, . . . , n − 1.1029

Further, by convexity of the envelope, αi+1 ≥ 0, otherwise li(x) overestimates the function at1030

the extreme points of Wi+1. In other words, g(x) = a10 +
∑n

i=1 a
1
i xi +

∑n
i=2 α

i
(
∑n

j=1 xj − i
)+

at1031

each point in {0, 1}n, where (·)+ denotes max{0, ·}. Since the second term is a convex function of1032

∑n
j=1 xi, the result follows.1033

In fact, we have shown the following result.1034

Corollary 4.7. Consider a function g(x) : P 7→ R, that is convex-extendable from vertices of P ,1035

where P ⊆ [0, 1]n is a polytope. Assume that for each i ∈ {1, . . . , n−1}, Wi = {x ∈ P |
∑n

j=1 xj = i}1036

is integral. Then, the polyhedral subdivision P =
⋃n

i=1 Pi, where Pi = {x ∈ P | i− 1 ≤
∑n

j=1 xi ≤ i}1037

describes the convex envelope of g(x) if its restriction to vert(P ) can be written as f(
∑n

i=1 xi) +1038

∑n
i=1 aixi for some convex function f . The convex envelope is given by (15).1039

Proof. Note that W0 and Wn are either empty or integral by definition. The remaining proof is just1040

as that of Theorem 4.6.1041

We next give applications of Theorem 4.6 and Corollary 4.7 in the derivation of convex envelopes1042

of various functions. In the following result, we use the same notation as that used in Corollary 3.10.1043

Corollary 4.8 (Theorem 3 and 5 in Sherali [30]). Consider the function φm(y) : vert(G) 7→ R1044

defined as
∑

J⊆D,|J |=m

[
∏

d∈J yi(d),j(d)
]

, where m ≤ n. Then, the convex envelope of φm(y) over G1045

is given by1046

φm
C (x) = max

{

0,

(

k

m− 1

) n
∑

i=1

xj − (m− 1)

(

k + 1

m

) ∣

∣

∣

∣

k = m− 1, . . . , n− 1

}

. (16)1047

If di = 1 for all i, then φm
C (x) is also the convex envelope of φm(y) : G 7→ R over G.1048

Proof. As in the proof of Corollary 3.10, we may restrict attention to J such that if d and d′1049

belong to J , then i(d) 6= i(d′). Note that {x |
∑n

j=1

∑dj
r=1 yjr = i,

∑dj
r=1 yjr ≤ 1∀j} is an integral1050

polytope since the corresponding matrix is totally unimodular (see for example, Corollary 2.8 in1051

[22]). Note that φm(x) is supermodular and expressible as
(

∑n
i=1 xi

m

)

where
(

u
m

)

is defined as zero1052

if u < m. The convexity of φm as a function of
∑n

j=1 xj then follows from Proposition 5.1 in1053

[19] which states that a function of the form g(|X|) is supermodular, where |X| is the cardinality1054

of a set X if and only if g is convex. The convexity of φm can also be verified by directly since1055
( i
m

)

−
(i−1

m

)

=
( i−1
m−1

)

which is a non-decreasing function of i. The convex envelope then follows from1056

Corollary 4.7. Then, substituting f(i) =
( i
m

)

in (15), we obtain (16). The last statement follows1057

just as in Corollary 3.10.1058
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Example 4.9. Consider the function f(x) = 1∑n
i=1

xi
where xi ∈ {0, 1}, and P = {x ∈ [0, 1]n |1059

∑n
i=1 xi ≥ 1}. The standard factorable programming relaxation uses the function itself as the1060

convex underestimator. The function, f(x), appears in the formulation of the consistent biclustering1061

problem [6], where the authors relax f(x) over P by cross-multiplying with the denominator and then1062

relaxing xif(x) over [0, 1] × [1, 1
n ]. Since this relaxation is valid even when xi ∈ [0, 1] and since it1063

is polyhedral, it is weaker than the factorable relaxation discussed above. Further, note that f(x)1064

is convex and Wi = {x ∈ P |
∑n

j=1 xj = i} are clearly integral. Therefore, Corollary 4.7 applies1065

and provides a description of the convex envelope of f(x) over P . Observe that the factorable1066

programming relaxation, which is non-polyhedral, is weaker than the polyhedral relaxation obtained1067

from Corollary 4.7 when
∑n

i=1 xi 6∈ Z. It may be noted that the concave envelope of f(x) was1068

previously described in Example 3.20.1069

As mentioned before, Theorem 4.1 also provides a constructive derivation of the polyhedral1070

subdivision describing the convex envelope of xf(y) when f(y) has a polyhedral envelope. We next1071

illustrate the constructions involved for the case where the function f(y) is of the form f(‖y‖1),1072

where y ∈ {0, 1}n.1073

Corollary 4.10. Consider g(x, y) = xf(
∑n

i=1 yi). Let f be a non-increasing convex function and1074

y ∈ {0, 1}n. For I ⊆ N and 0 < l ≤ |I|, let1075

S(I, l) =

{

(x, y)

∣

∣

∣

∣

0 ≤ yi ≤ x ≤ yj ≤ 1, ∀i ∈ I, j ∈ N\I, (l − 1)x ≤
∑

i∈I

yi ≤ lx

}

.1076

Then, the polyhedral subdivision
⋃

I⊆N

0<l≤|I|
S(I, l) defines the convex envelope of g(x, y). In particular,1077

the convex envelope of g(x, y) over S(I, l) is given by:1078

(

f(l + |Ic|)− f(l− 1 + |Ic|)
)

∑

i∈I

yi +
(

lf(l− 1 + |Ic|)− (l − 1)f(l + |Ic|)
)

x (17)1079

where Ic = N\I.1080

Proof. First note that when x = 1, the function f(y) satisfies the conditions of Theorem 4.6.1081

Therefore, the polyhedral subdivision is given by
⋃n

i=1W
′
i , where W

′
i = {y ∈ Rn | i−1 ≤

∑n
i=1 yi ≤1082

i}. In particular, over W ′
i1083

conv
[0,1]n

(f)(y) = h(y) :=
(

f(i)− f(i− 1)
)

n
∑

j=1

yj +
(

if(i− 1)− (i− 1)f(i)
)

(18)1084

Clearly, conv[0,1]n+1(xf(y)) = conv[0,1]n+1(xh(y)). Now, the situation fits the setting of Theorem 4.1.1085

Therefore, the convex envelope over S(I, l) is given by xh
(

y′

x

)

, where y′i = min(yi, x). By definition1086

of S(I, l), y′i = yi for i ∈ I and y′i = x for i ∈ N\I. Expanding using (18) one obtains (17). It follows1087

by choosing f(x, y) to be a strictly convex and decreasing function (such as 1
1+y1+...+yn

) that the1088

convex envelope of g(x, y) is only tight at the binary points that belong to vert(S(I, l)). Therefore,1089

⋃

I⊆N

0<l≤|I|
S(I, l) gives a polyhedral subdivision of [0, 1]n+1.1090

In Section 3, we discussed a situation where removing the origin from the underlying polytope1091

changed the associated polyhedral subdivision completely. As we mentioned, this was because1092

each simplex in the triangulation contained the origin as a vertex. For the function addressed in1093

Corollary 4.10, it can be easily verified that the origin is still a vertex of each polyhedron in the1094
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subdivision. However, in this case the structure of the convex envelope is not completely altered1095

when the origin is removed from the underlying region. An intuitive reason for this is that the1096

polytopes that form the subdivision described in Corollary 4.10 are not simplices. Therefore, even1097

if the origin is removed from a polytope, it may still have sufficient points to describe the convex1098

envelope over a subregion. Theorem 4.11 exemplifies this phenomenon. We discuss an application1099

of this result in Example 4.12.1100

Theorem 4.11. Consider g(x, y) = xf (
∑n

i=1 yi), where f(z) : R 7→ R is a convex non-increasing1101

function. Assume that (x, y) ∈ {0, 1}n+1 and (x, y) 6= (0, 0). Let W =
{

(x, y) ∈ [0, 1]n+1 | x +1102

∑n
i=1 yi ≥ 1

}

. Then, the polyhedral subdivision S =
⋃n−1

i=0 S(i) ∪
⋃

I⊆N

0≤k≤|I|−1

T (I, k) describes the1103

convex envelope of g(x, y) over W where1104

S(i) =



































(x, y)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ y ≤ 1
0 ≤ x ≤ 1

1 + (i− 1)x ≤
n
∑

j=1

yj ≤ 1 + ix

∑

j∈C

yj ≤ 1 + (|C| − 1)x∀C ⊆ N



































1105

and1106

T (I, k) =































(x, y)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ yi ≤ x∀i ∈ I
x ≤ yj ≤ 1∀j ∈ Ic

kx ≤
∑

j∈I

yj ≤ (k + 1)x

∑

j∈Ic

yj ≥ 1 + (|Ic| − 1)x































.1107

In particular,1108

conv
W

(g(x, y)) = max

{

max
0≤i≤n−2

hS(i)(x, y), max
I⊆N

0≤k≤|I|−1

hT (I,k)(x)

}

,1109

where hS(i)(x, y) =
(

if(i)− (i− 1)f(i+1)
)

x−
(

f(i+1)− f(i)
)(

1−
∑n

j=1 yj

)

and hT (I,k)(x, y) =1110

(

f(|Ic|+ k + 1)− f(|Ic|+ k)
)

∑

j∈I yj +
(

(k + 1)f(|Ic|+ k)− kf(k + 1 + |Ic|)
)

x.1111

Proof. We first show that S covers the unit hypercube. Consider (x′, y′) ∈ W . There are two cases.1112

First assume that
∑

j∈C y′j ≤ 1 + (|C| − 1)x′ for all C ⊆ N . Since this inequality holds for C = N ,1113

we have that
∑n

j=1 y
′
j ≤ 1 + (n− 1)x′. Further, since (x′, y′) ∈ W , we have that

∑n
j=1 y

′
j ≥ 1 − x′.1114

It follows that (x′, y′) ∈ S(i) for some i ∈ {0, . . . , n − 1}. Second, assume that there exists J ∈ C1115

such that
∑

j∈Jc y′j > 1 + (|Jc| − 1)x′. Define I = J\{j ∈ J | y′j ≥ x′} ∪ {j ∈ Jc | y′j < x′}. It is1116

easily verified that y′j ≤ x′ for j ∈ I, y′j ≥ x′ for j ∈ Ic, and that
∑

j∈Ic y
′
j > 1 + (|Ic| − 1)x′.1117

Further, by construction of I, we have that
∑

j∈I yj ≤ |I|x′. It follows that (x′, y′) ∈ T (I, k) where1118

k ∈ {0, . . . , |I| − 1}.1119

Next, we show that S(i) has 0-1 extreme points. In fact, we will show that S(i) = conv(W1∪W2)1120

where W1 = {(0, y) | 0 ≤ y ≤ 1,
∑n

j=1 yj = 1} and W2 = {(1, y) | i ≤
∑n

i=1 yi ≤ i+ 1}. To this end,1121

we will show that, independent of the choice of objective coefficients b and c, the following linear1122
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program1123

P (S) min bx+ cy1124

s.t. 0 ≤ yj ≤ 1 j = 1, . . . , n (αj)1125

0 ≤ x ≤ 1 (β)1126

1 + (i− 1)x ≤
n
∑

j=1

yj ≤ 1 + ix (δ)1127

∑

j∈C

yj ≤ 1 + (|C| − 1)x ∀C ⊆ N (γC)1128

1129

has an integer optimal solution. In the linear program P (S), α, β, δ, and γ are the dual variables1130

corresponding to the constraints. Each of the variables αj , β, and δ corresponds to two constraints.1131

Among these, the appropriate constraint depends on the sign of the associated dual variable.1132

We assume without loss of generality that c1 ≤ · · · ≤ cn. Let N(t) = {1, . . . , t}. There are two1133

cases. Assume first that ci+1 ≥ 0. Define δ = max{0, ci}, γN(t) = ct − ct+1 for t = 1, . . . , i − 1,1134

γN(i) = min{0, ci}, αj = cj − ci for j > i. Let all other α and γ dual variables be set to 0. Adding1135

the resulting (weighted) inequalities, we obtain1136

n
∑

j=1

cjyj − x
i
∑

j=2

cj ≥ c1. (19)1137

Let β = b +
∑i

j=2 cj . If β > 0, adding the corresponding (weighted) constraint to (19) shows that1138

bx + cy ≥ c1 for all feasible solutions of P (S). Therefore, the integer solution x = 0, y1 = 1, and1139

yj = 0 for j > 1, whose objective value is c1, is optimal for P (S). If β ≤ 0, we proceed similarly1140

to show that bx+
∑n

j=1 cjyj ≥ b+
∑i

j=1 ci for all feasible solutions of P (S). Therefore, the integer1141

solution x = 1, yj = 1 for j ≤ i, and yj = 0 for j > i is optimal for P (S).1142

Now, assume that ci+1 < 0. Define δ = ci+1, γN(t) = ct− ct+1 for t = 1, . . . , i, and αj = cj − ci+11143

for j > i + 1. Let the remaining α and γ dual variables be set to zero. Adding the resulting1144

(weighted) inequalities, we obtain that
∑n

j=1 cjyj − x
∑i+1

j=2 cj ≥ c1. Let β = b+
∑i+1

j=2 cj. If β > 0,1145

we conclude that bx +
∑n

j=1 cjyj ≥ c1 and so the integer solution x = 0, y1 = 1, and yj = 0 for1146

j > 1 is optimal for P (S). If β ≤ 0, we obtain similarly that bx +
∑n

j=1 cjyj ≥ b +
∑i+1

j=1 cj and1147

so the integer solution x = 1, yj = 1 for j ≤ i + 1, and yj = 0 for j > i + 1 is optimal for P (S).1148

Hence, S(i) = conv(W1 ∪W2). It follows in a manner similar to Theorem 4.1 and Corollary 4.10 by1149

applying Theorem 1 of [41] that the extreme points of T (I, k) are binary.1150

Clearly, hS(i)(x, y) ≤ 0 if x = 0 and
∑n

j=1 yi ≥ 1 with equality when
∑n

j=1 yi = 1. Also,1151

hS(i)(x, y) = f(i) + (i− r)(f(i)− f(i+ 1)) if x = 1 and
∑n

j=1 yj = r. Then, it follows by convexity1152

of f that hS(i)(x) ≤ f(r) with equality if r ∈ {i, i + 1}. Therefore, by Theorem 2.4, hS(i)(x, y) ≤1153

convW g(x, y), with equality over S(i).1154

From Corollary 4.10, it follows that conv[0,1]n+1 g(x, y) over T (I, k) is given by hT (I,k)(x, y).1155

Therefore, hT (I,k)(x, y) ≤ g(x, y). Further, vert(T (I, k)) ⊆ vert(S(I, k + 1)), where S(I, k + 1) is1156

defined as in Corollary 4.10. Therefore, hT (I,k)(x, y) = g(x, y) for (x, y) ∈ vert(T (I, k)). It follows1157

then from Theorem 2.4 that hT (I,k)(x, y) ≤ convW g(x, y) with equality over T (I, k).1158

Choosing f(·) to be a strictly convex and decreasing function, it can be verified that hS(i)(x, y)1159

is not tight at any binary point that is not an extreme point of S(i). Similarly, as in Corollary 4.10,1160

hT (I,k)(x, y) is not tight at any binary point that is not an extreme point of T (I, k). Therefore,1161

⋃n−1
i=0 S(i) ∪

⋃

I⊆N

0≤k≤|I|−1

T (I, k) is a polyhedral subdivision of W .1162
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Example 4.12. Consider g(x, y) = x
x+

∑n
i=1

yi
, where (x, y) ∈ {0, 1}n+1 and x+

∑n
i=1 yi ≥ 1. This1163

function appears along with the specified constraint in the consistent biclustering problem [6]. The1164

convex envelope for g(x, y) over W is described by the polyhedral division of Theorem 4.11. In1165

particular,1166

hS(i)(x, y) =
1

(i+ 1)(i + 2)



(2i+ 1)x−
n
∑

j=1

yj + 1





1167

and1168

hT (I,k)(x, y) =
1

(|Ic|+ k + 2)(|Ic|+ k + 1)



(|Ic|+ 2k + 2)x−
∑

j∈I

yj



 .1169

Because for all feasible solutions 1
x+

∑n
i=1 yi

∈
[

1
n+1 , 1

]

, the factorable relaxation of g(x, y) takes the1170

form max
{

1
n+1x, x+ u(x, y)− 1

}

where u(x, y) is a convex underestimator of 1
x+

∑n
i=1 yi

over the1171

feasible region. If this convex underestimator is obtained without using the fact that variables are1172

binary, as is typical in global optimization software, u(x, y) would be chosen equal to 1
x+

∑n
i=1

yi
and1173

the resulting factorable relaxation would therefore be non-polyhedral. Such relaxation can be verified1174

to be weaker than the relaxations that can be obtained from Corollary 4.10 and Theorem 4.11. To1175

illustrate the difference, consider the special case g(x, y) = x
x+y . At the point (1, 0.5), the factorable1176

relaxation obtained without using integrality of the variables evaluates to 2
3 while the relaxation of1177

Corollary 4.10 obtained by defining g(x, y) = 0 when x = 0 evaluates to 3
4 , a value that can be1178

computed after selecting I = {1} and l = 1. Further, at the point (0.5, 0.5), the factorable relaxation1179

obtained without using integrality evaluates to 1
4 . The relaxation using Corollary 4.10 also evaluates1180

to 1
4 . However, the relaxation of Theorem 4.11 (in particular, hS(0)(x, y)) evaluates to 1

2 at this1181

point. This example illustrates that, for this type of functions, Theorem 4.11 produces a relaxation1182

that is tighter over W than the relaxation obtained using Corollary 4.10. This relaxation is in turn1183

tighter than the traditional factorable relaxation.1184

5 Conclusion1185

We studied the problem of developing convex and concave envelopes of nonlinear functions over1186

subsets of a hyper-rectangle. In particular, we showed that the optimal value of a primal-dual pair1187

of linear optimization problems yields the concave envelope when it has a polyhedral structure. We1188

then showed that existence of polynomial-time separation algorithms for the concave envelopes of1189

a set of functions imply polynomial-time separability for the concave envelope of the maximum of1190

these functions.1191

Next, we showed that a result of Lovász [19] allows construction of concave envelopes of super-1192

modular functions over a hyper-rectangle if the function is concave-extendable from the vertices of1193

the hyper-rectangle. We generalized this construction to consider supermodular functions over a1194

lattice family and demonstrated that this result yields simple derivations and extensions of results1195

in the literature [30, 8, 5, 21, 26]. As a particular application, we constructed the concave envelope1196

of the composition of a univariate convex function with a linear function, a structure commonly1197

encountered when deriving convex relaxations of factorable programs.1198

We then showed that the convex envelope of certain functions that have a disjunctive property1199

can be developed by convexifying their restrictions over carefully selected orthogonal disjunctions.1200

As a consequence of this result, we developed convex envelopes for a variety of fractional and1201
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polynomial expressions over the unit hypercube. We then considered a convex function restricted to1202

a nonconvex set. We derived an exclusion property that limits the subsets that need to be considered1203

while evaluating the convex envelope outside the nonconvex set. We used this property to identify1204

the polyhedral subdivision that characterizes the convex envelope of a symmetric function of binary1205

variables that depends only on the cardinality of the set of binary variables that assume a value1206

of one. This result generalizes some earlier results discovered in [30] and has other applications as1207

well; see [6]. Then, we used these symmetric functions to define disjunctive functions, for which we1208

combined our previous results to derive their convex envelopes. This construction demonstrated that1209

polyhedral subdivisions are naturally obtained by using our convexification scheme for disjunctive1210

functions. Finally, we discussed applications of these disjunctive functions in relaxing the consistent1211

biclustering problem described in [6].1212

The derivation of concave envelopes for nonconcave functions f yields ways to obtain convex1213

relaxations for constraints of the form f(x) ≥ r. Investigating the computational advantages that1214

these new relaxations offer over those currently used in software implementations is an important1215

direction of future research. On the theoretical side, investigating whether stronger relaxations of1216

f(x) ≥ r can be obtained in closed-form is also an interesting avenue for future work.1217
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