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“Wrong-product” delivery - the delivery of a product different from that desired - is a significant, but as yet

unexplored problem in supply-chain management research. There are basically two reasons for wrong-product

delivery: either the wrong product is mistakenly ordered or the right product is ordered but the wrong

product is picked/shipped. This paper defines and analyzes the “wrong-product delivery” problem using a

2-product newsvendor model. Two non-substitutable products may be ordered at the beginning of each time

period. However, whenever product i is ordered, then with known probability αi, product j is delivered;

i, j = 1,2(i 6= j). First, we analyze the “no-recourse scenario”, where management correctly stores whatever

was received, but takes no other action. We establish the form of the optimal policy and conduct sensitivity

analysis. Although our modeling framework is simple, our results are unexpected and non-intuitive. For

example, it is well known that in the single-product newsvendor model, increasing the uncertainty of demand

or supply will yield an increase in the corresponding target basestocks and safety stocks. However, increasing

the risk of a wrong-product error yields a decrease in the corresponding basestocks and safety stocks. Further,

although target basestocks in the single-product newsvendor model are invariant to increases in on-hand

inventory, we show that the target basestock for either product is non-decreasing as its inventory increases.

We also demonstrate that the cost impact of wrong-product uncertainty is comparable, if not larger than, the

cost impact of demand uncertainty. Next, we analyze the “recourse scenario” where management is able to

correct errors but only by incurring a fixed cost of $K . We show that it is optimal to take recourse when the

wrong-product uncertainty is sufficiently small, but not take recourse when the wrong-product uncertainty

is high. In strategic terms, our analysis provides insight into the cost impact of wrong-product errors, and,

hence, the importance of reducing them.
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1. Introduction

“Wrong-product” delivery - the delivery of a product different from that desired - is a significant,

but as yet unexplored problem in supply-chain management research. There are basically two

reasons for wrong-product delivery: either the wrong product is mistakenly ordered or the right

product is ordered but the wrong product is picked/shipped. There are many underlying causes. In

the healthcare-product setting that motivated this research, the “most likely suspect” is the lack

of uniform standards (e.g., bar codes) for product identification throughout the supply chain. As

an illustration, the Department of Defense Data Synchronization Study (Roberts 2009) noted that

a single product, manufactured by 3MTM(8630: DuraPrepTMSurgical Solution), was cataloged at

eight different distributors using eight different product numbers, which could potentially lead to

ordering errors. In another example, the same product number (10313) represented a needle at one

distributor, a cartridge replacement at another, an accessory traction-replacement strap at a third,

and a chlorine test kit at a fourth. The same study estimates that wrong-product errors occur in

between 2 and 30% of ordering/shipping transactions.

This paper develops and analyzes the wrong-product delivery problem using a 2-

product newsvendor model. Two non-substitutable products experience independent, identically-

distributed, periodic demand and identical per-unit acquisition, holding and stockout (i.e., backo-

rder or lost-sale) costs. There is an opportunity to order either or both products at the beginning

of each time period. There is no fixed ordering cost. Orders are received instantaneously. However,

if product i is ordered, then with known probability αi product j is delivered; i, j = 1,2 (i 6= j).

Hence, four outcomes are possible. To illustrate: Assuming that 5 (10) units of product 1 (2) are

ordered, then the possible outcomes are: (1) 5 units of product 1 and 10 units of product 2 are

received (with probability (1− α1)(1− α2)); (2) 15 units of product 1 but no units of product 2

are received (with probability α2 (1-α1)); (3) 15 units of product 2 but no units of product 1 are

received (with probability α1 (1-α2)); and (4) 10 units of product 1 and 5 units of product 2 are

received (with probability α1α2). We assume that upon receipt the products are correctly identi-

fied. We first analyze the “no-recourse scenario”, where management correctly stores and records
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whatever was received, but takes no other action. We then study the “recourse scenario” in which

management is able to correct any errors (i.e., (2)-(4) above) but only by incurring a fixed cost

of $K. We begin with an analysis of the single-period, no-recourse scenario. We then examine two

extensions: (1) the multi-period, no-recourse scenario; and (2) the single-period, recourse scenario.

In each of these scenarios we establish the form of the optimal policy and conduct sensitivity

analysis.

Although our modeling framework is simple, our results are unexpected and non-intuitive if based

on the single-product newsvendor model. To illustrate: It is well known that in the single-product

newsvendor model increasing the uncertainty of demand or supply will yield an increase in the

corresponding target basestocks and safety stocks. However, increasing the risk of a wrong-product

error yields a decrease in the corresponding basestocks and safety stocks. Further, although target

basestocks in the single-product newsvendor model are invariant to increases in on-hand inventory,

we show that the target basestocks for either product is non-decreasing as its inventory increases.

Finally, perhaps the most significant insight is that the cost impact of wrong-product uncertainty is

comparable, if not larger than, the cost impact of demand uncertainty. For the “recourse scenario”,

we show that it is optimal to take recourse when the wrong-product uncertainty is sufficiently

small, but not take recourse when the wrong-product uncertainty is high.

The contributions of this work are as follows: To the best of our knowledge, ours is the first to

model the wrong-product problem. We establish the form of the optimal policy for the single-period

model and several extensions. We also establish and illustrate the non-intuitive characteristics

of the optimal policies. In strategic terms, our analysis provides insight into the cost-impact of

wrong-product errors, and, hence, the importance of reducing them.

In the next section, we review the related literature. In Section 3 we examine the no-recourse,

single-period scenario. Section 4 discusses two extensions of the base model: multi-period model

and “recourse scenario”. Section 5 contains concluding remarks.
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2. Literature Review

Our model links two newsvendor models, the linkage being on the supply side; i.e., with known

probability αi, an order placed for zi units of product i, i = 1,2, will result in the delivery of zi

units of product j, j 6= i. Hence, our model might be viewed as a type of supply substitution.

Demand substitution has been examined by Netessine and Rudi (2003), Mahajan and van Ryzin

(2001) and others. In a demand-substitution scenario, demand for an out-of-stock product is sup-

plied, deterministically by the supplier or deterministically or stochastically by the customer.

Although our model might be viewed as involving supply substitution, this substitution doesnt

occur as a consequence of an out-of-stock situation. Hence, as might be expected, both our analysis

and results are quite different from demand-substitution models. In particular these models do not

prescribe optimal inventory levels.

Our model can also be viewed as involving unreliable supply, as modeled by Dada et al. (2007),

Anupindi and Akella (1993) and others. In these single-product papers, unreliable supply means

that each given supplier has a known probability of delivering whatever was ordered (in the quantity

ordered) or not, possibly at different purchase prices. The corresponding analysis focuses on how

much should be ordered from each supplier. In the single-supplier scenario, Dada et al. (2007),

demonstrate that both the optimal target basestock and safety stock increase as the risk of supply

increases. As noted above, this is quite different from the wrong-product scenario, in which, the

optimal target basestock and safety stock for each product decreases as the risk of supply increases.

Our model is also related to the literature on transaction errors. Iglehart and Morey (1972)

develop a model for establishing a buffer (in addition to any existing safety stock) against trans-

action errors which can lead to discrepancies between the inventory record and actual inventory.

Kok and Shang (2007) study an inventory-replenishment problem together with an inventory-audit

policy to correct transaction errors. Atali et al. (2009) show how to design an optimal inventory-

control policy in the presence of inventory discrepancies caused by shrinkage, misplacement, and

transaction errors. See Lee and Ozer (2007) for an overview of these and related works. DeHor-

atius et al. (2008) and DeHoratius and Raman (2008) develop and test models for retail inventory
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management when records are inaccurate. Our model is different from all of these since wrong-

product errors don’t result in any inventory discrepancies and because wrong-product errors affect

the inventory and the inventory-associated costs of two products.

Our model is most closely associated with the yield-management literature, in which, the number

of units received may be less than, equal to, or more than the quantity ordered. See Yano and

Lee (1995) for a review. Indeed, our results have interesting similarities and differences with those

Henig and Gerchak (1990) in the single-product, stochastically-proportional yield scenario. Henig

and Gerchak examine a single-product newsvendor model with stochastically-proportional yield

( i.e., the amount delivered is a random multiple of the amount ordered). In order to see the

connection, note that in the totally symmetric wrong-product model (α1 = α2;x1 = x2), if z of

each product is ordered then the “yield” will be stochastically proportional for each product: 0 or

2z, with probability α(1−α); and z with probability (1− 2α + 2α2). Hence, Henig and Gerchak’s

Theorems 1-2 hold. See Section 3 for details.

3. Model Framework and Analysis

We first analyze a single-period, no-recourse scenario. We assume that stochastic demand for the

two products is independent with known CDF F (·). Each product can be ordered at the beginning

of the period and delivery is instantaneous1. We assume identical purchase costs $ c per unit,

inventory-holding costs $ h per unit leftover, and shortage costs $ p per unit of unsatisfied demand.

Let αi be the probability of making an error in ordering/shipping product i; i.e., αi indicates the

probability that product j, j 6= i is received when an order for product i was planned.

The “no-recourse” scenario means that any error will be discovered upon receipt, but not cor-

rected; i.e., the products are stored in the correct place and inventory records accurately adjusted to

reflect what happened. In section 4, we analyze the “recourse” scenario, where errors are discovered

on receipt and can be fixed at a cost.

Let xi, i = 1,2 be the initial inventory, before the orders are placed, for product i. The goal is to

determine the order-up-to levels yi, and, hence, the order quantities zi = yi − xi for each product

1 Fixed leadtimes can be incorporated provided backordering is permitted
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i = 1,2 in order to minimize the sum of the expected leftover and shortage costs. Thus the problem

can be stated as follows:

C(x1, x2, α1, α2) = min
y1≥x1,y2≥x2

G(y1, y2, x1, x2) (1)

Where

G(y1, y2, x1, x2) = {c
2

∑

i=1

(yi −xi) + (1−α1)(1−α2)[L(y1) + L(y2)] (2)

+(1−α1)α2[L(y1 + y2 −x2) + L(x2)] + α1(1−α2)[L(x1) + L(y1 + y2 −x1)]

+α1α2[L(x1 + y2 −x2) + L(x2 + y1 −x1)]}

Here, L(·) represents the one-period newsvendor expected cost for a product, i.e., L(y) = h
∫ y

0
(y−

t)f(t)dt+p
∫ ∞

y
(t−y)f(t)dt. The first term in (2) represents the ordering costs incurred; the second

term represents the expected costs if no errors are made (with probability (1− α1)(1−α2)); the

third term represents the expected costs if an error occurs on product 2 order but not with the

product 1 order (with probability (1−α1)α2); the fourth term represents the expected costs if an

error occurs on product 1 order but not with the product 2 order (with probability (1−α2)α1);

and the last term represents the expected costs if an error is made in shipping both products (with

probability α1α2). Note that if the probability of an error is zero, i.e., α1 = α2 = 0, then the problem

reduces to solving two independent newsvendor problems. Mathematically, this can be stated as

follows:

C(x1, x2,0,0) =
2

∑

i=1

min
yi≥xi

{c(yi −xi) + L(yi)} (3)

The next theorem establishes the convexity of the cost function G(y1, y2, x1, x2)

Theorem 1. The cost function G(y1, y2, x1, x2) is jointly convex in y1, y2. Hence, a state-

dependent basestock policy is optimal.
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(All proofs are provided in the Appendix)

The optimal basestock levels y∗
i , i = 1,2 can be found by solving the following first-order conditions:

(1−α1)(1−α2)F (y1)+(1−α1)α2F (y1 +y2−x2)+α1(1−α2)F (y2+y1−x1)+α1α2F (x2+y1−x1) =
p− c

p + h

(4)

(1−α1)(1−α2)F (y2)+(1−α1)α2F (y1 +y2−x2)+α1(1−α2)F (y2+y1−x1)+α1α2F (x1+y2−x2) =
p− c

p + h

(5)

Note that the righthand side of (4)-(5) is the “newsvendor fractile” and the lefthand sides are wrong-

product generalizations of F (xi +zi). Let y∗
i (x1, x2, α1, α2) denote the optimal basestock levels when

the initial inventories are (x1, x2) and the probabilities of wrong-product errors are (α1, α2). In the

traditional Newsvendor model, it is well known that increased uncertainty in demand results in

an increase in the target basestock levels, and, hence, the safety stock, provided the target service

levels are sufficiently high. Similarly, in single-product models with supply uncertainty (e.g., yield

loss), it is well known that an increase in supply uncertainty results in an increase in basestock

levels (see Dada et al. (2007), Henig and Gerchak (1990), Yano and Lee (1995)). We next measure

supply uncertainty in our model and study its impact on basestock levels y∗
i .

Let Ii be an indicator random variable that takes the value 1 if there is no error on the order

for product i (with probability 1−αi) and the value zero otherwise. Also, let Ri denote the actual

amount of product i received. Then

Ri = QiIi + Qj(1− Ij) (6)

The uncertainty in the product i received due to product i order is σi = αi(1−αi) per unit ordered,

while the uncertainty in the product i received due to product j order is σj = αj(1−αj) per unit

ordered. Thus σi is a measure of supply uncertainty in our model. Also, if σ1 = σ2 = σ, then σ

measures the total uncertainty in the receipt of a product, per unit of product ordered. This can

be written down mathematically as follows:

var(Ri) = Qiαi(1−αi) + Qjαj(1−αj) =
2

∑

i=1

Qiσi (7)
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If σ1 = σ2 = σ, then

var(Ri) = (Q1 + Q2)σ (8)

We begin by presenting results for the totally-symmetric (x1 = x2 = x; α1 = α2 = α), no-recourse

scenario.

Theorem 2. In the totally-symmetric scenario, where x1 = x2 = x; α1 = α2 = α:

(i) Optimal basestock levels y∗
i are equal, i.e., y∗

1(x,x,α,α) = y∗
2(x,x,α,α) for all x and 0≤α≤ 1.

(ii) Optimal basestock levels y∗
i are decreasing in the uncertainty measure σ.

(iii) Optimal basestock levels y∗
i are less than the corresponding no-error basestock levels; i.e.,

y∗
i (x,x,α,α) < y∗

i (x,x,0,0) for all x and 0 < α < 1.

(iv) Optimal basestock levels y∗
i are non-decreasing in the individual initial inventory level x.

(v) Optimal order quantities z∗
i are monotone decreasing in the individual initial inventory

level x.

(vi) Optimal cost C(x,x,α,α) is increasing in the uncertainty measure σ and is decreasing in x

for x≤ y∗(x,x,α,α).

Result (i) is intuitive, even obvious, given equal cost drivers, equal on-hand inventories and equal

α’s. However, it is noteworthy that this optimal basestock decreases in the uncertainty measure

σ (result(ii)). This is the opposite of the effect of increasing demand or supply uncertainty in the

single-product newsvendor model. For intuition, consider the optimal basestock in the no-error

scenario, y∗(x,x,0,0). The optimal basestock equalizes the marginal expected holding cost, hF (y∗),

and the marginal expected penalty cost, p[1 − F (y∗)], for each product, and, hence, minimizes

total expected cost for both products. Introducing wrong-product errors increases the marginal

expected holding cost from hF (y) to h[(1−α)2F (y)+2α(1−α)F (2y−x)+(α)2F (y)] for all values

of y, and, hence, decreases the marginal expected penalty cost. Consequently, the corresponding

optimal basestocks decrease from their no-error values (result (iii)) and decrease with increasing

σ (result (ii)). This is illustrated in Figure 1, which plots y∗(0,0, α,α) versus α (and σ) given

uniformly-distributed demand on the interval [0,10] with c = 0, h = $1/unit and p = $9/unit.
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Figure 1 Graph of optimal cost (C) and basestocks (y∗) as a function of α and σ

Hence, y∗(x,x,α = 0, α = 0) = 9 for all x. Result (iv) is noteworthy since, as just noted, in the

no-error scenario (i.e., α = 0) the optimal basestock is invariant in the on-hand inventory, x. The

intuition into why it is non-decreasing is that the smaller the quantity ordered, the smaller the cost

consequences if an error should occur. Hence, the target basestock is non-decreasing as on-hand

inventory increases. This is also illustrated in Figure 1, which plots y∗(8,8, α,α) versus α (and σ)

for the same demand and cost parameters. Note that y∗(8,8, α,α) > y∗(0,0, α,α) for all 0 < α < 1.

Figure 1 also plots C(0,0, α,α) and C(8,8, α,α). This shows that the cost impact of wrong-product

error is high when inventory levels are low, because order-sizes are large in this case. Note that

C(x,x,α,α) is increasing in σ and decreasing in x (result (vi)). However, note (result (v)), that

the optimal order quantity, z∗, decreases in x.

The fact that C(x,x,α,α) is increasing in the uncertainty measure σ is consistent with the intu-

ition based on the single-product, no-error model; i.e., that increased uncertainty - in this case,

wrong-product supply uncertainty - increases the expected cost of the optimal policy. Indeed, it
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Figure 2 Graph of optimal cost as a function of σ (with σD = 0) and σD (with σ = 0)

is straightforward to show that the marginal increase in optimal expected cost with supply uncer-

tainty (when demand uncertainty is absent) is greater than its marginal increase with demand

uncertainty (when supply uncertainty is absent), except for extremely low values of demand. And in

either case, given uniformly-distributed demand and x = 0, it can be shown that the expected cost

of the optimal policy is linear in either uncertainty measure: σD in the case of demand uncertainty

and σ in the case of wrong-product supply uncertainty (Refer Appendix for a formal analysis).

See Figure 2, which compares the expected cost of the optimal policy when there is supply uncer-

tainty but no demand uncertainty, denoted C(0,0, α,α|σD = 0) versus σ (lower scale), with the

expected cost of the optimal policy when there is no supply uncertainty but (uniform-distribution)

demand uncertainty, denoted C(0,0,0,0|σD) versus σD (upper scale). Like Figure 1, unless stated

otherwise, all figures are based on uniformly-distributed demand on the interval [0,10] with c = 0,

h = $1/unit and p = $9/unit. It is also straightforward to show that any given percentage increase

in either demand uncertainty, σD, (when there is no supply uncertainty) or wrong-product supply
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uncertainty, σ,(when there is no demand uncertainty) yields the same percentage increase in the

expected cost of the optimal policy.

Although these per-unit and percentage increases are interesting, it should also be noted that σ

is limited to the range [0,0.25] while σD is theoretically unlimited. However, management typically

has much more control over wrong-product supply uncertainty - for example, by improving its own

business processes - than management has over demand uncertainty, which is typically beyond its

control.

As we noted in the literature review, there are similarities between the single-product, single-

period yield model of Henig and Gerchak (1990) and our symmetric, single-period, wrong-product

model. We restate their Theorems 1-2 below, using the language of our model.

H&G Theorem 1: In the totally-symmetric wrong-product scenario if z∗ = 0 for α = 0, then z∗ = 0

for α > 0.

H&G Theorem 2: In the totally-symmetric wrong-product scenario if for a given x, z∗(x) > 0 when

α = 0, then z∗(x) > 0 for α > 0.

Next, we present results for the asymmetric-α, symmetric-x, no-recourse scenario case (x1 = x2 =

x, but α1 6= α2).

Theorem 3. In the asymmetric-α, symmetric-x case, where α1 6= α2, but x1 = x2 = x:

(i) Optimal basestock levels y∗
i are equal, i.e., y∗

1(x,x,α1, α2) = y∗
2(x,x,α1, α2) for all x and 0 <

α1, α2 < 1.

(ii) Optimal basestock levels y∗
i are monotone decreasing in αi if αj(fixed) < 0.5.

(iii) Optimal basestock levels y∗
i are monotone increasing in αi if αj(fixed) > 0.5.

(iv) Optimal basestock levels y∗
i are less than no-error basestock levels, i.e., y∗

i (x,x,α1, α2) <

y∗
i (x,x,0,0) for all x and 0 < αi < 1.

(v) Optimal basestock levels y∗
i are non-decreasing in the individual initial inventory level x.

(vi) Optimal order quantities z∗
i are monotone decreasing in the individual initial inventory level

x.
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Figure 3 Graph of basestock (y∗) as a function of αi (with αj fixed)

The intuition for (iv) - (vi) above is the same as for the corresponding results in Theorem

2. The intuition behind result (i) follows from the observation that, regardless of which error

occurs, the vector of after-delivery, on-hand inventory has only four possible values: (y1, y2), (y2, y1),

(x, y2 +y1−x), and (y1 +y2−x,x). Since the initial inventories are equal (x1 = x2 = x), y1 = y2 = y

is the optimal solution to the first-order conditions, (4) and (5). Results (ii) and (iii) follow from

the fact that the cost function is super-modular in yi and αi if αi < 0.5, and sub-modular otherwise.

Example results are provided in Figure 3

Finally, we present results for the asymmetric-x, symmetric-α case (i.e., α1 = α2 = α, but x1 6= x2)

Theorem 4. For the asymmetric-x, symmetric-α case, where α1 = α2 = α and x1 6= x2:

(i) Total optimal basestock y∗
T is decreasing in the uncertainty measure σ.

(ii) Total optimal basestock y∗
T is less than total no-error basestock level, i.e., y∗

T (x1, x2, α,α) <

y∗
T (x1, x2,0,0) for all xi and 0 < α < 1.

(iii) Optimal basestock levels y∗
i are monotone increasing in individual initial inventory xi, while

keeping xj fixed.
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Figure 4 Graph of total basestock (y∗
T ) as a function of α (and σ) for x1 = 5 and x2 = 3

(iv) Total optimal order quantity z∗
T is monotone decreasing in individual initial inventory xi, while

keeping xj fixed.

(v) Optimal order quantities z∗
i and z∗

j have the following property: z∗
i (α) = z∗

j (1−α), i 6= j.

Intuition on results (i)-(iv), which involve total basestock, is the same as for the corresponding

results in Theorems 2 and 3 above. Result (v) can be explained as follows: In words this result says

that the order quantity for product i with a wrong product probability α is the same as the order

quantity of product j when wrong product error probability is 1−α. This is because the marginal

costs are symmetric with respect to the order quantities z1 and z2. This symmetry happens because

if a cross-over error happens (i.e., both products shipped incorrectly), then it is equivalent to the

case where the order quantities of the two products were switched and the wrong-product error

was 1−α instead of α.
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3.1. Uniform Demand Distribution

In this sub-section, we provide closed-form expressions for the optimal order quantities and total

expected cost, if demand for the two products has a uniform distribution over the range [0,M ] and

the critical fractile is expressed as Fc. In this case the first-order conditions, (4) and (5), reduce to:

z∗
1
+ (α1 + α2 − 2α1α2)z

∗
2
= MFc − (1−α1)x1 −α1x2 (9)

(α1 + α2 − 2α1α2)z
∗
1
+ z∗

2
= MFc −α2x1 − (1−α1)x2 (10)

which can be solved to get the following optimal base-stock levels:

y∗
1(x1, x2, α1, α2) = x1+z∗

1 =
MFc −x

1 + α1 + α2 − 2α1α2

+x+
α1ε

1− (α1 + α2− 2α1α2)2
− (ε−α2ε)(α1 + α2 − 2α1α2)

1− (α1 + α2− 2α1α2)2

(11)

y∗
2
(x1, x2, α1, α2) = x2+z∗

2
=

MFc −x

1 + α1 + α2 − 2α1α2

+x+
(ε−α2ε)

1− (α1 + α2− 2α1α2)2
−ε− (α1ε)(α1 + α2 − 2α1α2)

1− (α1 + α2− 2α1α2)2

(12)

where x = x1 and ε = x1 −x2 = x−x2.

For the totally symmetric case (x1 = x2 = x; α1 = α2 = α) with uniform demand; the optimal

expected cost C is given by,

C(x,x,α,α) = (pM − 2px)(1 + 2α− 2α2)− 2p(MFc −x) + (h + p)(MF 2

c + 2α(1−α)
x2

M
) (13)

It is known that the no-error expected cost (α = 0) is given by, C(x,x,0,0) = M{p(Fc −1)2 +hF 2
c }.

Hence, a cost penalty(Cp) can be defined as the ratio of the optimal expected cost with wrong-

product errors to the corresponding optimal expected cost when there are no errors.

Cp =
C(x,x,α,α)

C(x,x,0,0)
= {(pM − 2px)(1 + 2α− 2α2)− 2p(MFc −x) + (h + p)(MF 2

c + 2α(1−α)x
2

M
)

M{p(Fc − 1)2 + hF 2
c }

}

Cp can be regarded as a measure of the additional cost that is incurred (penalty) because of wrong-

product errors.
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(Note that the above closed-form expressions are valid for 0 < x < M , 0 < x+ z∗
1
< M , 0 < x+ z∗

2
<

M and 0 < x + z∗
1 + z∗

2 < M . For a detailed discussion, see appendix.)

4. Extensions of the Base Model

In this section: 1) we extend the single-period model to a multi-period setting; and 2) we extend

the base model to a scenario where recourse to fix wrong-product errors can be taken when errors

occur.

4.1. Multi-period model with wrong-product errors

We first consider a T -period version of the base model. Inventory now has to be managed over

t = 1, ..., T periods. The sequence of events in each period t is as follows.

i. The beginning inventory levels for each period t are xt
1 and xt

2 for the two products

ii. Order quantities Qt
1

and Qt
2

are placed after observing the state (xt
1
, xt

2
).

iii. Wrong-product errors could result, with probability α1 and α2, as described above. Shipments

are received (instantaneously) for the two products. Let Rt
i = Qt

iI
t
i +Qt

j(1−I t
j) be the amount

received for product i, i = 1,2.

iv. Random demand for each product for period t is realized and satisfied using the available

inventory xt
i + Rt

i.

v. Inventory-holding and shortage costs are assessed for period t at the end of the period. Any

leftover inventory is carried over to the next period. Any unmet demand in period t is

backordered to the next period.2

The optimality equation for the T -period model can be written as:

Ct(xt
1, x

t
2) = min

yt
1≥xt

1,yt
2≥xt

2

G(yt
1, y

t
2, x

t
1, x

t
2) (14)

where Ct(xt
1, x

t
2) is the total expected discounted cost of the optimal policy, β is the discount factor,

and,

G(yt
1, y

t
2, x

t
1, x

t
2)

= {c
2

∑

i=1

(yt
i −xt

i) + (1−α1)(1−α2)[L(yt
1
) + L(yt

2
)

2 The analysis in the lost-sale case is similar.
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+β

∫ ∞

0

∫ ∞

0

Ct+1(yt
1 − ζt

1, y
t
2 − ζt

2)f(ζt
1)f(ζt

2)dζ1dζ2]

+(1−α1)α2[L(yt
1 + yt

2 −xt
2) + L(xt

2)

+β

∫ ∞

0

∫ ∞

0

Ct+1(yt
1 + yt

2 −xt
2 − ζt

1, x
t
2 − ζt

2)f(ζt
1)f(ζt

2)dζ1dζ2]

+α1(1−α2)[L(xt
1) + L(yt

1 + yt
2 −xt

1)

+β

∫ ∞

0

∫ ∞

0

Ct+1(xt
1 − ζt

1, y
t
1 + yt

2−xt
1 − ζt

2)f(ζt
1)f(ζt

2)dζ1dζ2]

+α1α2[L(xt
1 + yt

2 −xt
2) + L(xt

2 + yt
1 −xt

1)

+β

∫ ∞

0

∫ ∞

0

Ct+1(xt
1 + yt

2−xt
2 − ζt

1, x
t
2 + yt

1 −xt
1 − ζt

2)f(ζt
1)f(ζt

2)dζ1dζ2]}

The next theorem establishes the convexity of the cost function.

Theorem 5. The cost function Ct(xt
1, x

t
2) is convex in xt

1, x
t
2. Hence, a state-dependent basestock

policy is optimal.

4.2. The Recourse Scenario

In this extension we permit management to instantaneously correct any wrong-product errors by

incurring a fixed cost of $K. More specifically, at the beginning of each period, after receiving

whatever products were shipped, we continue to assume that management correctly identifies

whatever was shipped. Now, however, depending on what was received, management chooses either

to have any errors instantaneously corrected (i.e., to swap any wrong-product receipts for whatever

management intended to order), by incurring a fixed cost of $K; or, to “live” with those errors, as

in the no-recourse scenario. We begin by stating the 1-period problem.

CR(x1, x2, α1, α2) = min
y1≥x1,y2≥x2

GR(y1, y2, x1, x2) (15)

Where

GR(y1, y2, x1, x2) = {c
2

∑

i=1

(yi −xi) + (1−α1)(1−α2)[L(y1) + L(y2)] (16)

+(1−α1)α2 min[L(y1 + y2 −x2) + L(x2),L(y1) + L(y2) + K]

+α1(1−α2)min[L(x1) + L(y1 + y2 −x1),L(y1) + L(y2) + K]]
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+α1α2 min[L(x1 + y2 −x2) + L(x2 + y1 −x1),L(y1) + L(y2) + K]]}

We next provide some structural results for the symmetric-x case (where x1 = x2 = x). If x1 = x2 =

x, then (15)-(16) can be written as

CR(x,x,α1, α2) = min
y1≥x1,y2≥x2

GR(y1, y2, x,x) (17)

Where

GR(y1, y2, x,x) = {c
2

∑

i=1

(yi −x) + [(1−α1)(1−α2) + α1α2][L(y1) + L(y2)] (18)

+[(1−α1)α2 + α1(1−α2)]min[L(y1 + y2 −x) + L(x),L(y1) + L(y2) + K]

Note that this can be stated as the minimization of two problems as follows:

CR(x,x,α1, α2) = min{C(x,x,α1, α2),C(x,x,0,0) + [(1−α1)α2 + α1(1−α2)]K} (19)

The first term in (19) is the cost of the optimal policy in the no-recourse scenario above, while the

second term is the traditional newsvendor problem under the no-errors scenario plus the expected

cost of fixing errors. Each of these problems can be solved independently, and, hence, the optimal

solution to the recourse scenario can be found by comparing the optimal values of these independent

problems. Hence, if C(x,x,α1, α2) < C(x,x,0,0) + [(1 − α1)α2 + α1(1 − α2)]K, then it is never

optimal to fix errors because the cost of fixing errors is too high compared to the benefit obtained

from fixing them. However if C(x,x,α1, α2))≥ C(x,x,0,0)+ [(1−α1)α2 +α1(1−α2)]K, then it is

always optimal to take recourse actions if errors occur. Thus, one can determine ex-ante whether

it is economical to take recourse action if wrong-product errors occur.

It is intuitive that the optimality of recourse is a function of the fixed cost K. That is, as the fixed

cost K increases, the expected cost of fixing errors, i.e., [(1−α1)α2 +α1(1−α2)]K also increases.

Let KT represent the value of K when the cost of no-recourse scenario and the recourse scenario

are equal; i.e.,

C(x,x,α1, α2) = C(x,x,0,0) + [(1−α1)α2 + α1(1−α2)]KT (20)
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Figure 5 Graph of Threshold fixed cost (KT ) as a function of α (and σ), for x = 0 and critical fractile=50%

Here, KT represents the threshold value for the cost of fixing errors above which it is no longer

optimal to take recourse, i.e., if K > KT , then it is optimal not to take recourse.

Theorem 6 presents results related to the order-up-to levels and the threshold value, KT .

Theorem 6. For the totally-symmetric case where x1 = x2 = x and α1 = α2 = α;

(i) A basestock policy is optimal

(ii) The optimal basestock levels are either the basestock levels in the no-recourse scenario or the

basestock levels for the newsvendor problem with no errors.

(iii) KT is decreasing in the uncertainty measure σ.

(iv) KT is decreasing in the initial inventory x.

Since the recourse problem is the minimum of the no-recourse problem and the newsvendor

problem, the optimal basestock corresponds to the basestock level of the no-recourse problem or

the newsvendor problem. Theorem 6 also states that KT is decreasing in the uncertainty measure

σ. This is because the right-hand side of the breakeven equation, (20), is quadratic in α; and,
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Figure 6 Graph of optimal cost as a function of α (and σ), for x = 0 and critical fractile=50%

although the left-hand side, C(x,x,α,α), also increases in α, it increases more slowly. Similarly, as

the initial inventory x increases, the cost impact of errors decreases, since order quantities decrease.

As a result, recourse is less likely to be taken, and KT decreases. Figure 5 shows the impact of α

and σ on KT (result (iii)), where KT decreases as the uncertainty measure σ = α(1−α) increases.

Figure 6 shows the impact of α on both the optimal expected recourse and no-recourse costs.

Note that, for K = 30 > max{KT}= 24.9 (from Figure 5), it is never optimal to take recourse and

for K = 10 < min{KT}= 16.7 (from Figure 5), it is always optimal to take recourse. If the chosen

K is such that it is greater than KT for some α’s but less for others (e.g. K = 20), then it is optimal

to take recourse for very small and high values of α; but, otherwise take no recourse. This shows

that it is optimal to take recourse actions when the wrong-product uncertainty is sufficiently small,

and taking no recourse actions is optimal when the wrong-product uncertainty is high.

Figure 7 shows the effect of initial inventory level x on the expected cost of the optimal policy.

Note that when x is small it is optimal to take recourse, hence, the cost curve is flat (because

newsvendor costs are independent of initial inventory). As x increases it becomes less costly to
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choose no-recourse, and, hence, the cost curve follows the same trajectory as that of a no-recourse

scenario. The graph also shows that as K increases, the range of x over which recourse is optimal

decreases, thus resulting in a smaller value of KT .

The next theorem establishes the optimality of the basestock policy for the general case; i.e.,

x1 6= x2 and α1 6= α2.

Theorem 7. A state-dependent basestock policy is optimal in the one-period recourse scenario

Unfortunately, it is very difficult to describe the structure of the optimal solution in more detail

for the general case (x1 6= x2 and α1 6= α2). Although there are only three types of errors (cases

(2)-(4) in section 1), there are seven possible “triggers” for recourse. As described in section 1, if

z∗
1 and z∗

2 are the optimal order quantities when initial inventories are x1 and x2 respectively, then

the four possible cases are (1) (x1 + z∗
1 , x2 + z∗

2), (2) (x1 + z∗
1 + z∗

2 , x2), (3) (x1, x2 + z∗
1 + z∗

2) and (4)

(x1 + z∗
2 , x2 + z∗

1) (cross-over errors). Figure 8 shows the structure of the optimal policy over the

entire state space (x1, x2) given uniformly distributed customer demand U [0,10] for parameters
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α1 = α2 = 0.3 and K = 10. Figure 8 can be interpreted as follows. For large values of x1 and x2, the

corresponding order-quantities are small; and thus the cost consequences of wrong-product errors

are also small. This is region I where it is optimal to not take recourse. Similar intuition applies

in the regions II(a) and II(b) where x1 (x2) is large but x2 (x1) is small; thus denoting that it is

optimal to correct errors with product 2 (product 1), i.e., cases (2) and (4) (cases (3) and (4)).

Note that in these regions, it is optimal to fix cross-over errors, (4), in spite of x1 (x2) being very

high. This is because x2 (x1) is so low that the cost impact of an error is high. Now, as we keep

x1 (x2) high but increase x2 (x1), the cost impact of an x2 (x1) error decreases, and it is no longer

optimal to fix cross-over errors. Thus, it is only optimal to correct errors in product 2 (product 1)

only. Now, when x1 and x2 are not very high and their values are close to each other; the results

are in-line with the symmetric-x case; where it is optimal to fix uni-directional errors (cases (2)

and (3)), but it is no longer optimal to fix cross-over errors since cross-over errors cancel out each

other. Finally, as expected, all errors are fixed under two cases: (1) x1 is very low and x2 is not too

high (2) x2 is very low and x1 is not too high.
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The complicated nature of interaction between the inventory of both products makes it difficult

to establish a structure for the optimal policy for the general case with asymmetric inventories or

to establish the form of the optimal policy for multiple time periods.

5. Conclusions

‘Wrong-product” delivery - the delivery of a product different from that desired - is a significant,

but as yet unexplored problem in supply-chain management research. This paper has defined and

analyzed the 2-product “wrong-product delivery” problem using a newsvendor-modeling frame-

work. Two non-substitutable products may be ordered at the beginning of each time period.

However, whenever product i is ordered, then with known probability αi, product j is delivered;

i, j = 1,2(i 6= j). We first analyzed the “no-recourse scenario” where management correctly stores

whatever was received, but takes no other action. Next, we analyzed the “recourse scenario” where

management is able to correct any errors but only by incurring a fixed cost of $K.

Although our model is simple, our results are unexpected and non-intuitive if based on the

single-product newsvendor model. The most non-intuitive results are: First, that target basestocks

(and safety stocks) decrease with increasing wrong-product uncertainty. Hence, effective inventory

service levels will be lower than would be expected from the corresponding newsvendor target

fractile. Second, that the target basestock for either product is non-decreasing as its inventory

increases. Third, that wrong-product supply uncertainty can be much more costly than demand

uncertainty. Finally, if recourse is allowed, we show that it is optimal to take recourse when the

wrong-product uncertainty is sufficiently small, but not take recourse when the wrong-product

uncertainty is high.

These results suggest that management should be very attentive to the existence of wrong-

product supply uncertainty. And, once identified, management should carefully assess its service-

level and cost consequences. In particular, we believe that insights and estimates based on the

single-product newsvendor model may be grossly overestimate service levels and underestimate

expected costs. Finally, although reducing or eliminating wrong-product errors may be very costly
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- in the healthcare-product supply chain, for example, this will probably require the adoption of

uniform standards for product identification - doing so may very well be cost effective.
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Appendix

A. Proof of Theorem 1

The joint convexity of the cost function in y1, y2 is the result of its Hessian matrix being positive.

First order derivatives are given by,

∂G

∂y1

= {c +(1−α1)(1−α2)[L
′

(y1)] + (1−α1)(α2)[L
′

(y1 + y2 −x2)]

+ (α1)(1−α2)[L
′

(y1 + y2 −x1)] + (α1)(α2)[L
′

(x2 + y1 −x1)]}
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∂G

∂y2

= {c +(1−α1)(1−α2)[L
′

(y2)] + (1−α1)(α2)[L
′

(y1 + y2 −x2)]

+ (α1)(1−α2)[L
′

(y1 + y2 −x1)] + (α1)(α2)[L
′

(x1 + y2 −x2)]}

Second order derivatives are given by,

∂2G

∂y2
1

= {(1−α1)(1−α2)[L
′′

(y1)] + (1−α1)(α2)[L
′′

(y1 + y2 −x2)]

+ (α1)(1−α2)[L
′′

(y1 + y2 −x1)] + (α1)(α2)[L
′′‘(x2 + y1 −x1)]}

∂2G

∂y2
2

= {(1−α1)(1−α2)[L
′′

(y2)] + (1−α1)(α2)[L
′′

(y1 + y2 −x2)]

+ (α1)(1−α2)[L
′′

(y1 + y2 −x1)] + (α1)(α2)[L
′′

(x1 + y2 −x2)]}

∂2G

∂y1∂y2

= {(1−α1)(α2)[L
′′

(y1 + y2 −x2)] + (α1)(1−α2)[L
′′

(y1 + y2 −x1)]}

∂2G

∂y2∂y1

= {(1−α1)(α2)[L
′′

(y1 + y2 −x2)] + (α1)(1−α2)[L
′′

(y1 + y2 −x1)]}

The Hessian matrix is given by,

H(y1, y2, x1, x2) =

[

∂2G

∂y2

1

∂2G

∂y1∂y2

∂2G

∂y2∂y1

∂2G

∂y2

2

]

Now, from the above equations,

{∂2G

∂y2
1

.
∂2G

∂y2
2

}≥ { ∂2G

∂y1∂y2

.
∂2G

∂y2∂y1

}= { ∂2G

∂y1∂y2

}2

⇒ det
∣

∣ H(y1, y2, x1, x2)
∣

∣≥ 0 �

B. Proof of Theorem 2

(i) First-order conditions are given by,

(1−α)2[F (x + z∗
2)] + (1−α)(α)[F (x + z∗

1 + z∗
2)] + (α)(1−α)[F (x + z∗

1 + z∗
2)] + (α)2[F (x + z∗

2)] =
p− c

p +h

(1−α)2[F (x + z∗
1)] + (1−α)(α)[F (x + z∗

1 + z∗
2)] + (α)(1−α)[F (x + z∗

1 + z∗
2)] + (α)2[F (x + z∗

1)] =
p− c

p +h

⇒ F (x + z∗
2)[(1−α)2 +(α)2] = F (x + z∗

1)[(1−α)2 +(α)2]

⇒ F (x + z∗
2) = F (x + z∗

1)

⇒ z∗
1 = z∗

2

⇒ y∗
1 = y∗

2 �
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(ii)First-order condition is given by,

f1 = c +(1−α)2[L
′

(x + z∗
1)] + (α)(1−α)[L

′

(x + z∗
T )] + (α)(1−α)[L

′

(x + z∗
T )] + (α)2[L

′

(x + z∗
1)] = 0

Let w = 1−{(α)(1−α)+ (α)(1−α)}

⇒ f1 = c +w[L′(x + z∗
1)] + (1−w)[L′(x + z∗

T )] = 0

⇒ df1

dw
=

w

2
L′′(x +

z∗
T

2
)
dz∗

T

dw
+L′(x +

z∗
T

2
)+ (1−w)L′′(x + z∗

T )
dz∗

T

dw
−L′(x + z∗

T ) = 0

⇒ dz∗
T

dw
=

L′(x + z∗
T )−L′(x +

z∗

T

2
)

w

2
L′′(x +

z∗

T

2
)++(1−w)L′′(x + z∗

T )

Since L(·) is convex, L
′′

(·) is non negative and L
′

(x + z∗
T ) > L

′

(x +
z∗

T

2
). Thus,

dz∗

T

dw
> 0 and

dy∗

T

dw
=

d(2x+z∗

T
)

dw
=

dz∗

T

dw
> 0. Since our uncertainty measure σ = 1−w

2
; as w decreases, σ increases. Thus, y∗

T decreases as σ

increases. From (i), y∗
1 = y∗

2 =
y∗

T

2
. Thus, y∗

i ’s decrease as σ increases. �

(iii) It follows from (i) and (ii) above that individual basestock levels in the wrong product scenario are

always lesser than no-error case. �

(iv) As defined previously,

f1 = c +w[L′(x + z∗
1)] + (1−w)[L′(x + z∗

T )] = 0

Differentiating w.r.t x gives,

(wL
′′

(x +
z∗

T

2
)+ (1−w)L

′′

(x + z∗
T ))+

dz∗
T

dx
(
w

2
L

′′

(x +
z∗

T

2
)+ (1−w)L

′′

(x + z∗
T )) = 0

⇒ dy∗
T

dx
=

d(2x + z∗
T )

dx
= 2 +

dz∗
T

dx
= 2− (wL

′′

(x +
z∗

T

2
)+ (1−w)L

′′

(x + z∗
T ))

(w

2
L′′ (x +

z∗

T

2
)+ (1−w)L′′ (x + z∗

T ))

It is to be shown that
dy∗

T

dx
≥ 0. Proof by contradiction is used to prove the result. Let us assume that

dy∗

T

dx
< 0.

⇒ (wL
′′

(x +
z∗

T

2
)+ (1−w)L

′′

(x + z∗
T )) > 2(

w

2
L

′′

(x +
z∗

T

2
)+ (1−w)L

′′

(x + z∗
T ))

⇒ (1−w)L
′′

(x + z∗
T ) < 0

The above result is never possible since 0 ≤ w ≤ 0.25 and L
′′

(·) ≥ 0. Thus our assumption that
dy∗

T

dx
< 0 is

incorrect. �

(v) From (iv), it is known that,

dz∗
T

dx
= −{ (wL

′′

(x +
z∗

T

2
)+ (1−w)L

′′

(x + z∗
T ))

(w

2
L′′ (x +

z∗

T

2
)+ (1−w)L′′ (x + z∗

T ))
}

Since w, (1−w) and L
′′

(·) are always positive,
dz∗

T

dx
< 0. Also, from (i), z∗

1 = z∗
2 =

z∗

T

2
and thus

dz∗

i

dx
< 0; i=1,2.

�
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(vi) Optimal Cost C is given by,

C(x, x, α, α) = 2c[
y∗

T

2
−x] + 2[L(

y∗
T

2
)][(1−α)2 +α2] + 2[L(x)+L(y∗

T −x)][α(1−α)]

where x1 = x2(= x), from (i), y∗
1 = y∗

2 =
y∗

T

2
. Differentiating w.r.t α gives,

dC

dα
= c[

dy∗
T

dα
] + 2{ [L(

y∗
T

2
)][2α− 2(1−α)] +

[(1−α)2 +α2]

2
[L

′

(
y∗

T

2
)][

dy∗
T

dα
] }

+2{ [L(x)+L(y∗
T −x)][1− 2α] + [α(1−α)][L

′

(y∗
T −x)][

dy∗
T

dα
] }

⇒ dz∗
T

dα
= (

dz∗
T

dw
)(

dw

dα
)

⇒ dz∗
T

dα
=

L′(x + z∗
T )−L′(x +

z∗

T

2
)

w

2
L′′(x +

z∗

T

2
)++(1−w)L′′(x + z∗

T )
(
dw

dα
)

Since dw

dα
= 2(2α− 1) = 0 at α = 0.5,

dz∗

T

dα
= 0 and thus

dy∗

T

dα
= 0. Thus, at α = 0.5, i.e., σ = 0.25, dC

dα
= 0.

d2C

dα2
= [

d2y∗
T

dα2
]{ c + [(1−α)2 +α2][L

′

(
y∗

T

2
)] + 2[α(1−α)][L

′

(y∗
T −x)] }

+[
dy∗

T

dα
]{ [4α− 2][L

′

(
y∗

T

2
)] + 2[1− 2α][L

′

(y∗
T −x)] }

+4{ 2L(
y∗

T

2
)−L(x)−L(y∗

T −x) }

This expression can be reduced to,

d2C

dα2
= 4{ 2L(

y∗
T

2
)−L(x)−L(y∗

T −x) }⇒ d2C

dα2
≤ 0

(c + [(1−α)2 +α2][L
′

(
y∗

T

2
)] + 2[α(1−α)][L

′

(y∗
T −x)] = 0, as per the first order condition.)

Thus, C(x, x, α, α) reaches its maximum value at α = 0.5. At α = 0.5, the uncertainty measure σ = α(1−α) =

0.25 is also maximized.

Optimal cost can also be written as,

C(x, x, α, α)= c(z∗
T )+ (1−A)(2L(x +

z∗
T

2
))+ (A)(L(x)+L(x + z∗

T ))

where A = 1−w = 2α(1−α). Differentiating w.r.t x gives,

dC(x, x, α, α)

dx
= c

dz∗
T

dx
+(1−A)(2L

′

(x +
z∗

T

2
)(1 +

1

2

dz∗
T

dx
))+ (A)(L

′

(x)+L
′

(x + z∗
T )(1 +

dz∗
T

dx
))

⇒ dC(x, x, α,α)

dx
=

dz∗
T

dx
(c +(1−A)L

′

(x +
z∗

T

2
)+ (A)L

′

(x + z∗
T ))
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+2(1−A)L
′

(x +
z∗

T

2
)+ (A)L

′

(x)+ (A)L
′

(x + z∗
T )

Using the first-order condition, i.e., c +(1−A)L
′

(x +
z∗

T

2
)+ (A)L

′

(x + z∗
T ) = 0,

⇒ dC(x, x, α, α)

dx
=−c +(A)[L

′

(x)−L
′

(x + z∗
T )] +L

′

(x +
z∗

T

2
)

From the above equation and first-order condition, dC(x,x,α,α)

dx
< 0. �

C. Analysis of Figure 2

(i) Proof of linearity of C(0, 0, α, α|σD = 0) in σ

Let P = [(1−α)2 +α2] and c = 0, expected cost of the optimal policy is given by,

C(0, 0, α, α|σD = 0) = 2P (L(z∗
1))+ (1−P )(L(0)+L(2z∗

1))

C(0, 0, α, α|σD = 0) = (1−P )(p(µ− 0)+h(2µ−µ))

C(0, 0, α, α|σD = 0) = 2σ(h + p)µ

dC(0, 0, α,α|σD = 0)

dσ
= 2(h + p)µ

Thus, C(0, 0, α, α|σD = 0) is constant in σ when σD = 0.

(ii) Proof of linearity of C(0, 0, 0, 0|σD) in σD

In case of no errors, the optimal order quantity of both products is given as, z∗(0, 0, 0, 0) = Fc(b − a) + a

(where Fc is the critical-fractile), and the expected cost of the optimal policy is,

C(0, 0, 0, 0|σD) =
√

12σD[hF 2
c + p(1−Fc)

2]

dC(0, 0, 0,0|σD)

dσD

=
√

12[hF 2
c + p(1−Fc)

2]

Thus, C(0, 0, 0, 0|σD) is constant in σD when σ = 0.

(iii) Proof of { dC(0,0,α,α|σD =0)

dσ
> dC(0,0,0,0|σD )

dσD

}, if µ >
√

12Fc(1−Fc)

2

Using Proof by contradiction, let 2(h + p)µ≤
√

12[hF 2
c + p(1−Fc)

2].

⇒ 2(h + p)µ≤
√

12
hp

h + p

⇒ 2µ≤
√

12(
p

h + p
)(

h

h + p
)

⇒ 2µ≤
√

12Fc(1−Fc)

The above result contradicts our assumption that, µ >
√

12Fc(1−Fc)

2
. �
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D. Proof of Theorem 3

(i) First-order conditions are given by,

(1−α1)(1−α2)[F (x + z∗
2)] + (1−α1)(α2)[F (x + z∗

1 + z∗
2)] + (α1)(1−α2)[F (x + z∗

1 + z∗
2)] + (α1)(α2)[F (x + z∗

2)]

=
p− c

p +h

(1−α1)(1−α2)[F (x + z∗
1)] + (1−α1)(α2)[F (x + z∗

1 + z∗
2)] + (α1)(1−α2)[F (x + z∗

1 + z∗
2)] + (α1)(α2)[F (x + z∗

1)]

=
p− c

p +h

⇒F (x + z∗
2)[(1−α1)(1−α2)+ (α1)(α2)] = F (x + z∗

1)[(1−α1)(1−α2)+ (α1)(α2)]

⇒ F (x + z∗
2) = F (x + z∗

1)

⇒ z∗
1 = z∗

2

⇒ y∗
1 = y∗

2 �

(ii) Let the first-order conditions be represented as,

f1 = c +(1−α1)(1−α2)L
′

(x + z∗
1)+α1(1−α2)L

′

(x + z∗
T )+α2(1−α1)L

′

(x + z∗
T )+α1α2L

′

(x + z∗
1) = 0

Let α1 be fixed. Then, differentiating w.r.t α2 gives,

[
(1−α1)(1−α2)

2
L”(x +

z∗
T

2
)+ (1−α1)(α2)L

”(x + z∗
T )+ (α1)(1−α2)L

”(x + z∗
T )+

(α1α2)

2
L”(x +

z∗
T

2
)](

dz∗
T

dα2

)

= (1−α1)(L
′

(x +
z∗

T

2
)−L

′

(x + z∗
T ))+ (α1)(L

′

(x + z∗
T )−L

′

(x +
z∗

T

2
))

⇒ dy∗
T

dα2

= { (1− 2α1)(L
′

(x +
z∗

T

2
)−L

′

(x + z∗
T ))

(1−α1)(1−α2)

2
L”(x +

z∗

T

2
)+ (1−α1)(α2)L”(x + z∗

T )+ (α1)(1−α2)L”(x + z∗
T )+ (α1α2)

2
L”(x +

z∗

T

2
)
}

It is known that L
′

(x +
z∗

T

2
) < L

′

(x + z∗
T ) and from the above equation, if α1(fixed) < 0.5,

dy∗

T

dα2

< 0, i.e.,

total basestock (and individual basestocks) is monotonically decreasing in α2. �

(iii) From (ii), if α1(fixed) > 0.5,
dy∗

T

dα2

> 0, i.e., total basestock (and individual basestocks) is monotonically

increasing in α2. �

(iv) The proof is divided into two parts,

(a) α1(fixed) < 0.5

It is known from (ii) that total basestock decreases in α2. Thus, it will suffice to prove that y∗
T (x, x, α1, 0) <



Deshpande, Schwarz and Raju: “Wrong-Product” Inventory Management

30

y∗
T (x, x, 0, 0).

The first order conditions at α1(fixed) < 0.5 and α2 = 0 can be written as,

c +(1−α1)L
′

(x +
z∗

T

2
)+α1L

′

(x + z∗
T ) = 0

⇒ L
′

(x +
z∗

T

2
) = α1(L

′

(x +
z∗

T

2
)−L

′

(x + z∗
T ))− c

For the no-error case, i.e., at α1 = α2 = 0, the first-order condition is given as,

⇒L
′

(x +
z∗

T (x, x, 0, 0)

2
) =−c

Comparing the above two expressions, it is clear that z∗
T (x, x, α1, 0) < z∗

T (x, x, 0, 0) (since L′(y1) > L′(y2)

if y1 > y2). Also, the initial inventories being the same, y∗
T (x, x, α1, 0)< y∗

T (x, x, 0, 0).

(b) α1(fixed) > 0.5

It is known from (iii) that total basestock increases in α2. Thus, it will suffice to prove that y∗
T (x, x, α1, 1) <

y∗
T (x, x, 0, 0).

The first order conditions at α1(fixed) > 0.5 and α2 = 1 can be written as,

c +(1−α1)L
′

(x + z∗
T )+α1L

′

(x +
z∗

T

2
) = 0

⇒L
′

(x +
z∗

T

2
) = (1− 1

α1

)L
′

(x + z∗
T )− c

Comparing the above expression with the no-error case in (a), it is clear that z∗
T (x, x, α1, 1)< z∗

T (x, x, 0, 0).

Also, the initial inventories being the same, y∗
T (x, x, α1, 1) < y∗

T (x, x, 0, 0). �

(v) Rewriting the first-order condition,

f1 = c +(1−α1)(1−α2)L
′

(x +
z∗

T

2
)+α1(1−α2)L

′

(x + z∗
T )+α2(1−α1)L

′

(x + z∗
T )+α1α2L

′

(x +
z∗

T

2
) = 0

Differentiating w.r.t x,

⇒ dz∗
T

dx
{ (1−α1)(1−α2)

2
L”(x +

z∗
T

2
)+

(α1α2)

2
L”(x +

z∗
T

2
)+α1(1−α2)L

”(x + z∗
T )+α2(1−α1)L

”(x + z∗
T )}

=−{(1−α1)(1−α2)L
”(x +

z∗
T

2
)+ (α1α2)L

”(x +
z∗

T

2
)+α1(1−α2)L

”(x + z∗
T )+α2(1−α1)L

”(x + z∗
T )}

⇒ dy∗
T

dx
=

d(z∗
T +2x)

dx
= 2− A

B
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where A = (1−α1)(1−α2)L
”(x +

z∗

T

2
)+ (α1α2)L

”(x +
z∗

T

2
)+α1(1−α2)L

”(x + z∗
T )+α2(1−α1)L

”(x + z∗
T )

and B = (1−α1)(1−α2)

2
L”(x +

z∗

T

2
)+ (α1α2)

2
L”(x +

z∗

T

2
)+α1(1−α2)L

”(x + z∗
T )+α2(1−α1)L

”(x + z∗
T ).

Using Proof by contradiction, let
dy∗

T

dx
< 0, i.e., A > 2B. Then,

{(1−α1)(1−α2)L
”(x +

z∗
T

2
)+ (α1α2)L

”(x +
z∗

T

2
)+α1(1−α2)L

”(x + z∗
T )+α2(1−α1)L

”(x + z∗
T )}

> 2{ (1−α1)(1−α2)

2
L”(x +

z∗
T

2
)+

(α1α2)

2
L”(x +

z∗
T

2
)+α1(1−α2)L

”(x + z∗
T )+α2(1−α1)L

”(x + z∗
T )}

⇒α1(1−α2)L
”(x + z∗

T )+α2(1−α1)L
”(x + z∗

T ) < 0

⇒L”(x + z∗
T )(α1 +α2 − 2α1α2) < 0

Now, L”(·) > 0, α1α2 < α1 and α1α2 < α2; thus the above expression is invalid. Hence, our assumption that

dy∗

T

dx
< 0 is invalid. �

(vi) From (v),
dz∗

T

dx
= −{A

B
}. Also, A > 0 and B > 0 (since L”(·) > 0 and 0 < α1, α2 < 1); thus,

dz∗

T

dx
< 0.

Since x1 = x2, z∗
1 = z∗

2 =
z∗

T

2
,

dz∗

1

dx
=

dz∗

2

dx
< 0. �

E. Proof of Theorem 4

(i) Let the first-order conditions be represented as,

f1 = c +(1−α)2(L
′

(x1 + z∗
1))+α(1−α)(L

′

(x1 + z∗
T ))+α(1−α)(L

′

(x2 + z∗
T ))+ (α2)(L

′

(x2 + z∗
1)) = 0

f2 = c +(1−α)2(L
′

(x2 + z∗
T − z∗

1))+α(1−α)(L
′

(x1 + z∗
T ))+α(1−α)(L

′

(x2 + z∗
T ))+ (α2)(L

′

(x1 + z∗
T − z∗

1)) = 0

Differentiating the above equations w.r.t α gives,

B
dz∗

T

dα
= A+C

dz∗
1

dα

B
′ dz∗

T

dα
= A

′

+C
′ dz∗

1

dα

where A,B,C,A
′

, B
′

and C
′

are defined as,

A = 2(1−α)(L
′

(x1 + z∗
1))− (1− 2α)(L

′

(x1 + z∗
T ))− (1− 2α)(L

′

(x2 + z∗
T ))− (2α)(L

′

(x2 + z∗
1))

B = α(1−α)(L”(x1 + z∗
T ))+α(1−α)(L”(x2 + z∗

T ))

C =−[(1−α)2(L”(x1 + z∗
1))+ (α2)(L”(x2 + z∗

1))]
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A
′

= 2(1−α)(L
′

(x2 + z∗
T − z∗

1))− (1− 2α)(L
′

(x1 + z∗
T ))− (1− 2α)(L

′

(x2 + z∗
T ))− (2α)(L

′

(x1 + z∗
T − z∗

1))

B
′

= (1−α)2(L”(x2 + z∗
T − z∗

1))+α(1−α)(L”(x1 + z∗
T ))+α(1−α)(L”(x2 + z∗

T ))+ (α2)(L”(x1 + z∗
T − z∗

1))

C
′

= (1−α)2(L”(x2 + z∗
T − z∗

1))+ (α2)(L”(x1 + z∗
T − z∗

1))

Eliminating
dz∗

1

dα
from the above equations gives,

dz∗
T

dα
=

AC
′ −A

′

C

BC ′ −B′C

Now, AC
′ −A

′

C, at α = 0.5 can be given as,

AC
′ −A

′

C = {[L′

(x1 + z∗
1)−L

′

(x2 + z∗
1)][L

”(x1 + z∗
T − z∗

1)+L”(x2 + z∗
T − z∗

1)]

[L
′

(x2 + z∗
T − z∗

1)−L
′

(x1 + z∗
T − z∗

1)][L”(x1 + z∗
1)+L”(x2 + z∗

1)]}

Using the first-order conditions, it can be shown that z∗
1 = z∗

2 =
z∗

T

2
at α = 0.5.

⇒ (AC
′ −A

′

C)|(α = 0.5) = {[L′

(x1 +
z∗

T

2
)−L

′

(x2 +
z∗

T

2
)][L”(x1 +

z∗
T

2
)+L”(x2 +

z∗
T

2
)]

[L
′

(x2 +
z∗

T

2
)−L

′

(x1 +
z∗

T

2
)][L”(x1 +

z∗
T

2
)+L”(x2 +

z∗
T

2
)]}

⇒ (AC
′ −A

′

C)|(α = 0.5) = 0

Thus,
dz∗

T

dα
=

dy∗

T

dα
= 0 at α = 0.5. It is also straightforward to show that

d2z∗

T

dα2
> 0 at α = 0.5. Thus the total

basestock decreases as the risk σ = α(1−α) increases. �

(ii) From Theorem (i), it follows that as α (or σ) is increased from 0, the total basestock will drop. �

(iii) Let x2 be fixed and x1 is varying. The first-order conditions are given by,

f1 = c +(1−α)2L
′

(y∗
1)+α(1−α)L

′

(y∗
T −x2)+α(1−α)L

′

(y∗
T −x1)+ (α2)L

′

(y∗
1 +x2 −x1) = 0

f2 = c +(1−α)2L
′

(y∗
2)+α(1−α)L

′

(y∗
T −x2)+α(1−α)L

′

(y∗
T −x1)+ (α2)L

′

(y∗
2 +x1 −x2) = 0

Differentiating w.r.t. x1 gives,

df1

dx1

= (1−α)2L”(y∗
1)

dy∗
1

dx1

+α(1−α)L”(y∗
T −x2)

dy∗
T

dx1

+α(1−α)L”(y∗
T −x1)(

dy∗
T

dx1

− 1)+ (α2)L”(y∗
1 +x2 −x1)(

dy∗
1

dx1

− 1) = 0

df2

dx1

= (1−α)2L”(y∗
T − y∗

1)(
dy∗

T

dx1

− dy∗
1

dx1

)+α(1−α)L”(y∗
T −x2)

dy∗
T

dx1
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+α(1−α)L”(y∗
T −x1)(

dy∗
T

dx1

− 1)+ (α2)L”(y∗
T − y∗

1 +x1 −x2)(
dy∗

T

dx1

− dy∗
1

dx1

+1) = 0

The above equations can be represented as,

A1

dy∗
1

dx1

+B1

dy∗
T

dx1

= C1

A2

dy∗
1

dx1

+B2

dy∗
T

dx1

= C2

where,

A1 = (1−α)2L”(y∗
1)+ (α2)L”(y∗

1 +x2 −x1)

B1 = α(1−α)L”(y∗
T −x2)+α(1−α)L”(y∗

T −x1)

C1 = α(1−α)L”(y∗
T −x1)+ (α2)L”(y∗

1 +x2 −x1)

A2 =−{(1−α)2L”(y∗
T − y∗

1)+ (α2)L”(y∗
T − y∗

1 +x1 −x2)}

B2 = {(1−α)2L”(y∗
T − y∗

1)+ (α2)L”(y∗
T − y∗

1 +x1 −x2)+α(1−α)L”(y∗
T −x2)+α(1−α)L”(y∗

T −x1)}

C2 = α(1−α)L”(y∗
T −x1)− (α2)L”(y∗

T − y∗
1 +x1 −x2)

Eliminating
dy∗

T

dx1

from the above equations,

dy∗
1

dx1

=
B1C2 −B2C1

B1A2 −B2A1

B1C2 −B2C1 = α2(1−α)2L”(y∗
T −x2)L

”(y∗
T −x1)−α3(1−α)L”(y∗

T −x2)L
”(y∗

T − y∗
1 +x1 −x2)

+α2(1−α)2L”(y∗
T −x1)L

”(y∗
T −x1)−α3(1−α)L”(y∗

T −x1)L
”(y∗

T − y∗
1 +x1 −x2)

−α(1−α)3L”(y∗
T − y∗

1)L
”(y∗

T −x1)−α2(1−α)2L”(y∗
T −x2)L

”(y∗
T −x1)

−α2(1−α)2L”(y∗
T −x1)L

”(y∗
T −x1)−α3(1−α)L”(y∗

T −x1)L
”(y∗

T − y∗
1 +x1 −x2)

−α2(1−α)2L”(y∗
T − y∗

1)L
”(y∗

1 +x2 −x1)−α3(1−α)L”(y∗
T −x2)L

”(y∗
1 +x2 −x1)

−α3(1−α)L”(y∗
T −x1)L

”(y∗
1 +x2 −x1)−α4L”(y∗

T − y∗
1 +x1 −x2)L

”(y∗
1 +x2 −x1)

It is easy to observe that B1C2 − B2C1 < 0. Also, B1A2 − B2A1 < 0. Thus,
dy∗

1

dx1

> 0. Similarly, using the

symmetry of the first-order conditions w.r.t x1 and x2, it is clear that
dy∗

2

dx2

> 0 when x1 is fixed. �
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(iv) From (i), the expressions for f1 and f2 are known. Defining the following terms,

A1 = (1−α)2(L”(x1 + z∗
1))+α2(L”(x2 + z∗

1))

B1 = α(1−α)(L”(x1 + z∗
T ))+α(1−α)(L”(x2 + z∗

T ))

C1 =−[(1−α)2(L”(x1 + z∗
1))+α(1−α)(L”(x1 + z∗

T ))]

A2 =−[(1−α)2(L”(x2 + z∗
T − z∗

1))+α2(L”(x1 + z∗
T − z∗

1))]

B2 = [(1−α)2(L”(x2 + z∗
T − z∗

1))+α(1−α)(L”(x1 + z∗
T ))+α(1−α)(L”(x2 + z∗

T ))+α2(L”(x1 + z∗
T − z∗

1))]

C2 = −[α(1−α)(L”(x1 + z∗
T ))+α2(L”(x1 + z∗

T − z∗
1))]

In this case, differentiating the first-order conditions w.r.t x1 (with x2 fixed) gives,

A1

dz∗
1

dx1

+B1

dz∗
T

dx1

= C1

A2

dz∗
1

dx1

+B2

dz∗
T

dx1

= C2

Eliminating
dz∗

1

dx1

from the above two equations gives,

dz∗
T

dx1

=
A1C2 −A2C1

A1B2 −A2B1

It is easy to observe that (A1B2 −A2B1) > 0 while (A1C2 −A2C1) < 0 since L”(.) is always positive. Thus,

dz∗

T

dx1

< 0. Similarly, it can be shown that if x1 is fixed and x2 is changed, the total order-quantity would still

decrease. �

(v) First-order conditions at (x1, x2, α, α) are given by,

f1 = c +(1−α)2(L
′

(x1 + z∗
1))+α(1−α)(L

′

(x1 + z∗
T ))+α(1−α)(L

′

(x2 + z∗
T ))+ (α2)(L

′

(x2 + z∗
1)) = 0

f2 = c +(1−α)2(L
′

(x2 + z∗
2))+α(1−α)(L

′

(x1 + z∗
T ))+α(1−α)(L

′

(x2 + z∗
T ))+ (α2)(L

′

(x1 + z∗
2)) = 0

where z∗
1 , z∗

2 are the optimal order quantities and z∗
T = z∗

1 + z∗
2 .

Now, first-order conditions at (x1, x2, 1−α, 1−α) are given by,

f
′

1 = c +(1−α)2(L
′

(x2 + z∗
11))+α(1−α)(L

′

(x1 + z∗
TT ))+α(1−α)(L

′

(x2 + z∗
TT ))+ (α2)(L

′

(x1 + z∗
11)) = 0

f
′

2 = c +(1−α)2(L
′

(x1 + z∗
22))+α(1−α)(L

′

(x1 + z∗
TT ))+α(1−α)(L

′

(x2 + z∗
TT ))+ (α2)(L

′

(x2 + z∗
22)) = 0

where z∗
11 , z∗

22 are the optimal order quantities and z∗
TT = z∗

11 + z∗
22 . It is easy to observe that z∗

11 and z∗
22

when substituted by z∗
2 and z∗

1 respectively, is optimal. �
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F. General results for Uniform Demand Distribution

This section discusses all possible cases for the totally-symmetric case, when demand is uniformly distributed

over the range U[a,b]. The two first-order conditions, (4) and (5), reduce to:

PF (x + z∗
1)+ (1−P )F (x +2z∗

1) = Fc

where P = [(1−α)2 +(α)2], (1−P ) = [2α(1−α)], c = 0 and z∗
1 = z∗

2 .

Also, expected cost is given by,

C(x, x, α, α)= 2P [L(x + z∗
1)] + (1−P )[L(x)+L(x +2z∗

1)]

There are eight realizations of the above equations, depending on the optimal value of z∗
1 and the initial

inventory x. These realizations stem from the nature of the loss function, defined as,

L(y) = h(y −µ)+ (h+p)

2(b−a)
(b− y)2 , if a≤ y ≤ b

L(y) = h(y −µ), if y > b

L(y) = p(µ− y), if y < a, where µ = (a+b)

2
, p and h being the penalty and holding costs respectively.

However, three of these realizations are not feasible, thus, the other five cases are discussed below.

(i) (x + z∗
1) > a, (x +2z∗

1) < b and x > a

Optimal order-quantity can be easily shown to be,

z∗
1 = z∗

2 =
(Fc(b− a)− (x− a))

(2−P )

Similarly, expected cost is given by,

C(x, x, α, α) = 2P [h(x + z∗
1 −µ)+

(h + p)

2(b− a)
(b−x− z∗

1)
2]

+(1−P )[h(2x +2z∗
1 − 2µ)+

(h + p)

2(b− a)
((b−x)2 +(b−x− 2z∗

1)
2)]

In case of no errors(α = 0), it is obvious that, z∗
1(x, x, 0, 0) = Fc(b − a) − (x − a) and the corresponding

expected cost is given by, C(x, x, 0, 0)= (b− a)[hF 2
c + p(1−Fc)

2].

Cp =
C(x, x, α, α)

C(x, x, 0, 0)

=
2P [h(x + z∗

1 −µ)+ (h+p)

2(b−a)
(b−x− z∗

1)
2] + (1−P )[h(2x +2z∗

1 − 2µ)+ (h+p)

2(b−a)
((b−x)2 +(b−x− 2z∗

1)
2)]

(b− a)[hF 2
c + p(1−Fc)2]



Deshpande, Schwarz and Raju: “Wrong-Product” Inventory Management

36

(ii) (x + z∗
1) > a, (x +2z∗

1) < b and x < a

Optimal order-quantity is given by,

z∗
1 = z∗

2 =
(Fc(b− a)− (x− a))

(2−P )

Expected cost is given by,

C(x, x, α, α) = 2P [h(x + z∗
1 −µ)+

(h + p)

2(b− a)
(b−x− z∗

1)
2]

+(1−P )[p(µ−x)+h(x +2z∗
1 −µ)+

(h + p)

2(b− a)
((b−x− 2z∗

1)
2)]

Cp =
2P [h(x + z∗

1 −µ)+ (h+p)
2(b−a)

(b−x− z∗
1)2] + (1−P )[p(µ−x)+h(x +2z∗

1 −µ)+ (h+p)
2(b−a)

((b−x− 2z∗
1)

2)]

(b− a)[hF 2
c + p(1−Fc)2]

(iii) (x + z∗
1) > a, (x +2z∗

1) > b and x > a

Optimal order-quantity is given by,

z∗
1 = z∗

2 =
(Fc +P − 1)(b− a)

P
− (x− a)

Expected cost is given by,

C(x, x, α, α) = 2P [h(x + z∗
1 −µ)+

(h + p)

2(b− a)
(b−x− z∗

1)
2]

+(1−P )[h(x−µ)+
(h + p)

2(b− a)
(b−x)2 +h(x +2z∗

1 −µ)]

Cp =
2P [h(x + z∗

1 −µ)+ (h+p)
2(b−a)

(b−x− z∗
1)

2] + (1−P )[h(x−µ)+ (h+p)
2(b−a)

(b−x)2 +h(x +2z∗
1 −µ)]

(b− a)[hF 2
c + p(1−Fc)2]

(iv) (x + z∗
1) > a, (x +2z∗

1) > b and x < a

Optimal order-quantity is given by,

z∗
1 = z∗

2 =
(Fc +P − 1)(b− a)

P
− (x− a)

Expected cost is given by,

C(x, x, α, α) = 2P [h(x + z∗
1 −µ)+

(h + p)

2(b− a)
(b−x− z∗

1)
2]

+(1−P )[p(µ−x)+h(x +2z∗
1 −µ)]

Cp =
2P [h(x + z∗

1 −µ)+ (h+p)

2(b−a)
(b−x− z∗

1)
2] + (1−P )[p(µ−x)+h(x +2z∗

1 −µ)]

(b− a)[hF 2
c + p(1−Fc)2]
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(v) (x + z∗
1) < a, (x +2z∗

1) < b and x < a

Optimal order-quantity is given by,

z∗
1 = z∗

2 =
Fc(b− a)

2(1−P )
− (x− a)

2

Expected cost is given by,

C(x, x, α, α) = 2P [p(µ−x− z∗
1)]

+(1−P )[p(µ−x)+h(x +2z∗
1 −µ)+

(h + p)

2(b− a)
(b−x− 2z∗

1)
2]

Cp =
2P [p(µ−x− z∗

1)] + (1−P )[p(µ−x)+h(x +2z∗
1 −µ)+ (h+p)

2(b−a)
(b−x− 2z∗

1)
2]

(b− a)[hF 2
c + p(1−Fc)2]

G. Proof of Theorem 5

Considering all possible cases for the one-period scenario,

If z∗
1 = z∗

1 = 0;

C(x1, x2) = L(x1)+L(x2)

⇒ dC(x1, x2)

dx1

= L
′

(x1)

If z∗
1 > 0 and z∗

2 = 0;

C(x1, x2) = cz∗
1 +(1−α)(L(x1 + z∗

1)+L(x2))+ (α)(L(x2 + z∗
1)+L(x1))

⇒ dC(x1, x2)

dx1

= c
dz∗

1

dx1

+(1−α)[L
′

(x1 + z∗
1)(

dz∗
1

dx1

+1)+0]

+(α)[L
′

(x2 + z∗
1)(

dz∗
1

dx1

)+L
′

(x1))]

As z∗
1 → 0 from R.H.S.,

⇒ dC(x1, x2)

dx1

= (1−α)[L
′

(x1)] + (α)[L
′

(x1)]

⇒ dC(x1, x2)

dx1

= L
′

(x1)

If z∗
2 > 0 and z∗

1 = 0;

C(x1, x2) = cz∗
2 +(1−α)(L(x2 + z∗

2)+L(x1))+ (α)(L(x1 + z∗
2)+L(x2))

⇒ dC(x1, x2)

dx1

= c
dz∗

2

dx1

+(1−α)[L
′

(x2 + z∗
2)(

dz∗
2

dx1

)+L
′

(x1))]
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+(α)[L
′

(x1 + z∗
2)(1 +

dz∗
2

dx1

)+0]

As z∗
2 → 0 from R.H.S.,

⇒ dC(x1, x2)

dx1

= (1−α)[L
′

(x1)] + (α)[L
′

(x1)]

⇒ dC(x1, x2)

dx1

= L
′

(x1)

If z∗
2 > 0 and z∗

1 > 0;

C(x1, x2) = c(z∗
1 + z∗

2)+ (1−α)2[L(x1 + z∗
1)+L(x2 + z∗

2)]

+(α)2[L(x1 + z∗
2)+L(x2 + z∗

1)]

+α(1−α)[L(x1 + z∗
1 + z∗

2)+L(x2)]

+α(1−α)[L(x2 + z∗
1 + z∗

2)+L(x1)]

⇒ dC(x1, x2)

dx1

= c(
dz∗

1

dx1

+
dz∗

2

dx1

)+ (1−α)2[L
′

(x1 + z∗
1)(1 +

dz∗
1

dx1

)+L
′

(x2 + z∗
2)

dz∗
2

dx1

]

+(α)2[L
′

(x1 + z∗
2)(1 +

dz∗
2

dx1

)+L
′

(x2 + z∗
1)

dz∗
1

dx1

]

+α(1−α)[L
′

(x1 + z∗
1 + z∗

2)(1 +
dz∗

1

dx1

+
dz∗

2

dx1

)+0]

+α(1−α)[L
′

(x2 + z∗
1 + z∗

2)(
dz∗

1

dx1

+
dz∗

2

dx1

)+L
′

(x1)]

As z∗
1 → 0 and z∗

2 → 0 from R.H.S.,

⇒ dC(x1, x2)

dx1

= (1−α)2[L
′

(x1)] + (α)2[L
′

(x1)]

α(1−α)[L
′

(x1)] +α(1−α)[L
′

(x1)]

= L
′

(x1)

Thus the derivative of the cost function in x1, as shown above, are equal. Similar results can be shown for

dC(x1,x2)

dx2

. This shows that the optimal cost of the expected policy for one-period is jointly convex in x1 and

x2. Since L(·) is convex, by induction, Ct(xt
1, x

t
2) is convex in xt

1, x
t
2. �

H. Proof of Theorem 6

(i) Equation (19) shows that the expected cost of the optimal policy is given as CR(x, x, α1, α2) =

min{C(x, x, α1, α2), C(x, x, 0, 0)+ [(1−α1)α2 +α1(1−α2)]K}. It is known that a basestock policy is optimal

for the no-recourse scenario. For the recourse scenario, if, CK(x, x, α, α)= C(x, x, 0, 0)+ [(1−α1)α2 +α1(1−

α2)]K, then,

CK(x, x, α, α) = c(z∗
1k + z∗

2k)+L(x + z∗
1k)+L(x + z∗

2k)+ [2α(1−α)]K
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where z∗
1k and z∗

2k are order quantities for product-1 and product-2 respectively; α1 = α2, x1 = x2 and K is

the fixed cost of fixing errors.

The above cost expression is a newsvendor problem. Thus, a basestock policy is optimal. �

(ii) Equation (19) shows that the optimal cost for the recourse scenario is the minimization of two problems.

Thus the optimal basestock levels are either the basestock levels in the no-recourse scenario or the recourse

scenario (newsvendor problem). �

(iii) If α1 = α2, x1 = x2 and K is the fixed cost of fixing errors; the two costs are given by,

C(x, x, α, α) = cz∗
T + [(1−α)2 +(α)2][L(x +

z∗
T

2
)+L(x +

z∗
T

2
)] + [2α(1−α)][L(x)+L(x + z∗

T)]

where z∗
1 = z∗

2 = z∗
T /2.

CK(x, x, α, α) = cz∗
k +L(x +

z∗
k

2
)+L(x +

z∗
k

2
)+ [2α(1−α)]K

where z∗
1k = z∗

2k = z∗
k/2.

Since this is a sum of two newsvendor problems, it is known that c+L
′

(x+
z∗

k

2
) = 0. If K = KT , the threshold

value of fixed cost after which it is no longer optimal to take recourse, KT is given by equating both costs, i.e.,

C(x, x, α, α)= CKT (x, x, α, α). Let A = [2α(1−α)]. Thus, (1−A) = [(1−α)2 + (α)2]. Then, dA

dα
= 2(1− 2α),

d2A

dα2
= −4 and d(1−A)

dα
= 4α− 2.

⇒ cz∗
T

A
+(

1

A
)[2L(x +

z∗
T

2
)]− 2L(x +

z∗
T

2
)+L(x)+L(x + z∗

T ) =
cz∗

k

A
+(

2

A
)[L(x +

z∗
k

2
)] +KT

Differentiating w.r.t α,

c

A
(
dz∗

T

dα
)− cz∗

T

A2
(
dA

dα
)+ (

1

A
)(2L

′

(x +
z∗

T

2
))(

1

2
)(

dz∗
T

dα
)− (

2

A2
)(L(x +

z∗
T

2
))(

dA

dα
)− (2L

′

(x +
z∗

T

2
))(

1

2
)(

dz∗
T

dα
)

+L
′

(x + z∗
T )

dz∗
T

dα

=
c

A
(
dz∗

k

dα
)− cz∗

k

A2
(
dA

dα
)+ (

−2

A2
)(L(x +

z∗
k

2
))(

dA

dα
)+ (

2

A
)(L

′

(x +
z∗

k

2
))(

1

2
)(

dz∗
k

dα
)+

dKT

dα

Now, at α = 0.5, (i)
dz∗

T

dα
= 0, (ii) dA

dα
= 0 and

dz∗

k

dα
= 0, for any α. Thus, dKT

dα
= 0 at α = 0.5.

⇒ d2KT

dα2
= (

1

A
)(

d2z∗

dα2
)[c +(1−A)L

′

(x +
z∗

T

2
)+AL

′

(x + z∗
T )]

+(
1

A2
)(

d2A

dα2
)[cz∗

k − cz∗
T +2L(x +

z∗
k

2
)− 2L(x +

z∗
T

2
)]

⇒ d2KT

dα2
= (

1

A2
)(

d2A

dα2
)[c(z∗

k − z∗
T )+2(L(x +

z∗
k

2
)−L(x +

z∗
T

2
))]
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(since c +(1−A)(L
′

(x +
z∗

T

2
))+ (A)(L

′

(x + z∗
T )) = 0)

Now, it is known that z∗
k > z∗

T . Also, c+L
′

(x+
z∗

k

2
) = 0. Thus, L(x+

z∗

T

2
) > L(x+

z∗

k

2
). It has also been shown

that d2A

dα2
=−4 < 0. Thus, the expression for d2KT

dα2
is positive at α = 0.5, for high service levels (i.e., low values

of c). This implies that we have dKT

dα
= 0 and d2KT

dα2
> 0 at α = 0.5. Thus, the value of KT decreases as the

risk σ = α(1−α) increases. �

(iv) We know that,

cz∗
T + [(1−α)2 +α2][2L(x +

z∗
T

2
)] + [2α(1−α)][L(x)+L(x + z∗

T)]

= cz∗
k +2L(x +

z∗
k

2
)+ [2α(1−α)]KT

Differentiating w.r.t x,

[(1−α)2 +α2](L
′

(x +
z∗

T

2
))+ [α(1−α)](L

′

(x)+ (L
′

(x + z∗
T ))

+(
dz∗

T

dx
)[

c

2
+

1

2
((1−α)2 +α2)(L

′

(x +
z∗

T

2
))+ (α(1−α))(L

′

(x + z∗
T ))]

= (α(1−α))
dKT

dx
+L

′

(x +
z∗

k

2
)+

dz∗
k

dx
(
c +L

′

(x +
z∗

k

2
)

2
)

⇒ [(1−α)2 +α2](L
′

(x +
z∗

T

2
))+ [2α(1−α)](L

′

(x + z∗
T ))− [α(1−α)](L

′

(x + z∗
T ))+ [α(1−α)](L

′

(x))

+(
1

2
)(

dz∗
T

dx
)[c +((1−α)2 +α2)(L

′

(x +
z∗

T

2
))+ (2α(1−α))(L

′

(x + z∗
T ))]

= (α(1−α))
dKT

dx
− c

Now, using the first-order condition gives,

(α(1−α))[L
′

(x)−L
′

(x + z∗
T )]− c = (α(1−α))

dKT

dx
− c

⇒ dKT

dx
= L

′

(x)−L
′

(x + z∗
T )

⇒ dKT

dx
< 0 �


