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1 Introduction

The twin problems of testing for and estimation of structural changes in time series models

have generated a vast literature in both econometrics and statistics (see Perron, 2006, for a

survey). While early approaches to these issues were primarily based on the assumption of

independently and identically distributed data (e.g., Page, 1955; Quandt, 1960), substantial

advances over the past two decades have made possible the development of methods that

are applicable to a wide range of data generating processes. A notable feature of such

developments is that they allow different types of dependence structures, e.g., models with

stationary or mixing processes, long memory, unit roots, cointegration and deterministic

trends. The empirical relevance of structural change in the context of modeling economic

series has also been well documented (e.g., Stock and Watson, 1996).

A particularly important issue that has received considerable attention has been the

intricate interplay between structural change and unit roots. Perron (1989) argued that it is

diffi cult to distinguish a unit root process from one that is subject to infrequent changes in

its trend function but is otherwise stationary within regimes specified by the break dates. In

particular, he showed that unit root tests directed against the (trend) stationary alternative

(e.g., Dickey and Fuller, 1979; Phillips and Perron, 1988) are biased in favor of the unit root

model if the true data generating process is stationary around a broken deterministic trend.

Similarly, most structural change detection procedures that do not account for the presence

of unit roots would tend to favor the alternative hypothesis of structural change if a unit

root is indeed present but the model parameters are constant (Perron, 2006). When testing

for the presence of one of these features, therefore, it is a prudent approach to allow for the

possibility of the other.

Determining the number of structural changes is a crucial component of empirical analysis

from the viewpoint of model selection. Conditional on the estimated number of breaks, the

economic significance of the differences between regime-specific parameters can be assessed

thereby providing evidence regarding the relative degree of instability associated with each of

the changes. An early contribution in this regard is by Yao (1988) who proposed choosing the

number of breaks by minimizing the Bayesian Information Criterion (BIC). Weak consistency

of the estimator was established for a sequence of independent and identically distributed

Gaussian random variables. Liu et al. (1997) suggest a modified BIC based on a more severe

penalty to cover the non-Gaussian case. Bai and Perron (1998, BP henceforth) propose a

sequential testing procedure in a general regression framework based on the sup-Wald test for
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structural change (Andrews, 1993) that involves successively applying the test to evaluate the

null hypothesis of, say, l changes against the alternative of l+1 changes starting with l = 0.1

The estimate of the number of breaks thus obtained is shown to be consistent provided

the significance level of the test decreases to zero at an appropriate rate as the sample size

increases. Monte Carlo evidence presented in Bai and Perron (2006) show that the sequential

testing approach dominates information criteria-based selection when the data generating

process includes at least one break. Altissimo and Corradi (2003) recommend an alternative

sequential procedure that consists in testing for a single break based on the maximum of the

absolute value of the partial sums of demeaned data. They derive the asymptotic critical

value of the proposed test that forms the basis for their decision rule for rejecting the null

hypothesis of no change at each step. For the case of multiple changes in mean, the method

is shown to yield a strongly consistent estimate of the number of breaks.

An assumption common to all the aforementioned methods of break selection is one of

short memory or stationarity [referred to as I(0), henceforth]. In the univariate context,

this implies that the process is either I(0) over the full sample (in the no break case) or

I(0) within regimes specified by the break dates. While convenient in theory, it rules out the

possibility of a unit root [referred to as I(1), henceforth] in a subsample of the data or over

the whole sample. The importance of allowing for such nonstationarity can again be traced

back to the argument in Perron (1989) so that ignoring the possible presence of a unit root

can generate spurious breaks thereby resulting in an inconsistent estimate of the number

of breaks. For instance, Kejriwal and Perron (2010a) show that break selection procedures

that assume cointegration among a set of variables tend to select the maximum number of

breaks allowed when the regression is spurious (see also Perron, 2006).

A plethora of procedures now exist for testing changes in persistence that allow for

the possibility of a unit root under the null and/or alternative hypotheses. Kim (2000),

Busetti and Taylor (2004) and Taylor (2005) consider testing the null hypothesis that the

series is I(0) throughout the sample versus the alternative that it switches from I(0) to

I(1) and vice-versa. Harvey et al. (2006) propose test statistics that allow the process to

be I(1) or I(0) throughout under the null. The tests are based on partial sums of residuals

obtained by regressing the data on a constant or a constant and time trend. Leybourne

et al. (2003) consider testing the null hypothesis of a stable unit root process versus the

1A similar approach was proposed by Kejriwal and Perron (2010a) for estimating the number of changes
in single-equation cointegrated models and by Kejriwal and Perron (2010b) for determining the number of
trend breaks with stationary or unit root innovations.
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same alternatives based on the minimal value of the locally GLS detrended augmented

Dickey-Fuller (ADF ) unit root statistic developed in Elliott et al. (1996) over sub-samples

of the data. They propose different test statistics depending on whether the initial regime

is I(1) or I(0). Kurozumi (2005) suggests an alternative testing procedure based on the

Lagrange Multiplier (LM) principle while Leybourne et al. (2007a) develop tests of the unit

root null based on standardized cumulative sums of squared sub-sample residuals that do

not spuriously reject when the series is a constant I(0) process. The foregoing procedures

are all designed to test for a single break in persistence. As shown in Bai and Perron (2006),

single break tests can suffer from serious power deficiencies when the alternative hypothesis

involves multiple breaks. Leybourne et al. (2007b) develop tests of the unit root null

hypothesis that can accommodate multiple changes in persistence under the alternative and

is capable of consistently partitioning the data into its separate I(0) and I(1) regimes. Their

procedure is based on doubly-recursive sequences of ADF -type statistics and associated

estimators of the break dates. Monte Carlo evidence presented in Kejriwal et al. (2013, KPZ

henceforth), however, shows the procedure to be subject to considerable size distortions when

the process is stable I(0) or when the process is stable I(1) with serially correlated errors.

KPZ propose procedures for detecting multiple persistence breaks based on sup-Wald tests

when the process can be either I(1) or I(0) under the null hypothesis although their analysis

assumes the number of breaks to be known a priori. Based on the preceding discussion,

it appears relevant from a practical perspective to develop a procedure for break selection

that allows the process to be either I(1) or I(0) in the stable case and also remains valid

regardless of whether the structural changes preserve the I(0) nature of the process in each

regime or involve switches between I(0) and I(1) regimes.

This paper proposes a new sequential procedure for estimating the number of breaks in

the persistence of a univariate time series that is robust to the presence of a unit root over the

full sample or in any (asymptotically non-negligible) subsample of the data. The procedure

is based on simultaneous application of two Wald-type tests for structural change, one of

which assumes the process is I(0)-stable under the null hypothesis while the other assumes

the stable I(1) model as the null hypothesis. In particular, we use the BP test for the former

and the sup-F test proposed in KPZ for the latter. Using the intersection of the two critical

regions as the relevant critical region enables the procedure to maintain correct asymptotic

size regardless of whether the regimes are I(0) or I(1). The procedure starts by testing

the null hypothesis of no structural change against the alternative of an unknown number

of changes (subject to an upper bound). Upon a rejection, the single break test is applied
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successively to segments of the data determined by estimating the break dates obtained from

minimizing the global sum of squared residuals. At each step, the null hypothesis of, say,

l breaks against the alternative of l+ 1 breaks is rejected if the maximum of the single break

tests computed over the (l + 1) segments is significant. The procedure continues until a

non-rejection occurs and the estimated number of breaks is determined as the number of

rejections obtained until then.

Our theoretical results are two-fold. First, we establish that the BP test has incorrect

asymptotic size under the null hypothesis of a unit root suggesting that the BP proce-

dure employed in isolation is likely to over-estimate the number of breaks if a unit root

is present. Second, the large sample properties of our procedure are derived in the gen-

eral framework that does not restrict the process to be I(0) within regimes but allows for

I(1) non-stationarities. Both trending and non-trending cases are analyzed. The relevant

asymptotic critical values are shown to be obtained from the appropriate quantiles of the

single break limit distributions and tabulated for a range of trimming values. The limit dis-

tribution of the BP test is derived for the trending case given that the asymptotics in BP were

obtained under the assumption of I(0) regressors. We also discuss how our procedure can be

employed to address the important practical issue of distinguishing processes with pure level

and/or trend breaks from those that are characterized by concurrent shifts in persistence

as well. Our Monte Carlo experiments demonstrate that the advocated approach compares

favorably relative to the commonly employed BP approach based on I(0) sequential testing,

especially when the data contain an I(1) segment.

The rest of the paper is organized as follows. Section 2 lays out the persistence change

model and the associated assumptions. The limit distribution of the BP test under the null

hypothesis of a unit root is derived in section 3. Section 4 develops the proposed sequential

testing procedure and its large sample properties. Section 5 considers a modification of the

analysis to allow for deterministic trends. Section 6 suggests procedures for distinguishing

processes with pure level and/or trend breaks from those that are subject to breaks in per-

sistence as well. The extension to serially correlated errors is considered in section 7. Details

regarding the computation of the asymptotic critical values are provided in section 8. Section

9 presents Monte Carlo evidence to assess the adequacy of the asymptotic approximations

and evaluate the merits of the proposed approach relative to I(0)-sequential testing. Section

10 concludes. All proofs are included in a Technical Appendix.

As a matter of notation, we let
p→ denote convergence in probability, d→ convergence in dis-

tribution, and “⇒”weak convergence of the associated probability measures. Let B1(.) and
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B2(.) denote standard independent Brownian motions on [0, 1] and B(.) = [B1(.), B2(.)]′.

Further, let B̃(i)
j (.) represent Bj(.) demeaned over [λi−1, λi], i.e., B̃

(i)
j (r) = Bj(r) − (λi −

λi−1)−1
∫ λi
λi−1

Bj, r ∈ [λi−1, λi]. The Brownian motions demeaned over the full sample are

denoted as B̃j(.) = Bj(.) −
∫ 1

0
Bj. Finally, for brevity of presentation, all integrals of the

form
∫ b
a
g(r)dr are expressed as

∫ b
a
g.

2 The Persistence Change Model

Consider a univariate time series yt generated as

yt = µi + ut

ut = uT 0i−1 + ht

ht = αiht−1 + et

hT 0i−1 = 0


t = T 0

i−1 + 1, T 0
i−1 + 2, ..., T 0

i ; i = 1, ...,m+ 1 (1)

with the convention that T 0
0 = 0 and T 0

m+1 = T , where T is the sample size. The process is

therefore subject to m breaks or m+1 regimes with break dates (T1, ..., Tm). Both the break

dates and the number of breaks are assumed to be unknown. The same data generating

process was considered by Leybourne et al. (2007b) and is designed to ensure that the

successive I(1) and I(0) regimes join up at the breakpoints thereby avoiding the problem of

spurious jumps to zero in ut. We make the following assumption on the break dates and the

noise component et:

Assumption A1: T 0
i = [Tλ0

i ], where 0 < λ0
1 < ... < λ0

m < 1.

Assumption A2: The process {et} is a martingale difference sequence with respect to
{Ft}, where Ft = σ-field{et, t ≤ s} with E(e2

t |Ft−1) = σ2 and supt E(|et|4+β |Ft−1) <∞ for

some β > 0.

Assumption A1 allows the development of the asymptotic theory by requiring the break-

points to be asymptotically distinct. Each segment is assumed to increase proportionately

with the sample size. This requirement is standard in the structural change literature (see,

e.g., Bai and Perron, 1998; 2003a). Assumption 2 rules out serial correlation in the inno-

vation sequence and requires conditional homoskedasticity. The case with serial correlation

where et follows a general linear process will be considered in section 7. The assumption

of conditional homoskedasticity, albeit restrictive, facilitates the development of nuisance-

parameter free asymptotic distributions. The assumption is relaxed in a companion paper
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(Kejriwal and Yu, 2017) where a wild bootstrap approach is employed to account for the

heteroskedastic nature of the error process.

From (1), we can write

yt = ci + αiyt−1 + et (2)

where ci = (µi − µi−1 + yT 0i−1)(1 − αi). KPZ consider tests of the null hypothesis H
(1)
0 :

αi = 1 for all i. [We use the notation H(a)
0 to denote the I(a) null hypothesis, a = 0, 1].

Note that under H(1)
0 , ci = 0 for all i so that the time series follows a stable unit root

process. Under the alternative hypothesis of unstable persistence, the following two models

are considered depending on whether the initial regime contains a unit root or not:

Model 1a: αi = 1 in odd regimes and |αi| < 1 in even regimes.

Model 1b: αi = 1 in even regimes and |αi| < 1 in odd regimes.

In model 1a, the process alternates between a unit root and a stationary process with a

unit root in the first regime. Model 1b is similar except that the first regime is stationary.

We denote the corresponding alternative hypotheses as H(1)
1a,k and H

(1)
1b,k, respectively.

KPZ consider a variety of tests of H(1)
0 . First, consider the Wald test that applies when

the alternative involves a fixed value m = k of changes. For models 1a-1b, the test is defined

as

F1a(λ, k) = (T − k)(SSR
(1)
0 − SSR1a,k)/[kSSR

(1)
1a,k] if k is even

F1a(λ, k) = (T − k − 1)(SSR
(1)
0 − SSR1a,k)/[(k + 1)SSR

(1)
1a,k] if k is odd (3)

F1b(λ, k) = (T − k − 2)(SSR
(1)
0 − SSR

(1)
1b,k)/[(k + 2)SSR

(1)
1b,k] if k is even

F1b(λ, k) = (T − k − 1)(SSR
(1)
0 − SSR

(1)
1b,k)/[(k + 1)SSR

(1)
1b,k] if k is odd (4)

In (3) and (4), SSR
(1)
0 denotes the sum of squared residuals under H(1)

0 while SSR(1)
1a,k and

SSR
(1)
1b,k denote, respectively, the sum of squared residuals obtained from estimating (2) under

the restrictions imposed by Model 1a and Model 1b. For some arbitrary small positive

number ε, we define the set Λk
ε = {λ : |λi+1 − λi| ≥ ε, λ 1 ≥ ε, λ k ≤ 1 − ε}. The sup-Wald

tests are then defined as F1a(k) = supλ∈Λkε
F1a(λ, k) and F1b(k) = supλ∈Λkε

F1b(λ, k).

The second type of tests is based on the presumption that the nature of persistence in

the first regime is unknown, i.e., we do not have any a priori knowledge regarding whether

the first regime is I(0) or I(1). The test is given by W1(k) = max[F1a(k), F1b(k)]. Finally,
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in order to accommodate the case with an unknown number of breaks, up to some maximal

value A, we consider the statistic Wmax1 = max1≤k≤AW1(k).

While the foregoing tests are based on the I(1) null hypothesis, the stable I(0) null can be

tested by employing the BP procedure. Specifically, consider testingH(0)
0 : ci = c, αi = α, for

all i with |α| < 1 in the model

yt = ci + αiyt−1 + et (5)

with ci = µi(1− αi). The relevant alternative hypothesis within the BP framework is H
(0)
1,k :

α1 6= α2 6= ... 6= αk+1, |αi| < 1 for all i. The time series is thus regimewise-I(0) under H(0)
1,k .

The BP test for a fixed number m = k changes is given by

G1(λ, k) = [T − 2(k + 1)](SSR
(0)
0 − SSR

(0)
1,k)/[kSSR

(0)
1,k] (6)

In (6), SSR
(0)
0 denotes the sum of squared residuals under H(0)

0 while SSR(0)
1,k denotes

the sum of squared residuals obtained from unrestricted OLS estimation of (5). The BP test

is then defined as G1(k) = supλ∈Λkε
G1(λ, k). When the number of breaks is unknown, the

relevant test statistic is UDmax1 = max1≤k≤AG1(k).

Remark 1 The limiting distributions of the KPZ tests are pivotal under H(1)
0 while those of

the BP tests are pivotal under H(0)
0 , except for the trimming choice ε. The asymptotic critical

values for both sets of tests can be obtained through Monte Carlo simulation. With m = k, the

tests W1(k), Wmax1, G1(k), UDmax1 are each consistent under H
(1)
1a,k, H

(1)
1b,k and H

(0)
1,k [see

KPZ for details]̇.

Remark 2 To compute the KPZ tests, we need to minimize the global sum of squared resid-
uals over the set of permissible break fractions Λk

ε subject to the restrictions implied by the

model. This is accomplished employing the dynamic programming algorithm of Perron and

Qu (2006). Similarly, the computation of the BP tests is based on the unrestricted mini-

mization of the global sum of squared residuals using the dynamic programming algorithm

developed in Bai and Perron (1998, 2003a).

3 The Bai-Perron Test under the Unit Root Null Hypothesis

If assumptions A1 and A2 hold, the limit distribution of G1(k) and UDmax1 under the

stable I(0) null hypothesis H(0)
0 follows from Proposition 6 in BP:

G1(k) ⇒ (1/k) sup
λ∈Λkε

k∑
i=1

[λiB(λi+1)− λi+1B(λi)]
′[λiB(λi+1)− λi+1B(λi)]

λi+1λi(λi+1 − λi)
def
= G∗1(k)

UDmax1 ⇒ max
1≤k≤A

G∗1(k) (7)
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For k = 1, we recover the limit distribution derived in Andrews (1993):

G1(1)⇒ sup
λ∈Λ1ε

[λB(1)−B(λ)]′[λB(1)−B(λ)]

λ(1− λ)
(8)

The limit in (8) represents the supremum of the square of a tied-down Bessel process of order

2. The asymptotic distribution of the BP tests are therefore independent of any nuisance

parameters except the trimming choice ε. The relevant critical values for a range of trimming

choices can be obtained from Bai and Perron (2003b).

The following proposition states the limit distribution of the BP test under the stable

I(1) null hypothesis:

Proposition 1 Suppose Assumptions A1-A2 hold. Under H(1)
0 , we have

G1(k) ⇒ (1/k) sup
λ∈Λkε


∑k

i=1
[λiB1(λi+1)−λi+1B1(λi)]

2

λi+1λi(λi+1−λi)

−(
∫ 1
0 B̃1dB1)

2∫ 1
0 B̃

2
1

+
∑k+1

i=1

[∫ λi
λi−1

B̃
(i)
1 dB1

]2
∫ λi
λi−1

[
B̃
(i)
1

]2

 def
= G̃1(k) (9)

UDmax1 ⇒ max
1≤k≤A

G̃1(k)

The limit distribution in (9) is different from the one in (7). While the first component

in (9) corresponds to the intercept term that is common to both distributions, the second

and third terms in (9) now represent the contribution from the I(1) component. The second

component is the squared limit of the Dickey-Fuller (1979) unit root test over the full sample

when a constant is included in the regression. For the third component, the i-th term

inside the summation represents the squared limit of the Dickey-Fuller unit root test when

computed over the i-th regime. This result indicates that under the I(1) null hypothesis the

asymptotic level of the BP test is different from the corresponding nominal level.

The degree of size distortions in large samples can be quantified by computing the as-

ymptotic size through Monte Carlo simulation. Specifically, the Brownian motion B1(.) is

approximated by partial sums of i.i.d. standard normal random variables with step size

equal to 1000. Based on 10,000 Monte Carlo replications, the asymptotic size for a given

significance level is computed as the fraction of replications in which G̃1(k) exceeds the cor-

responding BP critical value. For k = 1, this value was found to be 67%, 52% and 22%

for nominal levels of 10%, 5% and 1% respectively. The 90th, 95th and 99th percentiles of

G̃1(1) were obtained as 18.00, 20.25 and 24.49, respectively. The corresponding percentiles

of G∗1(1) are 9.81, 11.47 and 15.37, respectively (Bai and Perron, 2003b). Since the BP pro-

cedure for break selection is based on sequential application of the single break BP test, the
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considerable size distortions in the unit root case are likely to manifest themselves through

overestimation of the number of breaks in finite samples. This is true not only when the

process is stable I(1) but also when any asymptotically negligible subsample of the data are

I(1). We confirm that this is indeed the case in the Monte Carlo experiments conducted in

section 9.

Remark 3 Under the local to unity parameterization αT = 1 + c/T, c < 0, the Weiner

process B1(.) in (9) is replaced by the Ornstein-Uhlenbeck process Jc(.) generated in con-

tinuous time by the stochastic differential equation dJc(r) = cJc(r) + dB1(r), with initial

condition Jc(0) = 0 (Phillips and Perron, 1988). This result can explain the size distortions

associated with the BP procedure when αT is close to but not equal to one (see section 9).

4 A Robust Sequential Procedure

The analysis in section 3 shows that since the BP procedure for break selection is based on

the stable I(0) null hypothesis, it is not robust to the presence of a unit root. On the other

hand, the KPZ tests described in section 2 are based on the stable-I(1) null hypothesis and

diverge to positive infinity when the process is stable-I(0). In order to control asymptotic size

when the process is either I(1) or I(0) under the null hypothesis, KPZ propose simultaneous

application of their test and the BP test. In other words, they recommend choosing the

intersection of the two critical regions as the relevant critical region for their robust procedure.

Denote by H0 the null hypothesis that the process is either I(1)-stable or I(0)-stable. For a

fixed number of breaks k, KPZ recommend employing the following decision rule:

“Reject H0 if both W1(k) and G1(k) reject” (10)

When the number of breaks is unknown, the relevant decision rule takes the form

“Reject H0 if both Wmax1 and UDmax1 reject” (11)

Consider using decision rule (10) with a given nominal level η for each of W1(k) and G1(k).

Since W1(k) and G1(k) are correctly sized under H(1)
0 and H(0)

0 , respectively, it follows that

the decision rule (10) has asymptotic size at most η under H0. A similar argument holds for

(11). Define the following test statistics:

H1(k, η) = min

[
W1(k),

cvw,k(η)

cvg,k(η)
G1(k)

]
Hmax1(η) = min

[
Wmax1,

cvw,max(η)

cvg,max(η)
UDmax1

]
9



where, at level η, cvw,k(η), cvg,k(η), cvw,max(η), cvg,max(η) are the critical values of the tests

W1(k), G1(k), Wmax1 and UDmax1, respectively. It is straightforward to verify that the

decision rule (10) is equivalent to the decision rule

“Reject H0 if H1(k, η) > cvw,k(η)” (12)

while the decision rule (11) is equivalent to

“Reject H0 if Hmax1(η) > cvw,max(η)” (13)

We now develop a sequential test of the null hypothesis of l breaks against the alternative

hypothesis of (l+1) breaks in equation (2). First, we obtain the estimates of the break dates

T̂1, ..., T̂l as global minimizers of the sum of squared residuals from the unrestricted model

with l breaks estimated by least squares:

(T̂1, ..., T̂l) = argmin(T1,...,Tl)
SSR

(0)
1,l

This can be achieved using the dynamic programming algorithm proposed by Bai and Perron

(2003a). Next, we test for the presence of an additional break in each of the (l+ 1) segments

obtained using the estimated partition (T̂1, ..., T̂l). Define the quantities

ηl+1 = 1− (1− η)1/(l+1)

H
(i)
1 (1, ηl+1) = min

[
W

(i)
1 (1),

cvw,1(ηl+1)

cvg,1(ηl+1)
G

(i)
1 (1)

]
H1(l + 1|l) = max

1≤i≤l+1
{H(i)

1 (1, ηl+1)}

where W (i)
1 (1) denotes the W1(1) test computed using data in the (estimated) regime i, i.e.,

[T̂i−1 + 1, T̂i] and G
(i)
1 (1) denotes the G1(1) test computed using the observations in [T̂i−1 +

1, T̂i]. We conclude in favor of a model with (l + 1) breaks if

H1(l + 1|l) > cvw,1(ηl+1) (14)

The test thus amounts to the computation of (l+1) tests of the null hypothesis of no change

versus the alternative hypothesis of a single change and assessing whether their maximum

is suffi ciently large. The threshold value cvw,1(ηl+1) is the (1− ηl+1)-th quantile of the limit

distribution of W1(1). The following result shows that the decision rule (14) has asymptotic

size at most η under the null hypothesis of l breaks:

10



Theorem 1 Suppose Assumptions A1-A2 hold. Under the null hypothesis that the true

number of breaks is l, we have limT→∞ P (H1(l + 1|l) > cvw,1(ηl+1)) ≤ η.

The test based on H1(l+ 1|l) can be used to provide an estimate of the number of breaks
m̂ in the following way:

1. First, apply the decision rule (13) that tests the null hypothesisH0 against an unknown

number of breaks. If a non-rejection is obtained, set m̂ = 0 and the procedure stops.

Otherwise, go to step 2.

2. Upon a rejection in step 1, use the rule (14) with l = 1 to determine if there is more

than one break. This process is repeated by increasing l sequentially until the test fails

to reject the null hypothesis of no additional structural breaks.

3. The estimate m̂ is then obtained as the number of rejections.

The following result shows that the proposed algorithm guarantees that the probability

of selecting the true number of breaks is at least (1− η) in large samples:

Theorem 2 Suppose Assumptions A1-A2 hold. Let m be the true number of breaks and

m̂ be the number of breaks obtained using the proposed sequential procedure based on the test

statistics Hmax1 and H1(l+ 1|l) [l ≥ 1] applied with nominal level η. Then limT→∞ P (m̂ =

m) ≥ 1− η.

The sequential procedure can be made consistent by allowing the significance level of

the tests Hmax1 and H1(l + 1|l) to decrease to zero at a suitable rate as the sample size
increases. It can be shown that if the true number of breaks is at least l + 1, Hmax1 and

H1(l+1|l) diverge at rate Op(T ). Thus, if the critical values cvw,1, cvg,1, cvw,max, cvg,max are

allowed to increase at rate Op(T
1−ε), 0 < ε < 1, the size of the tests converges to zero at T

increases while ensuring their consistency under the alternative. We thus have the following

corollary whose proof is similar to that of Hosoya (1988) and is thus omitted:

Corollary 1 Let m be the true number of breaks and m̂ be the number of breaks obtained

using the sequential procedure based on the test statistic H1(l+ 1|l) applied with significance
level ηT . Consider a sequence of critical values cvw,1 = c1T

1−ε, cvg,1 = c2T
1−ε, cvw,max =

cmaxT
1−ε (c1, c2, cmax are positive constants) so that ηT converges to zero while ensuring

that H1(l + 1|l) remains consistent. Then, under Assumptions A1-A2, P (m̂ = m) → 1 as

T →∞.

11



Remark 4 A purely sequential approach would involve testing for l = 0 versus l = 1 based

on the H1(1|0) statistic in the first step. However, as is well known, if the number of breaks

assumed in the construction of the test statistic is smaller than the true number of breaks

under the alternative hypothesis, the test can be subject to serious non-monotonic power

problems [see Bai and Perron, 2006; Perron, 2006]. Using the rule (13) in the first step

provides a safeguard against this issue.

Remark 5 Theorem 2 and Corollary 1 hold not only under the alternative hypotheses H(1)
1a,m,

H
(1)
1b,m and H

(0)
1,m but also under more general alternatives where the process involves a mix of

I(1) and I(0) regimes with possibly adjacent I(0) regimes.

Remark 6 While Theorem 2 suggests that the probability of break selection can be guaranteed
to exceed any pre-assigned value by choosing a suffi ciently small η, it must be borne in mind

that it is a large sample result that uses the fact that the test H1(l + 1|l) is consistent under
the alternative hypothesis of at least (l + 1) breaks. In finite samples, however, the power

of the test depends on the significance level used and using too small a level can lead to

underestimating the true break number.

5 Deterministic Trends

This section discusses how the sequential procedure proposed in section 4 can be extended to

allow for the presence of deterministic trends. We consider an extension of (1) that includes

the possibility of m breaks in the deterministic trend:

yt = µ0 + β0t+
∑m

j=1 µjDUjt +
∑m

j=1 βjDTjt + ut

ut = uT 0i−1 + ht

ht = αiht−1 + et

hT 0i−1 = 0


t = T 0

i−1 + 1, T 0
i−1 + 2, ..., T 0

i ;

i = 1, ...,m+ 1

(15)

where DUjt = I(t > T 0
j ), DTjt = I(t > T 0

j )(t − T 0
j ); j = 1, ...,m. The data generating

process (15) can be expressed as

yt = ci + bit+ αiyt−1 + et (16)

12



with

ci = (1− αi)
{
µ0 +

i−1∑
j=1

(µj − T 0
j ) + yT 0i−1 − µi−1

}
+ αi

{
β0 +

i−1∑
j=1

βj

}

bi = (1− αi)(β0 +

i−1∑
j=1

βj) (17)

The difference between (2) and (16) is the presence of the deterministic trend in the latter

and that the intercept ci is now a function of the trend parameters appearing in (15).

KPZ propose tests of the null hypothesis H̃(1)
0 : ci = c, αi = 1 for all i in (16). Note that

under H̃(1)
0 , bi = 0 for all i so that the process follows a stable unit root process with possible

drift. As in the trendless case, KPZ consider two models under the alternative hypothesis

depending on whether the initial regime is trend or difference stationary:

Model 2a: αi = 1 in odd regimes and |αi| < 1 in even regimes.

Model 2b: αi = 1 in even regimes and |αi| < 1 in odd regimes.

In accordance with the notation in section 2, the test statistics in the trending case are

denoted by F2a(λ, k), F2b(λ, k), W2(k) and Wmax2. The limit distributions of the tests

under H̃(1)
0 are shown to be different from those in the trendless case (see KPZ for details).

We now turn to testing the null of a stable trend stationary process, i.e., H̃(0)
0 : ci =

c, bi = b, αi = α for all i where |α| < 1 in the model

yt = ci + bit+ αiyt−1 + et (18)

with ci = (1 − αi)
{
µ0 +

∑i−1
j=1(µj − T 0

j )
}

+ αi

{
β0 +

∑i−1
j=1 βj

}
and bi defined as in (17).

The test statistic for a fixed number m = k changes is based on

G2(λ, k) = [T − 3(k + 1)](S̃SR
(0)

0 − SSR
(0)
2,k)/[kSSR

(0)
2,k] (19)

In (19), S̃SR
(0)

0 denotes the sum of squared residuals under H̃(0)
0 , i.e., that obtained from

OLS estimation of (18) subject to the restrictions ci = c, bi = b, αi = α for all i. The quantity

SSR
(0)
2,k denotes the sum of squared residuals obtained from unrestricted OLS estimation of

(16). The test statistic is then defined as G2(k) = supλ∈Λkε
G2(λ, k). When the number of

breaks is unknown, the relevant test statistic is UDmax2 = max1≤k≤AG2(k).

The limit distributions of G2(k) and UDmax2 are the not the same as those of G1(k) and

UDmax1 and therefore the BP critical values are not valid in the trending case. The reason
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is that the BP asymptotics are based on the assumption of I(0) regressors and hence do

not allow for deterministic trends. We therefore derive the limit distributions of G2(k) and

UDmax2 under H̃
(0)
0 in order to obtain the appropriate critical values. The result is stated

in the following theorem:

Theorem 3 Suppose Assumptions A1-A2 hold. Let F (r) = (1, r)′, r ∈ [0, 1]. Under

H̃
(0)
0 , we have

G2(k) ⇒ sup
λ∈Λkε


∑k

i=1
[λiB2(λi+1)−λi+1B2(λi)]

2

λi+1λi(λi+1−λi)

−
(∫ 1

0
F (r)dB1(r)

)′ (∫ 1

0
F (r)F (r)′

)−1 (∫ 1

0
F (r)dB1(r)

)
+
∑k+1

i=1

(∫ λi
λi−1

F (r)dB1(r)
)′ (∫ λi

λi−1
F (r)F (r)′

)−1 (∫ λi
λi−1

F (r)dB1(r)
)


def
= G∗2(k)

UDmax2 ⇒ max
1≤k≤A

G∗2(k)

Remark 7 The limit G∗2(k) depends on the two independent Brownian motions B1(.) and

B2(.) as in the trendless case. However, while B2(.) enters the limit in the same form as in

the BP distribution, allowing for a deterministic trend changes the way in which B1(.) enters

the limit. The second and third terms in the expression for G∗2(k) reflect the difference from

the I(0) framework in BP through the dependence on the vector F (r).

Remark 8 While the limit distribution stated in Theorem 3 is different from that in BP,

asymptotic critical values can be obtained through Monte Carlo simulation for a given trim-

ming choice ε. Section 8 discusses the details involved in the computation of the critical

values.

Remark 9 The sequential procedure described in section 4 can be applied in the trending
case with G1(1), W1(1), UDmax1 and Wmax1 replaced by G2(1), W2(1), UDmax2 and

Wmax2, respectively. Theorems 1 and 2 continue to hold for this modified sequential proce-

dure.

6 Structural Breaks in Level and Trend

This section addresses the empirically important issue of distinguishing between processes

with pure level shifts and/or trend breaks from those where these breaks are accompanied

by concurrent shifts in persistence. In the trendless case, the issue of interest is that of
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disentangling an I(0) process with pure level shifts but a stable persistence parameter from

one that is subject to shifts in both level and persistence. This case is discussed in section

6.1. In section 6.2, we consider the problem of discriminating between a process with pure

trend breaks and one that is driven by breaks in persistence as well. Unlike the former case,

the latter case needs to account for the possibility that the process can be either I(0)-stable

or I(1)-stable around a broken deterministic trend.

6.1 Breaks in Level

The KPZ and BP tests on which the sequential approach advocated in section 4 is based

are consistent against processes with pure shifts in level but a stable I(0) persistence pa-

rameter. The approach cannot therefore be directly used to distinguish between processes

characterized by level shifts only and those that are characterized by concurrent shifts in

level and persistence. Our proposed procedure for distinguishing between these two possibil-

ities is related to the approach taken in Hsu and Kuan (2001) who consider the problem of

disentangling a slope change from a level shift in a time trend model with stable I(0) errors.

They suggest a two-step procedure in which the joint null of stability in both coeffi cients is

tested and, conditional on a rejection, the break date is estimated by minimizing the sum

of squared residuals and used in a second step to test the stability of the intercept or trend

coeffi cient, while allowing the other coeffi cient to change.

Our approach to disentangling the two alternatives of interest is based on the fact that

the estimated number of breaks obtained from applying the sequential procedure in section

4 is still consistent (Corollary 1) even if the process is only subject to shifts in level. Fur-

ther, the estimated breakpoints λ̂ = (λ̂1, ..., λ̂m̂)′ obtained by minimizing the global sum

of squared residuals from the unrestricted model (2) are T -consistent for the corresponding

true breakpoints (Bai, 1994; Bai and Perron, 1998) regardless of whether the level shifts

are accompanied by concurrent shifts in persistence. We can then test the stability of the

persistence parameter based on a model that allows the intercept to be regime-specific under

both the null and alternative hypotheses. Specifically, consider the standard Wald statistic

for testing αi = α for all i in the model

yt = ci + αiyt−1 + et, t ∈ [T̂i−1 + 1, T̂i]; i = 1, ...,m+ 1 (20)

Denote the resulting statistic at W ∗(m). The following result establishes the limit dis-

tribution of W ∗(m) under the null hypothesis that the process has a stable I(0) persistence

parameter with m shifts in level:
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Theorem 4 Suppose Assumptions A1-A2 hold. Under the null hypothesis αi = α for all

i where |α| < 1, we have

W ∗(m)
d→ χ2(m)

We therefore recommend the following three-step procedure. First, we determine the

number of breaks (m̂) applying the robust sequential procedure proposed in section 4. Sec-

ond, conditional on m̂ and the corresponding estimates of the breakpoints (T̂1, T̂2, ..., T̂m̂)

obtained from the unrestricted model (2), we compute the Wald statistic for testing the sta-

ble I(0) null hypothesis (i.e., constancy of αi over all i in (20)) while allowing the intercept

to vary across the (m̂ + 1) regimes. Third, the null hypothesis of stable I(0) persistence is

rejected if the Wald statistic is significant at the specified level where the critical value is

obtained from the χ2(m̂) distribution. Otherwise, the null is not rejected and we conclude

in favor of a model with pure level shifts.

6.2 Breaks in Trend

A rejection obtained by the test statistics presented in section 5 cannot be directly interpreted

as one emanating from a change in persistence unless the trend function in (15) is stable,

i.e., µj = βj = 0 for all j ≥ 1. The reason is that the statistics are joint tests of the null

hypothesis that the trend and persistence parameters are stable so that they are not only

consistent against processes characterized by concurrent breaks in trend and persistence but

also against processes that are subject to breaks in trend only. The problem of distinguishing

among these two types of processes is complicated by the fact that one needs to account for

the possibility that with pure trend breaks, the process can be either trend stationary or

difference stationary, i.e., the persistence parameter can be either I(1)-stable or I(0)-stable.

Our approach to discriminating between the two alternatives at hand is based on recog-

nizing that Theorem 2 remains valid for the sequential procedure (modified according to

section 5) even when the process is subject to trend breaks only, given the joint nature of the

null hypotheses. Further, the estimates of the breakpoints obtained by global minimization

of the sum of squared residuals in the unrestricted model (18) that allows concurrent trend

and persistence breaks are T -consistent regardless of whether the trend breaks are accompa-

nied by shifts in persistence in the true data generating process. In the pure trend break case,

this result follows from the results in Perron and Zhu (2005) while in the concurrent case,

it follows from the results in Chong (2001) and Kejriwal and Perron (2012). Based on the

estimated break number and the corresponding breakpoints, the null hypothesis of constant
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persistence can be evaluated by testing for structural change in the persistence parameter

while allowing the trend parameters to change across regimes. Under the null hypothesis of

stable I(0) persistence andm trend breaks, standard Wald tests have chi-squared limit distri-

butions with m degrees of freedom while under the null hypothesis of stable I(1) persistence,

the limit distribution is non-standard ( see Theorem 5 below). The null hypothesis of con-

stant persistence [I(1) or I(0)] can then be tested based on the intersection of the critical

regions relevant for testing the I(0) and I(1) null hypotheses, respectively.

For testing I(0)-stability, we consider the standard Wald statistic for testing αi = α for

all i in the model

yt = ci + bit+ αiyt−1 + et, t ∈ [T̂i−1 + 1, T̂i], i = 1, ...,m+ 1 (21)

Denote the resulting statistic as W̃0(m). For testing I(1)-stability, we compute the Wald

statistic based on the difference between the restricted and unrestricted sum of squared

residuals where the former is obtained by estimating the restricted model

∆yt = ci + et, t ∈ [T̂i−1 + 1, T̂i], i = 1, ...,m+ 1 (22)

while the latter is obtained by estimating the unrestricted model (21). We denote this

statistic as W̃1(m). The following theorem states the limit distributions of W̃0(m) and

W̃1(m) under the respective null hypotheses:

Theorem 5 Suppose that Assumptions A1-A2 hold.
(a) Under the null hypothesis of m trend breaks and αi = α for all i where |α| < 1, we have

W̃0(m)
d→ χ2(m)

(b) Let F (r) = (1, r)′. Under the null hypothesis of m trend breaks and αi = 1 for all i, we

have

W̃1(m)⇒
m+1∑
i=1



(∫ λ0i
λ0i−1

[
B̆

(i)
1

]2
)−1 (∫ λ0i

λ0i−11
B̆

(i)
1 dB1

)2

+(∫ λ0i
λ0i−1

F (r)dB1(r)
)′ (∫ λ0i

λ0i−1
F (r)F (r)′

)−1 (∫ λ0i
λ0i−1

F (r)dB1(r)
)

− [B1(λ0i )−B1(λ0i−1)]
2

λ0i−λ0i−1


(23)

where B̆(i)
1 (r) are the residuals from a continuous-time regression of

{
B1(r)−B1(λ0

i−1)
}
onto

the space spanned by F (r) for r ∈ [λ0
i−1, λ

0
i ], i = 1, ...,m+ 1.
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While the statistic W̃0(m) has a standard chi-squared limiting distribution, W̃1(m) is

not asymptotically pivotal and its limit depends on the vector of true unknown fractions

λ0 = (λ0
1, ..., λ

0
m)′. Asymptotic critical values cannot therefore be tabulated for use in practice

and must be obtained on a case-by-case basis.

We suggest two alternative procedures for approximating the critical values of W̃1(m).

The first involves approximating the limit in (23) via Monte Carlo simulation by replacing

λ0 with the estimated break fractions λ̂ = (λ̂1, ..., λ̂m̂)′ obtained from the unrestricted model

(21) and approximating the Weiner process B1(.) by partial sums of i.i.d. standard normal

deviates. The second is a residual bootstrap approach that is based on resampling the

residuals obtained by the estimating the model (22) and generating bootstrap samples on

the time series again from (22) using the estimated ci. The statistic W̃1(m) is computed for

each bootstrap sample and the critical values can be approximated using the quantiles of

the bootstrap distribution of W̃1(m). It is important that the bootstrap samples are drawn

from a data generating process that imposes the null hypothesis of stable I(1) persistence

so that the resulting bootstrap distribution provides an accurate approximation to the finite

sample null distribution. We employ the first procedure for the Monte Carlo experiments in

section 9. Investigating the relative merits of the two approaches is outside the scope of the

present paper and left for future research.

Based on the above discussion, we suggest the following three-step procedure for disen-

tangling pure trend break processes from those that involve simultaneous breaks in trend and

persistence. First, we determine the number of breaks (m̂) applying the robust sequential

procedure developed in section 4 appropriately modified for the trending case as discussed in

section 5. Second, conditional on the estimated number of breaks and the corresponding es-

timates of the breakpoints obtained from the unrestricted model (21), we compute the Wald

statistics for testing the stable I(0) null hypothesis (i.e., constancy of αi over all i in (21))

and the stable I(1) null hypothesis (i.e., αi = 1 over all i in (21)). The critical value of the

test statistic in the I(0) case is obtained from, say, the 90th-percentile of the χ2 distribution

with m̂ degrees of freedom while the value in the I(1) case is obtained via one of the two

aforementioned procedures. Third, the null hypothesis of constant persistence [I(1) or I(0)]

is rejected if both statistics are significant at the specified significance level. Otherwise, the

null is not rejected and we conclude in favor of a model with pure trend breaks.
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7 Serially Correlated Errors

We now provide an extension of model (1) that relaxes the AR(1) assumption on ut to a

general linear process driven by martingale difference innovations. Specifically, we make the

following assumption:

Assumption A3: The errors ht are generated as

Ai(L)ht = et, Ai(L) = 1−
∑∞

s=1 aisL
s

ht = 0, t ≤ T 0
i−1

 t = T 0
i−1 + 1, T 0

i−1 + 2, ..., T 0
i ;

i = 1, ...,m+ 1
(24)

where
∑∞

s=1 |ais| <∞ for all i and et satisfies Assumption A2.

We also assume the following condition on the roots of Ai(L):

Assumption A4: The autoregressive polynomial Ai(L) has at most one real-valued root

on the unit circle and all others strictly outside the unit circle.

From (24), we can write

ht = αiht−1 +
∞∑
j=1

πij∆ht−j + et

where αi =
∑∞

s=1 ais, πij = −
∑∞

s=j+1 ais. In the trendless case, yt = µi + ut which leads to

the test regression

∆yt = ci + (αi − 1)yt−1 +
lT∑
j=1

πj∆yt−j + e∗t (25)

for some sequence lT increasing with the sample size (precise conditions on lT will be specified

later). In the trending case, we augment (25) with a deterministic time trend regressor.

Note that we do not allow the coeffi cients of the first differences (representing the short-run

dynamics) to change across regimes. This is because, as stressed in KPZ, we wish to direct

the tests against potential changes in the I(0)/I(1) nature of the process to ensure the highest

power possible. Also, allowing for breaks in dynamics under the I(1) null would lead to limit

distributions that depend on the (unknown) number and location of these breaks thereby

making asymptotic inference diffi cult (Under the I(0) null, the BP limit distributions remain

the same whether or not the dynamics change; see BP). Simulation evidence presented in

KPZ illustrates that the test statistics do not have much power against pure changes in

short-run dynamics but are powerful when there is a change in both persistence and these
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dynamics. We, nevertheless, allow for concurrent changes in level and slope of the trend

function since these often occur simultaneously with a change in persistence and can allow

tests with higher power. The test statistics in the serially correlated case are constructed in

a similar way as in section 4 except that the relevant test regression is now (25) instead of

(2). For the sake of brevity, we do not reproduce the expressions for the test statistics here

as they are detailed in KPZ.

Finally, we make the following assumption on the rate at which the lag length lT increases

with the sample size that facilitates the derivation of the limit distributions in the serially

correlated case:

Assumption A5: As T →∞, the lag length lT is assumed to satisfy (a) (upper bound
condition) l2T/T → 0 and (b) (lower bound condition) lT

∑
j>lT

πj → 0.

Note that the lower bound condition allows for a logarithmic rate of increase for lT thereby

allowing the use of data dependent rules such as information criteria to select the lag length

(see Ng and Perron, 1995). We now state the result for the general case.

Theorem 6 Suppose Assumptions A1-A5 hold. Then for the KPZ and BP test statistics
computed from (25), Theorems 1-5 continue to hold.

The proof of the theorem is omitted as it follows directly from the fact that all limit results

for the test statistics (under the null and alternative hypotheses considered in the AR(1) case)

remain valid in the general case as long as the statistics are computed from (25) and the lag

length satisfies Assumption A5 [see Theorems 2 and 3 in KPZ]. The implication of Theorem 6

is that the asymptotic critical values needed to implement the proposed sequential approach

remain the same as in the AR(1) case. The finite-sample effects of serially correlated errors

will be examined via Monte Carlo simulations in section 9.

An important practical issue regarding the implementation of the sequential approach

with serially correlated errors concerns the choice of lT in finite samples. Based on extensive

simulation experiments, we found the following approach to be both computationally effi cient

as well as deliver robust results with respect to selecting the true number of breaks. First, we

determine the lag length using BIC based on the stable I(0) and stable I(1) null hypotheses,

respectively. The maximum of the two lag lengths is then used to compute the Wmax1 and

UDmax1 (or Wmax2 and UDmax2 in the trending case) tests in step 1 of the sequential

procedure. Second, upon a rejection, estimate the unrestricted single break model over the

full sample for each allowable lag length (zero to, say, lmax) whereby all regression coeffi cients
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including those of the lagged differences are allowed to change across regimes. Choose the lag

length as the minimizer of the BIC over [0, lmax]. Third, use the lag length thus determined

to compute the test statistics in the two regimes specified by the estimated break date.

Subsequently, at each stage “j”of the procedure, choose the lag length by minimizing the

BIC across permissible lag lengths where each model is estimated by global minimization of

the sum of squared residuals allowing for j breaks. The test statistics in the (j+1) estimated

regimes are then computed using this choice. In this way, the choice of the lag length adapts

to the null hypothesis under consideration at each step (j versus (j + 1) breaks). This

approach to lag selection was observed to dominate an approach based on a fixed number

of lags as well as one where the lag choice was made once and for all under either the stable

I(0) or I(1) null hypothesis.

8 Asymptotic Critical Values

This section details the computation of the asymptotic critical values relevant for apply-

ing the proposed approach and tabulates these values for a range of choices of the trim-

ming parameter ε. In particular, we present the appropriate quantiles of the test statistics

W1(1), Wmax1,W2(1), Wmax2, G2(1) and UDmax2 noting that the quantiles forG1(1) and

UDmax1 are available from Bai and Perron (2003b).

Given the non-standard nature of the limit distributions, the critical values are obtained

by Monte-Carlo simulations. The Brownian motions B1(.) and B2(.) are approximated by

partial sums of i.i.d. standard normal deviates with step size equal to 500. For the statistics

W1(1), Wmax1,W2(1) and Wmax2 we use Perron and Qu’s (2006) dynamic programming

algorithm. First, we generate a sample of T = 500 observations from a random walk with

i.i.d. N(0, 1) errors. We then apply the algorithm to obtain the minimized sum of squared

residuals and the corresponding vector of break fractions subject to the relevant restrictions.

Finally, we evaluate the expressions appearing in the limit distributions at the vector of

break fractions obtained earlier. For the statistics G2(1) and UDmax2, we first generate a

random sample of T = 500 observations from the standard normal distribution. Next, we

apply the Bai and Perron (2003a) dynamic programming algorithm to obtain the minimized

sum of squared residuals and the corresponding vector of break fractions and evaluate the

limit expressions at this vector. The procedure is repeated 5000 times to obtain the required

quantiles of the limit distributions.

Asymptotic critical values for implementing the sequential test of l versus (l + 1) breaks

(l = 0, 1, ..., 5) are provided in Tables 1a and 1b for three trimming choices: ε = 0.15, 0.20, 0.25.
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For ε = 0.15, the upper bound A needed to be compute Wmax1,Wmax2, UDmax1 and

UDmax2 was set to five while for ε = 0.20 and ε = 0.25, A was chosen as three and two, re-

spectively. A GAUSS program for computing the critical values for other choices of ε and/or

A is available upon request.

9 Monte Carlo Evidence

This section conducts a set of Monte Carlo experiments designed to assess the viability

of the proposed procedure in finite samples for a variety of data generating processes and

thereby evaluate the adequacy of the asymptotic approximations derived in the foregoing

sections for sample sizes typically encountered in empirical applications. In particular, we

compare the performance of the robust sequential approach advocated in section 4 with

the commonly employed BP approach in terms of their relative ability to estimate the true

number of breaks, when the data generating process is characterized by zero, one or two

breaks, respectively. We also document the finite sample performance of the approaches

recommended in section 6 for distinguishing between pure level/trend break processes and

those that are accompanied by concurrent persistence shifts.

To account for serial correlation, we implement the lag selection procedure outlined in

section 7 with lmax = 4. Given that the sequential tests are computed from successively

smaller subsamples, it is important to use a relatively small number of lags from a parsimony

standpoint when constructing the various statistics. Nevertheless, we also implemented the

procedure with lmax = 6 and found the results to be inferior in terms of rue break selection

probabilities across procedures compared to using lmax = 4.

In all experiments, {et} denotes a sequence of i.i.d. N(0, 1) variables. The errors {ut} are
generated by the ARMA process ut = ρut−1 + et− θet−1, u0 = 0. We present results for the

following combinations of values of the autoregressive parameter (ρ) and the moving average

parameter (θ): (a) ρ = θ = 0, (b) ρ = 0.5, θ = 0, (c) ρ = 0, θ = 0.5, (d) ρ = 0, θ = −0.5.

The sequential test (for both procedures) at each step is evaluated at the 10% nominal level

(i.e., η = .10 in section 4).2 Three sample size are considered: T = 200; 400; 600. The

trimming parameter was set at ε = .15 and the maximum number of breaks at A = 5. All

experiments are based on 1000 replications. Sections 9.1-9.3 present results on the finite

sample adequacy of the robust sequential and BP approaches in estimating the true number

2We also considered using η = .05 or .01 but found that that the underestimation probabilities were
considerable in many cases and that η = .10 appeared to provide the best compromise in terms of the
size-power tradeoff.

22



of breaks and section 9.4 reports evidence on the viability of the approaches recommended

in section 6.

9.1 The Case with No Break

In the no break case, the time series yt is generated as

• DGP-0:

yt = α̃yt−1 + ut

y0 = 0 (26)

Based on the ARMA specification for ut, the persistence parameter defined as the sum

of the autoregressive (AR) coeffi cients in the implied AR representation for yt is

α =
α̃ + ρ(1− α̃)− θ

1− θ

For a given (ρ, θ) configuration, we choose α̃ such that α equals a pre-specified value.

Specifically, we consider five values of α: .5, .7, .9, .95, 1. For instance, when α = .7 and

(ρ, θ) = (.5, 0), α̃ = .4. Of course, α̃ = α for (ρ, θ) = (0, 0). Also, for all (ρ, θ) configurations

considered here, α̃ = 1 when α = 1.3 Holding the persistence parameter fixed across different

serial correlation scenarios facilitates the comparison of results across these scenarios.

The results are presented in terms of probabilities of (correctly) selecting no break (Pc, “c”

for “correct”) and overestimating the number of breaks (P0, “0” for “overestimation”).

The robust sequential and BP procedures are denoted by SeqR and SeqBP , respectively.

The findings are reported in Table 2. First, consider the case ρ = θ = 0. When the

process is relatively less persistent (α ≤ .7), there is no difference in the performance of the

two procedures. However, as α increases further, the differences become quite prominent

with the BP procedure selecting at least one break far more frequently. For instance, with

α = .9 and T = 200, the SeqR selects no break with 94% probability compared to only 71%

for SeqBP (see Remark 3). As shown in section 3, the BP test has incorrect asymptotic size

when α = 1. This fact is reflected in the break selection probabilities for this case where

SeqBP favors a persistence change model with probability at least 75% across sample sizes. In

sharp contrast, SeqR selects the stable model with probability at least 80% across all values

of α and T considered. Interestingly, as the sample size increases from T = 200, there is a

3This holds as long as |ρ| < 1, |θ| < 1.
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noticeable decline in Pc for the SeqR procedure when α ∈ {.9, .95}, while the corresponding
decline for α = 1 is only marginal. Such behavior can be explained by the fact that the KPZ

limit distributions are derived under α = 1 so that the tests do not have the correct size

when the process has a root close to but equal to unity (under a fixed α with |α| < 1, the

KPZ tests diverge while with a local to unity parameterization αT = 1+c/T, c < 0, the limit

distributions depend on the non-centrality parameter c). With serial correlation, the picture

is qualitatively similar to the i.i.d. case with SeqBP exhibiting substantial over-rejections in

favor of models with at least one break while SeqR displaying robust performance in selecting

the no break model across the different data generating configurations.

9.2 The Case with One Break

We consider a variety of DGPs depending on whether the process is characterized by switches

between I(1) and I(0) regimes or between I(0) regimes with different persistence parameters

as well as the direction of such switches, i.e., high to low persistence or vice-versa. Specifically,

the following DGPs are included in our analysis:

For t ≤ [Tλ0
1] For t ≥ [Tλ0

1] + 1

DGP-1 yt= α̃yt−1+ut yt= yt−1+ut

DGP-2 yt= yt−1+ut yt−y[Tλ01]= α̃(yt−1−y[Tλ01]) + ut

DGP-3 yt= α̃1yt−1+ut yt= α̃2yt−1+ut

DGP-1 and DGP-2 are processes that involve a switch between an I(1) and an I(0) regime

while DGP-3 involves a switch from one I(0) regime to another, i.e., DGP-3 represents an

I(0)-preserving switch. As in section 9.1, for a given (ρ, θ) combination, the parameters

α̃, α̃1, α̃2 are chosen so that the implied persistence parameters α, α1, α2 equals a fixed value.

For DGP-1 and DGP-2, we present results for α ∈ {.5, .7}. For DGP-3, we take α1, α2 ∈
{.2, .9} and define α = α2 − α1. When ρ = θ = 0, we consider three values for the location

of the break: λ0
1{.3, .5, .7}. For the serially correlated cases, the findings are presented only

for λ0
1 = .5, as the pattern of results was found to be similar to the i.i.d. case for the other

break locations. For each DGP and parameter combination, we computed the probabilities

of (correctly) selecting the one break model (Pc), more than one break (P0) and no break

(Pu, “u”for underestimation).

The findings are reported in Table 3a for ρ = θ = 0. As in the no break case, the BP

procedure is substantially over-sized when there is an I(1) segment in the data resulting
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in large values of P0 for DGP-1 and DGP-2. In fact, even for DGP-3 where the break is

I(0)-preserving, SeqBP selects more than one break quite frequently. For instance, with

α = -.7, T = 200 and λ0
1 = .3, BP selects an overspecified model in 38% of the samples.

On the other hand, the proposed procedure shows much better performance in identifying

the true model across all three break locations for a given DGP. There are, however, some

differences in the performance of SeqR across DGPs. For example, when T = 200 and

α = .7, the probability of underestimation can be substantial for DGP-1, with the stable

model being preferred in as many as 78% of the samples when λ0
1 = .3. This feature reflects

the relatively low power of the KPZ test for DGP-1 when the break occurs early and the

sample size is small. The underestimation frequencies, however, drop sharply when the

sample size increases. In all parameter configurations but one, SeqR selects the true model

with probability at least 80% when T ≥ 400.

The results with serially correlated errors are presented in Table 3b. Here the performance

of SeqR hinges on the nature of serial correlation. When the serial correlation is positive

(ρ > 0 or θ < 0), the procedure remains robust in that the true model selection probabilities

(Pc) are comparable to those in the serially uncorrelated case. The situation is different when

a negative MA component is present, however. In this case, SeqR is subject to substantial

underestimation with the stable model chosen in at least 26% of the samples when T =

200 across DGP 1-3. The problem is more severe when an I(1) regime is present. In

fact, with T = 200, SeqBP selects the true model more frequently than SeqR for DGP-1.

The underestimation can be explained by the fact that the autoregressive approximation

(25) does not adequately account for the serial correlation in this case. Therefore, just as

not accounting for positive serial correlation (i.e., a unit root) causes a bias in favor of a

model with structural change, negative serial correlation induces a bias against a model

with structural change. This issue is, however, ameliorated as the sample size increases and

SeqR is seen to dominate SeqBP when T ≥ 400.

9.3 The Case with Two Breaks

With two breaks, the DGPs considered are the following:

For t ≤ [Tλ0
1] For [Tλ0

1] + 1 ≤ t ≤ [Tλ0
2] For t ≥ [Tλ0

2] + 1

DGP-4 yt= yt−1+ut yt−y[Tλ01]= α̃(yt−1−y[Tλ01]) + ut yt= yt−1+ut

DGP-5 yt= α̃yt−1+ut yt= yt−1+ut yt−y[Tλ02]= α̃(yt−1−y[Tλ02]) + ut

DGP-6 yt= α̃1yt−1+ut yt= α̃2yt−1+ut yt= α̃1yt−1+ut
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We choose α̃, α̃1, α̃2 in the same way as described in section 9.2 with the corresponding

persistence parameters being denoted α, α1, α2, respectively. Similarly, define α = α2−α1 for

DGP-6. For ρ = θ = 0, we consider three break locations: (λ0
1, λ

0
2) ∈ {(.2, .7), (.3, .8), (.4, .8)}.

In the serially correlated case, results are reported only for (λ0
1, λ

0
2) = (.3, .8), the results being

qualitatively similar to the i.i.d. case for the other location configurations.

Table 4a reports the results for ρ = θ = 0. In accordance with the findings in Tables 2,

3a and 3b, the BP procedure is subject to considerable size distortions in all cases, including

DGP-6 where the process is I(0) in each regime. The SeqR procedure is relatively more

reliable at identifying the true model across the three break locations although, as in the one

break case, the underestimation probabilities can be substantial when T = 200 for DGP-5,

where the initial switch is from an I(0) to an I(1) regime. For DGP-6, SeqR outperforms

SeqBP for all sample sizes and parameter values even though the DGP satisfies the BP

assumptions and is asymptotically valid in this case. The reason is that even in the absence

of a unit root regime in the time series, the presence of a persistent autoregressive root in

at least one regime is suffi cient for the BP procedure to be subject to severe oversizing,

even with T = 600. This feature again reflects the fact that the BP limit distribution

(7) is a poor approximation to the corresponding finite sample distribution when the true

autoregressive parameter is close to but not equal to unity (Remark 3). The findings with

serially correlated errors are presented in Table 4b. As in the one break case, SeqR suffers

from underestimation in the negative MA case, but its performance is adequate with positive

serial correlation when T ≥ 400.

9.4 Breaks in Level and Trend

We now investigate the finite sample adequacy of the approaches outlined in section 6 to

distinguish between level and/or trend break processes from those with persistence breaks.

We assume that yt is generated by the single break model

yt = µ0 + β0t+ µ1DU1t + β1DT1t + y∗t

where DU1t = I(t > T 0
1 ), DT1t = (t− T 0

1 )I(t > T 0
1 ) and y∗t either follows the stable process

(26) or one of the single break DGPs considered in section 9.2 with ρ = θ = 0. Significance

is evaluated at the 10% nominal level.

We first consider the non-trending case and set β0 = β1 = 0. The level parameters are

set at µ0
1 = 5, µ0

2 = 10. The corresponding DGPs are denoted 0c, 1c, 2c, 3c and represent

the counterparts of DGPs 0-3 with a level shift. The results are reported in Table 5a.
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Each entry represents the probability of selecting the true model given the corresponding

parameter configuration. When the process is I(0)-stable [DGP-0c], the performance of the

procedure is satisfactory except when the break occurs late. When there is a concurrent

persistence shift [DGP 1c-3c], the procedure performs exceedingly well with the true model

selection probabilities exceeding 95% in all cases when T ≥ 400. The recommended approach

thus appears to be quite successful at distinguishing between the two alternatives of interest,

at least with a large enough sample size.

In the trending case, we set µ0 = µ1 = 0 and β0 = 1, β1 = 2. The corresponding

DGPs are denoted 0t, 1t, 2t, 3t and represent the trend break counterparts of the DGPs 0-3.

To approximate the limit distribution (23) in the I(1) case, we replace the unknown break

date with the estimate obtained by minimizing the sum of squared residuals from (21) and

approximating the Weiner process B1(.) by partial sums of i.i.d. N(0, 1) variables with step

size equal to 1000. The 10% critical value is then obtained based on 5000 Monte Carlo

replications. For the I(0) statistic, the 10% χ2
1 critical value is 2.71. The results are reported

in Table 5b. For DGP-0t, where the process is subject to a break in trend only, the procedure

is adequate in most cases, the notable exception being when α = 1 and λ0
1 = .7. In this latter

case, the pure trend break model is rejected in more than 15% of the replications when

T ≤ 400 although the probability drops to 10% when T = 600. For DGPs 1t-3t, power is a

concern only when T = 200, the break size is small and the break occurs early or late in the

sample. When the sample size increase to T = 400, the procedure selects the persistence

change model with higher than 95% probability across break locations and all DGPs 1t-3t.

In summary, the Monte Carlo evidence suggests that the proposed sequential procedure

performs adequately in determining the number of breaks driving the time series, except

when the errors contain a negative moving average component. It also performs consider-

ably better than the BP procedure when the process contains a regime with a persistent

autoregressive root. The procedure can therefore be applied without a priori assumptions

on whether the underlying time series is characterized by only I(0) regimes or a mix of

I(1) and I(0) regimes. Our suggested approaches for distinguishing between processes with

pure level/trend breaks from those that are subject to persistence shifts as well also appear

to perform well in finite samples. An empirically important issue concerns the choice of

the maximum allowable number of breaks in relation to the sample size. Given that the

sequential tests are implemented on subsamples of the data, allowing for too many breaks

with a relatively small sample size is likely to result in size distortions/low power resulting

in overestimating/underestimating the number of breaks. Therefore, one should allow for
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a suffi cient number of observations per data segment and choose the maximum number of

breaks permissible accordingly. Based on our experiments, it appears reasonable to allow

for a maximum of five breaks when T = 400. This issue was also discussed by Kejriwal and

Perron (2010b) in the context of determining the number of trend breaks based on their

proposed sequential procedure.

10 Conclusion

This paper proposes a new sequential procedure for estimating the number of breaks in the

persistence of a univariate time series, when it is not known a priori whether the breaks are

I(0)-preserving in nature or associated with switches between I(1) and I(0) regimes. It may

be viewed as an extension of the commonly applied Bai and Perron (1998) procedure to allow

for one or more I(1) segments in the data. Several extensions of the paper are in order, two of

which are particularly worth noting. First, it would be useful to extend our approach to the

case of error heteroskedasticity (or nonstationary volatility) given the pervasive evidence on

volatility shifts in economic time series (McConnell and Perez-Quiros, 2000; Sensier and van

Dijk, 2004). Cavaliere and Taylor (2008) construct tests of the stable I(0) null hypothesis

against the alternative of a single change in persistence based on a wild bootstrap procedure.

Their bootstrap approach can potentially be adapted to construct versions of the KPZ and

BP tests that are robust to volatility shifts (Kejriwal and Yu, 2017). Second, a more general

framework for assessing persistence stability would allow the process to be stationary long

memory in some regimes, i.e,. I(d), d > 0. While developing a break detection procedure

within such a framework appears considerably more involved, it should pave the way for a

wide range of interesting empirical applications.

28



References

Altissimo, F., Corradi, V. (2003), “Strong rules for detecting the number of breaks in a time
series,”Journal of Econometrics 117, 207-244.

Andrews, D.W.K. (1993), “Tests for parameter instability and structural change with un-
known change point,”Econometrica 61, 821-856.

Bai, J. (1994), “Least squares estimation of a shift in linear processes,” Journal of Time
Series Analysis 15, 453-472.

Bai, J., Perron, P. (1998), “Estimating and testing linear models with multiple structural
changes,”Econometrica, 66, 47-78.

Bai, J., Perron, P. (2003a), “Computation and analysis of multiple structural change mod-
els,”Journal of Applied Econometrics, 18, 1-22.

Bai, J., Perron, P. (2003b), “Critical values for multiple structural change tests,”Economet-
rics Journal 6, 72-78.

Bai, J., Perron, P. (2006), “Multiple structural change models: a simulation analysis,” in
Econometric Theory and Practice: Frontiers of Analysis and Applied Research, D. Corbae,
S.N. Durlauf, B.E. Hansen(eds.), Cambridge University Press, 212-240.

Busetti, F., Taylor, A.M.R. (2004), “Tests of stationarity against a change in persistence,”
Journal of Econometrics 123, 33-66.

Cavaliere, G., Taylor, A.M.R. (2008), “Testing for a change in persistence in the presence of
non-stationary volatility,”Journal of Econometrics 147, 84-98.

Chong, T.T.L. (2001), “Structural change in AR(1) models,”Econometric Theory 17, 87-
155.

Dickey, D.A., Fuller, W.A. (1979), “Distribution of the estimators for autoregressive time
series with a unit root,”Journal of the American Statistical Association 74, 427-431.

Elliott, G., Rothenberg, T.J., Stock, J.H. (1996), “Effi cient tests for an autoregressive unit
root,”Econometrica 64, 813-836.

Harvey, D.I., Leybourne, S.J., Taylor, A.M.R. (2006), “Modified tests for a change in per-
sistence,”Journal of Econometrics 134, 441-469.

Hosoya, Y. (1989), “Hierarchical statistical models and a generalized likelihood ratio test,”
Journal of the Royal Statistical Society, Series B 51, 435-447.

Hsu, C-C., Kuan, C-M. (2001), “Distinguishing between trend-break models: method and
empirical evidence,”Econometrics Journal 4, 171-190.

Kejriwal, M., Perron, P. (2010a), “Testing for multiple structural changes in cointegrated
regression models,”Journal of Business & Economic Statistics 28, 503-522.

29



Kejriwal, M., Perron, P. (2010b), “A sequential procedure to determine the number of breaks
in trend with an integrated or stationary noise component,”Journal of Time Series Analysis
31, 305-328.

Kejriwal, M., Perron, P. (2012), “A note on estimating a structural change in persistence,”
Economics Letters 117, 932-935.

Kejriwal, M., Perron, P., Zhou, J. (2013), “Wald tests for detecting multiple structural
changes in persistence,”Econometric Theory 2013, 289-323.

Kejriwal, M., Yu., X. (2017), “Bootstrap tests for multiple structural changes in persistence
in the presence of nonstationary volatility,”Manuscript in Preparation, Purdue University.

Kim, J.Y. (2000), “Detection of change in persistence of a linear time series,” Journal of
Econometrics 54, 159-178.

Kurozumi, E. (2005), “Detection of structural change in the long-run persistence in a uni-
variate time series,”Oxford Bulletin of Economics and Statistics 67, 181-206.

Leybourne, S.J., Kim, T., Smith, V., Newbold, P. (2003), “Tests for a change in persistence
against the null of difference-stationarity,”Econometrics Journal 6, 291-311.

Leybourne, S.J., Kim , Taylor, A.M.R. (2007a), “CUSUM of squares-based tests for a change
in persistence,”Journal of Time Series Analysis 28, 408-433.

Leybourne, S.J., Kim, T., Taylor, A.M.R. (2007b), “Detecting multiple changes in persis-
tence,”Studies in Nonlinear Dynamics & Econometrics Vol. 11(3), Article 2.

Liu, J., Wu, S., Zidek, J.V., (1997), “On segmented multivariate regressions,” Statistica
Sinica 7, 497-525.

McConnell, M.M., Perez-Quiros, G., (2000), “Output fluctuations in the United States:
What has changed since the early 1980s?,”American Economic Review 90, 1464-1476.

Ng, S., Perron, P. (1995), “Unit root tests in ARMA models with data dependent methods
for the selection of the truncation lag ,”Journal of the American Statistical Association 90,
268-281.

Page, E. S. (1955). “A test for a change in a parameter occurring at an unknown point,”
Biometrika 42, 523-527.

Perron, P. (1989), “The great crash, the oil price shock, and the unit root hypothesis,”
Econometrica 57, 1361-1401.

Perron, P. (2006), “Dealing with structural breaks,”in Palgrave Handbook of Econometrics,
K. Patterson and T.C. Mills (eds.), Palgrave Macmillan, 278-352.

Perron, P., Qu, Z. (2006), “Estimating restricted structural change models,” Journal of
Econometrics 134, 373-399.

30



Phillips, P.C.B., Perron, P. (1988), “Testing for a unit root in time series regression,”Bio-
metrika 75, 335-346.

Quandt, R.E. (1960), “Tests of the hypothesis that a linear regression system obeys two
separate regimes,”Journal of the American Statistical Association 55, 324-330.

Sensier, M., van Dijk, D. (2004), “Testing for volatility changes in US macroeconomic time
series,”Review of Economics and Statistics 86, 833-839.

Stock, J.H., Watson, M.W. (1996), “Evidence on structural instability in macroeconomic
time series relations,”Journal of Business & Economic Statistics 14, 11-30.

Taylor, A.M.R. (2005), “Fluctuation tests for a change in persistence,”Oxford Bulletin of
Economics and Statistics 67, 207-230.

Yao, Y-C. (1988), “Estimating the number of change-points via Schwarz’criterion”, Statistics
and Probability Letters 6, 181-189.

31



Table 1a: Asymptotic Critical Values of the Hj(l + 1|l) tests for j = 1, 2 [i.e., cvw,j(ηl+1), cvw,max(η)]

Non Trending Case
l

ε 1− η 0 1 2 3 4 5 Wmax1
.15 .90 8.09 8.94 9.53 9.96 10.29 10.51 9.86

.95 8.99 10.00 10.52 10.91 11.20 11.44 10.90

.975 10.00 10.95 11.46 11.68 12.06 12.34 11.95

.99 11.21 12.06 12.66 1.90 13.24 13.53 13.02

.20 .90 7.85 8.80 9.32 9.84 10.18 10.34 9.30

.95 8.85 9.86 10.34 10.64 11.00 11.28 10.23

.975 9.88 10.67 11.29 11.72 11.99 12.10 11.16

.99 11.03 11.99 12.18 12.44 12.97 13.72 12.12

.25 .90 7.61 8.52 8.98 9.40 9.76 10.07 8.63

.95 8.55 9.43 10.11 10.41 10.75 10.97 9.49

.975 9.45 10.43 11.00 11.33 11.71 11.81 10.36

.99 10.77 11,71 11.99 12.17 14.44 12.62 11.57

Trending Case
l

ε 1− η 0 1 2 3 4 5 Wmax2
.15 .90 7.28 7.96 8.39 8.72 8.91 9.10 7.71

.95 7.98 8.74 9.11 9.56 9.72 9.80 8.43

.975 8.75 8.75 9.84 10.26 10.60 10.66 9.18

.99 9.73 9.73 10.60 10.75 11.12 11.18 10.07

.20 .90 7.15 7.82 8.19 8.47 8.60 8.89 7.42

.95 7.82 8.48 8.91 9.09 9.20 9.38 8.08

.975 8.51 9.10 9.39 9.60 9.94 10.10 8.65

.99 9.21 9.94 10.43 10.70 10.89 11.23 9.42

.25 .90 6.97 7.66 8.07 8.37 8.55 8.67 7.14

.95 7.69 8.38 8.68 9.02 9.16 9.27 7.82

.975 8.41 9.03 9.30 9.44 9.64 9.94 8.51

.99 9.16 9.64 10.16 10.69 10.85 11.23 9.22

Table 1b: Asymptotic Critical Values of the BP tests [i.e., cvg,1(ηl+1), cvg,max(η)], Trending Case

l
ε 1− η 0 1 2 3 4 5 UDmax2
.15 .90 10.77 12.60 13.56 14.28 14.71 15.00 11.04

.95 14.33 15.02 15.79 16.51 16.82 16.82 12.85

.975 14.36 15.82 16.89 17.27 17.63 18.09 14.40

.99 16.57 17.63 18.52 18.85 19.27 19.42 16.57

.20 .90 10.43 12.20 13.27 13.95 14.54 14.88 10.59

.95 12.23 14.01 14.96 15.63 16.26 16.59 12.40

.975 14.12 15.68 16.60 17.13 17.47 17.87 14.13

.99 16.34 17.47 18.27 18.85 19.42 20.03 16.34

.25 .90 10.09 11.87 12.88 13.56 14.26 14.58 10.21

.95 11.95 13.61 14.64 15.26 15.96 16.39 12.01

.975 13.69 15.38 16.47 16.92 17.37 17.47 13.70

.99 15.99 17.37 18.09 18.50 19.42 19.60 16.00

Table 2: Break Selection Probabilities [ DGP-0, m = 0]

T α SeqR SeqBP SeqR SeqBP SeqR SeqBP SeqR SeqBP
Pc P0 Pc P0 Pc P0 Pc P0 Pc P0 Pc P0 Pc P0 Pc P0
(A) ρ = θ = 0 (B) ρ = .5, θ = 0 (C) ρ = 0, θ = .5 (D) ρ = 0, θ = −.5

200 .5 .90 .10 .90 .10 .92 .08 .89 .11 .90 .10 .71 .29 .90 .10 .85 .15

.7 .87 .13 .87 .13 .92 .08 .88 .12 .88 .12 .67 .33 .90 .10 .82 .18

.9 .94 .06 .71 .29 .89 .11 .76 .24 .92 .08 .44 .56 .92 .08 .72 .28

.95 .94 .06 .52 .48 .88 .12 .65 .35 .92 .08 .33 .15 .91 .09 .58 .42

1 .94 .06 .24 .76 .90 .10 .24 .76 .92 .08 .25 .75 .89 .11 .27 .73

400 .5 .90 .10 .90 .10 .91 .09 .90 .10 .89 .11 .78 .22 .92 .08 .88 .12

.7 .88 .12 .88 .12 .91 .09 .89 .11 .86 .14 .74 .26 .90 .10 .87 .13

.9 .82 .18 .77 .23 .83 .17 .81 .19 .87 .13 .53 .47 .86 .14 .80 .12

.95 .86 .14 .59 .41 .82 .18 .73 .27 .89 .11 .42 .58 .88 .12 .71 .29

1 .92 .08 .20 .80 .89 .11 .20 .80 .92 .08 .21 .79 .90 .10 .23 .77

600 .5 .90 .10 .90 .10 .92 .08 .91 .09 .91 .09 .81 .19 .93 .07 .90 .10

.7 .89 .11 .89 .11 .92 .08 .90 .10 .87 .13 .79 .21 .91 .09 .91 .09

.9 .80 .20 .80 .20 .86 .14 .83 .17 .80 .20 .63 .37 .86 .14 .85 .15

.95 .80 .20 .70 .30 .80 .20 .78 .22 .83 .17 .46 .54 .84 .16 .79 .21

1 .87 .13 .19 .81 .85 .15 .18 .82 .87 .13 .22 .78 .85 .15 .23 .77
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Table 3a: Break Selection Probabilities [m = 1, ρ = θ = 0]

DGP α SEQR SEQBP SEQR SEQBP SEQR SEQBP
Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu

T = 200 T = 400 T = 600

(A) λ01 = .5
1 .5 .88 .12 .00 .50 .50 .00 .91 .09 .00 .46 .54 .00 .91 .09 .00 .44 .56 .00

.7 .54 .08 .38 .49 .49 .02 .89 .11 .00 .44 .56 .00 .90 .10 .00 .45 .55 .00

2 .5 .90 .09 .01 .51 .48 .01 .89 .11 .00 .49 .51 .00 .89 .11 .00 .46 .54 .00

.7 .75 .07 .18 .52 .44 .04 .89 .11 .00 .49 .51 .00 .87 .13 .00 .47 .53 .00

3 .7 .93 .07 .00 .72 .28 .00 .87 .13 .00 .77 .23 .00 .89 .11 .00 .85 .15 .00

-.7 .91 .09 .00 .69 .31 .00 .89 .11 .00 .77 .23 .00 .87 .13 .00 .85 .15 .00

(B) λ01 = .3
1 .5 .60 .10 .30 .45 .53 .02 .91 .09 .00 .46 .54 .00 .89 .11 .00 .42 .58 .00

.7 .17 .05 .78 .42 .51 .07 .70 .12 .18 .42 .58 .00 .87 .13 .00 .43 .57 .00

2 .5 .91 .08 .01 .50 .49 .01 .92 .08 .00 .52 .48 .00 .90 .10 .00 .46 .54 .00

.7 .80 .07 .13 .47 .43 .10 .92 .08 .00 .52 .48 .00 .89 .11 .00 .46 .54 .00

3 .7 .90 .09 .01 .77 .22 .01 .87 .13 .00 .83 .17 .00 .86 .14 .00 .85 .15 .00

-.7 .91 .09 .00 .62 .38 .00 .90 .10 .00 .71 .29 .00 .86 .14 .00 .77 .23 .00

(C) λ01 = .7
1 .5 .87 .12 .01 .50 .49 .01 .91 .09 .00 .51 .49 .00 .92 .08 .00 .47 .53 .00

.7 .76 .11 .13 .47 .44 .09 .91 .08 .01 .49 .50 .01 .88 .12 .00 .46 .54 .00

2 .5 .74 .10 .16 .54 .46 .00 .90 .10 .00 .46 .54 .00 .89 .11 .00 .46 .54 .00

.7 .36 .06 .58 .51 .46 .03 .81 .14 .05 .43 .57 .00 .86 .14 .00 .46 .54 .00

3 .7 .91 .09 .00 .65 .35 .00 .91 .09 .00 .73 .27 .00 .92 .08 .00 .83 .17 .00

-.7 .88 .11 .01 .72 .28 .00 .87 .13 .00 .81 .19 .00 .89 .11 .00 .85 .15 .00

Table 3b: Break Selection Probabilities [m = 1, λ01 = .5, Serially Correlated Errors]

DGP α SEQR SEQBP SEQR SEQBP SEQR SEQBP
Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu

T = 200 T = 400 T = 600
(A) ρ = .5, θ = 0

1 .5 .93 .07 .00 .34 .66 .00 .94 .06 .00 .38 .62 .00 .95 .05 .00 .42 .58 .00

.7 .83 .06 .11 .46 .54 .00 .93 .07 .00 .46 .54 .00 .94 .06 .00 .45 .55 .00

2 .5 .92 .08 .00 .35 .65 .00 .93 .07 .00 .39 .61 .00 .93 .07 .00 .40 .60 .00

.7 .91 .08 .01 .47 .53 .00 .93 .07 .00 .50 .50 .00 .93 .07 .00 .47 .53 .00

3 .7 .94 .06 .00 .76 .24 .00 .90 .10 .00 .79 .21 .00 .92 .08 .00 .86 .14 .00

-.7 .88 .12 .00 .68 .32 .00 .88 .12 .00 .78 .22 .00 .90 .10 .00 .82 .18 .00

(B) ρ = 0, θ = .5
1 .5 .29 .09 .62 .50 .43 .07 .82 .09 .09 .51 .49 .00 .89 .10 .01 .52 .48 .00

.7 .13 .04 .83 .46 .40 .14 .52 .05 .43 .47 .50 .03 .78 .09 .13 .50 .49 .01

2 .5 .56 .06 .38 .52 .40 .08 .87 .08 .05 .52 .48 .00 .90 .10 .00 .52 .48 .00

.7 .31 .03 .66 .48 .37 .15 .69 .07 .24 .51 .46 .03 .87 .10 .03 .50 .50 .00

3 .7 .51 .11 .38 .51 .39 .10 .88 .11 .01 .63 .37 .00 .89 .11 .00 .75 .25 .00

-.7 .65 .09 .26 .55 .38 .07 .87 .11 .02 .68 .31 .01 .90 .10 .00 .75 .25 .00

(C) ρ = 0, θ = −.5
1 .5 .90 .10 .00 .47 .53 .00 .94 .06 .00 .50 .50 .00 .95 .05 .00 .49 .51 .00

.7 .68 .08 .24 .49 .50 .01 .95 .05 .00 .46 .54 .00 .93 .07 .00 .47 .53 .00

2 .5 .91 .09 .00 .49 .51 .00 .95 .05 .00 .49 .51 .00 .94 .06 .00 .49 .51 .00

.7 .85 .09 .06 .50 .49 .01 .93 .07 .00 .50 .50 .00 .93 .07 .00 .50 .50 .00

3 .7 .92 .08 .00 .84 .16 .00 .92 .08 .00 .88 .12 .00 .93 .07 .00 .91 .09 .00

-.7 .89 .11 .00 .79 .21 .00 .91 .09 .00 .88 .12 .00 .93 .07 .00 .88 .12 .00
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Table 4a: Break Selection Probabilities [m = 2, ρ = θ = 0]

DGP α SEQR SEQBP SEQR SEQBP SEQR SEQBP
Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu

T = 200 T = 400 T = 600

(A) λ01 = .3, λ02 = .8
4 .5 .74 .07 .19 .30 .60 .10 .89 .08 .03 .35 .63 .02 .91 .07 .02 .33 .66 .01

.7 .49 .04 .47 .25 .46 .29 .79 .07 .14 .34 .58 .08 .85 .09 .06 .31 .65 .04

5 .5 .41 .12 .47 .46 .45 .09 .82 .17 .01 .50 .50 .00 .87 .13 .00 .51 .49 .00

.7 .07 .03 .90 .36 .32 .32 .59 .18 .23 .46 .50 .04 .81 .17 .02 .49 .51 .00

6 .7 .78 .13 .09 .68 .27 .05 .90 .10 .00 .82 .18 .00 .88 .12 .00 .83 .17 .00

-.7 .88 .05 .07 .47 .49 .04 .92 .08 .00 .61 .39 .00 .92 .08 .00 .70 .30 .00

(B) λ01 = .2, λ02 = .7
4 .5 .74 .08 .18 .30 .58 .12 .90 .06 .04 .35 .62 .03 .92 .07 .01 .33 .66 .01

.7 .40 .04 .56 .21 .45 .34 .76 .06 .18 .32 .58 .10 .87 .07 .06 .28 .69 .03

5 .5 .36 .09 .55 .46 .39 .15 .82 .15 .03 .49 .51 .00 .88 .12 .00 .50 .50 .00

.7 .08 .03 .89 .33 .32 .35 .46 .12 .42 .48 .45 .07 .73 .15 .12 .48 .51 .01

6 .7 .73 .15 .12 .62 .29 .09 .89 .11 .00 .82 .18 .00 .89 .11 .00 .86 .14 .00

-.7 .89 .06 .05 .48 .48 .04 .93 .07 .00 .60 .40 .00 .92 .08 .00 .71 .29 .00

(C) λ01 = .4, λ02 = .8
4 .5 .63 .06 .31 .29 .55 .16 .80 .09 .11 .32 .62 .06 .86 .07 .07 .29 .33 .04

.7 .38 .02 .60 .24 .47 .29 .67 .08 .25 .30 .56 .14 .78 .08 .14 .28 .65 .07

5 .5 .47 .11 .42 .50 .39 .11 .84 .15 .01 .52 .48 .00 .88 .12 .00 .53 .47 .00

.7 .12 .02 .86 .33 .69 .36 .64 .17 .19 .48 .47 .05 .82 .16 .02 .51 .49 .00

6 .7 .78 .11 .11 .64 .30 .06 .91 .09 .00 .82 .18 .00 .88 .12 .00 .82 .18 .00

-.7 .81 .06 .13 .49 .41 .10 .91 .09 .00 .64 .36 .00 .91 .09 .00 .71 .29 .00

Table 4b: Break Selection Probabilities [m = 2, λ01 = .3, λ02 = .8, Serially Correlated Errors]

DGP α SEQR SEQBP SEQR SEQBP SEQR SEQBP
Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu Pc P0 Pu

T = 200 T = 400 T = 600
(A) ρ = .5, θ = 0

4 .5 .78 .10 .12 .19 .78 .03 .91 .04 .05 .28 .70 .02 .92 .06 .02 .27 .72 .01

.7 .59 .09 .32 .21 .68 .11 .82 .06 .12 .34 .62 .04 .86 .06 .08 .32 .64 .04

5 .5 .64 .10 .26 .35 .63 .02 .90 .10 .00 .42 .58 .00 .90 .10 .00 .44 .56 .00

.7 .28 .04 .68 .39 .51 .10 .84 .10 .06 .45 .55 .00 .91 .09 .00 .50 .50 .00

6 .7 .86 .13 .01 .59 .41 .00 .89 .11 .00 .78 .22 .00 .89 .11 .00 .79 .21 .00

-.7 .90 .10 .00 .47 .53 .00 .91 .09 .00 .60 .40 .00 .92 .08 .00 .72 .28 .00

(B) ρ = 0, θ = .5
4 .5 .27 .03 .70 .21 .40 .39 .63 .05 .32 .38 .47 .15 .79 .05 .16 .40 .53 .07

.7 .12 .02 .86 .16 .40 .44 .39 .03 .58 .29 .42 .29 .61 .05 .34 .34 .48 .18

5 .5 .04 .02 .94 .29 .24 .47 .24 .03 .73 .45 .37 .18 .54 .06 .40 .54 .41 .05

.7 .02 .00 .98 .24 .20 .56 .07 .00 .93 .34 .33 .33 .19 .03 .78 .45 .33 .22

6 .7 .10 03 .87 .33 .24 .43 .52 .04 .44 .52 .24 .24 .76 .07 .17 .69 .25 .06

-.7 .33 .07 .60 .24 .38 .38 .71 .05 .24 .44 .41 .15 .86 .05 .09 .56 .39 .05

(C) ρ = 0, θ = −.5
4 .5 .75 .08 .17 .28 .66 .06 .89 .04 .07 .36 .61 .03 .91 .06 .03 .35 .63 .02

.7 .48 .05 .47 .25 .55 .20 .81 .05 .14 .36 .58 .06 .84 .06 .10 .35 .61 .04

5 .5 .52 .09 .39 .45 .50 .05 .92 .07 .01 .53 .47 .00 .92 .08 .00 .51 .49 .00

.7 .13 .05 .82 .36 .45 .19 .73 .09 .18 .46 .53 .01 .90 .09 .01 .51 .49 .00

6 .7 .84 .12 .04 .74 .23 .03 .92 .08 .00 .87 .13 .00 .92 .08 .00 .89 .11 .00

-.7 .90 .07 .03 .52 .44 .04 .92 .08 .00 .71 .29 .00 .96 .04 .00 .83 .17 .00
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Table 5a: Level versus Persistence Breaks: True Model Selection Probabilities [m = 1, ρ = θ = 0]

DGP α T = 200 T = 400 T = 600

λ01 = .5 λ01 = .3 λ01 = .7 λ01 = .5 λ01 = .3 λ01 = .7 λ01 = .5 λ01 = .3 λ01 = .7
0c .5 .83 .85 .73 .89 .91 .78 .87 .90 .80

.7 .78 .86 .61 .85 .89 .70 .85 .90 .77

1c .5 .99 .96 .92 1.0 1.0 1.0 1.0 1.0 1.0

.7 .85 .84 .64 1.0 .97 .96 1.0 1.0 .99

2c .5 1.0 1.0 .99 1.0 1.0 1.0 1.0 1.0 1.0

.7 .96 .89 .98 1.0 .99 .99 1.0 1.0 1.0

3c .7 1.0 1.0 .99 1.0 1.0 1.0 1.0 1.0 1.0

-.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 5b: Trend versus Persistence Breaks: True Model Selection Probabilities [m = 1, ρ = θ = 0]

DGP α T = 200 T = 400 T = 600

λ01 = .5 λ01 = .3 λ01 = .7 λ01 = .5 λ01 = .3 λ01 = .7 λ01 = .5 λ01 = .3 λ01 = .7
0t .5 .91 .86 .87 .88 .87 .89 .86 .91 .87

.7 .87 .86 .86 .87 .89 .88 .87 .90 .85

1 .88 .88 .76 .92 .91 .82 .95 .84 .90

1t .5 .99 .93 .93 1.0 1.0 1.0 1.0 1.0 1.0

.7 .83 .57 .64 1.0 .98 .98 1.0 1.0 1.0

2t .5 1.0 .92 .97 1.0 1.0 1.0 1.0 1.0 1.0

.7 .83 .54 .72 1.0 .96 .99 1.0 1.0 1.0

3t .7 1.0 1.0 .99 1.0 1.0 1.0 1.0 1.0 1.0

-.7 1.0 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Technical Appendix

Let B1(.) and B2(.) denote standard independent Brownian motions on [0, 1] and B(.) =

[B1(.), B2(.)]′. Further, let B̃(i)
j (.) represent Bj(.) demeaned over [λi−1, λi], i.e., B̃

(i)
j (r) =

Bj(r)− (λi − λi−1)−1
∫ λi
λi−1

Bj, r ∈ [λi−1, λi]. The Brownian motions demeaned over the full

sample are denoted as B̃j(.) = Bj(.)−
∫ 1

0
Bj. For brevity, all integrals of the form

∫ b
a
g(r)dr are

expressed as
∫ b
a
g. Also, for a generic variable at, define the quantities ā = T−1

∑T
t=1 at; ā−1 =

T−1
∑T

t=1 at−1; āj = (Tj − Tj−1)−1
∑Tj

t=Tj−1+1 at; āj,−1 = (Tj − Tj−1)−1
∑Tj

t=Tj−1+1 at−1. Let
Y = (y1, ..., yT )′, Y−1 = (y0, ..., yT−1)′, Yj = (yTj−1+1, ..., yTj)

′, Yj,−1 = (yTj−1 , ..., yTj−1)′, e =

(e1, ..., eT )′, ej = (eTj−1+1, ..., eTj)
′, X = (x1, ..., xT )′, xt = (1, t)′, Xi = (xT 0i−1+1, ..., xT 0i )′, M̃ =

IT −X(X ′X)−1X ′, M̃i = IT 0i −T 0i−1 −Xi(X
′
iXi)

−1X ′i where IT and IT 0i −T 0i−1 are identity ma-

trices of order T and (T 0
i − T 0

i−1)̇, respectively.

We first state two lemmas about the convergence of various sample moments whose proofs
are standard and thus omitted.

Lemma A.1 If {ut} is generated as ut = ut−1 + et, u0 = 0, where et satisfies Assumption
A2, the following weak convergence results hold for λ ∈ [0, 1] :

a) T−3/2
∑[Tλ]

t=1 ut−1 ⇒ σ
∫ λ

0
B1

b) T−2
∑[Tλ]

t=1 u
2
t−1 ⇒ σ2

∫ λ
0
B2

1

c) T−1
∑[Tλ]

t=1 ut−1et ⇒ σ2
∫ λ

0
B1(r)dB1(r)

Lemma A.2 If {ut} is generated as ut = αut−1 + et, u0 = 0, |α| < 1 where et satisfies
Assumption A2, the following results hold uniformly over λ ∈ [0, 1] :

a) T−1
∑[Tλ]

t=1 ut−1
p→ 0

b) T−1
∑[Tλ]

t=1 u
2
t−1

p→ λσ2/(1− α2)

c) T−1/2
∑[Tλ]

t=1 ut−1et ⇒ σ2(1− α2)−1/2B2(λ)

Proof of Proposition 1: The BP test is defined as G1(k) = supλ∈Λkε
G1(λ, k) where

G1(λ, k) = [T − 2(k + 1)](SSR
(0)
0 − SSR

(0)
1,k)/[kSSR

(0)
1,k]

Defining α̂ =
[∑T

t=1(yt−1 − ȳ−1)2
]−1∑T

t=1(yt−1 − ȳ−1)yt, we have

SSR
(0)
0 =

T∑
t=1

{yt − ȳ − α̂(yt−1 − ȳ−1)}2
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Under H(1)
0 , yt = yt−1 + et, t ∈ {1, ...T} so that

SSR
(0)
0 =

T∑
t=1

{(1− α̂)(yt−1 − ȳ−1) + et − ē}2

= −

{
T∑
t=1

(yt−1 − ȳ−1)et

}2

T∑
t=1

(yt−1 − ȳ−1)2

+
T∑
t=1

e2
t − T ē2 (A.1)

Next, defining α̂i =
[∑Ti

t=Ti−1+1(yt−1 − ȳi,−1)2
]−1∑Ti

t=Ti−1+1(yt−1 − ȳi,−1)yt, we have

SSR
(0)
1,k =

k+1∑
i=1

Ti∑
t=Ti−1+1

{yt − ȳi − α̂i(yt−1 − ȳi,−1)}2

Under H(1)
0 , we get

SSR
(0)
1,k =

k+1∑
i=1

Ti∑
t=Ti−1+1

{(1− α̂i)(yt−1 − ȳi,−1) + et − ēi}2

= −
k+1∑
i=1


{∑Ti

t=Ti−1+1(yt−1 − ȳi,−1)et

}2

∑Ti
t=Ti−1+1(yt−1 − ȳi,−1)2

+
T∑
t=1

e2
t −

k+1∑
i=1

(Ti − Ti−1)ē2
i (A.2)

Subtracting (A.2) from (A.1) and using Lemma A.1,

SSR
(0)
0 − SSR

(0)
1,k ⇒ σ2

 −
(∫ 1

0
B̃2

1

)−1 (∫ 1

0
B̃1dB1

)2

+
∑k+1

i=1

(∫ λi
λi−1

[
B̃

(i)
1

]2
)−1 (∫ λi

λi−1
B̃

(i)
1 dB1

)2

−B1(1)2 +
∑k+1

i=1 (λi − λi−1)−1 [B1(λi)−B1(λi−1)]2



≡ σ2


∑k

i=1
[λiB1(λi+1)−λi+1B1(λi)]

2

λi+1λi(λi+1−λi) −
(∫ 1

0
B̃2

1

)−1 (∫ 1

0
B̃1dB1

)2

+
∑k+1

i=1

(∫ λi
λi−1

[
B̃

(i)
1

]2
)−1 (∫ λi

λi−1
B̃

(i)
1 dB1

)2


The result follows since [T − 2(k + 1)]−1SSR

(0)
1,k

p→ σ2. N

Proof of Theorem 1: We have

P (H1(l + 1|l) > cvw,1(ηl+1))

= 1− P ( max
1≤i≤l+1

H
(i)
1 (1, ηl+1) ≤ cvw,1(ηl+1)) (A.3)
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Consider two regimes j and j′ where j, j′ ≤ l + 1. Without loss of generality, assume
j < j′. If j and j′ are (non-adjacent) I(1) regimes, the limit of H(j)

1 is a function of
{B1,j(r) = B1(r) − B1(λ0

j−1); r ∈ [λ0
j−1, λ

0
j ]} while the limit of H

(j′)
1 is a function of

{B1,j′(r
′) = B1(r′) − B1(λ0

j′−1); r′ ∈ [λ0
j′−1, λ

0
j′ ]. This observation is based on the fact that

under the null hypothesis of l breaks,
∣∣∣T̂i − T 0

i

∣∣∣ = Op(1) for i = 1, ..., l. Since B1,j(.) and

B1,j′(.) are independent, it follows that H
(j)
1 and H(j′)

1 are asymptotically independent.

Next, if j and j′ are (possibly adjacent) I(0) regimes, then the limit of H(j)
1 is a function

of {B̄j(r) = B(r)−B(λ0
j−1); r ∈ [λ0

j−1, λ
0
j ]} while the limit ofH

(j′)
1 is a function of {B̄j′(r

′) =

B(r′) − B(λ0
j′−1); r′ ∈ [λ0

j′−1, λ
0
j′ ]. Again, H

(j)
1 and H(j′)

1 are asymptotically independent to
the independence of B̄j(.) and B̄j′(.). Further, B1,j(.) and B̄j′(.) are independent as are
B1,j′(.) and B̄j′(.) (recall that B1(.) and B2(.) are independent).
The above arguments show that H(i)

1 are asymptotically independent for i = 1, ..., l +
1 regardless of whether the l breaks involve switches between I(1) and I(0) regimes or
between different I(0) regimes. Then, using that H(i)

1 (1, ηl+1) has asymptotic level at most
ηl+1, we have from (A.3),

lim
T→∞

P (H1(l + 1|l) ≤ 1−
l+1∏
i=1

{
1− ηl+1

}
= 1− (1− ηl+1)l+1 = 1−

{
(1− η)1/(l+1)

}l+1
= η

This proves Theorem 1. N

Proof of Theorem 2: Define the events

A0 = {Hmax1(η) > cvw,max(η)}
Al =

{
H1(l + 1|l) > cvw,1(ηl+1)

}
; l = 1, ...,m

We have

P (m̂ = m) = P

[{
m−1⋂
l=0

Al

}⋂
Acm

]
≥ P

[
m−1⋂
l=0

Al

]
+ P [Acm]− 1

≥
m−1∑
l=0

P (Al)− (m− 1) + P [Acm]− 1 (A.4)

Now, P (Al) → 1 for l = 0, ...,m − 1 since with m breaks each of the H1(l + 1|l) tests
are consistent, given that at least one of the (l + 1) regimes contain a break. Further,
limT→∞ P [Acm] ≥ 1− η by Theorem 1. Thus, from (A.4), we get

lim
T→∞

P (m̂ = m) ≥ m− (m− 1) + 1− η − 1 = 1− η
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which completes the proof of Theorem 2. N

Proof of Theorem 3: We have

S̃SR
(0)

0 =
(
M̃Y − M̃Y−1α̂

)′ (
M̃Y − M̃Y−1α̂

)
with α̂ =

(
Y ′−1M̃Y−1

)−1

Y ′−1M̃Y. Under H̃(0)
0 , we get

S̃SR
(0)

0 =
[
M̃Y−1(α− α̂) + M̃e

]′ [
M̃Y−1(α− α̂) + M̃e

]
= −

(
Y ′−1M̃Y−1

)−1 (
e′M̃Y−1

)2

+ e′M̃e

= −
(
Y ′−1M̃Y−1

)−1 (
e′M̃Y−1

)2

+ e′e− e′X(X ′X)−1X ′e

Next, with α̂i =
(
Y ′i,−1M̃iYi,−1

)−1

Y ′i,−1M̃iYi we have

SSR
(0)
2,k =

k+1∑
i=1

(
M̃iYi − M̃iYi,−1 α̂i

)′ (
M̃iYi − M̃iYi,−1 α̂i

)
(A.5)

Under H̃(0)
0 , we get

SSR
(0)
2,k = −

k+1∑
i=1

[(
Y ′i,−1M̃iYi,−1

)−1 (
Y ′i,−1M̃iei

)2
]

+
k+1∑
i=1

e′iM̃iei

= −
k+1∑
i=1

[(
Y ′i,−1M̃iYi,−1

)−1 (
Y ′i,−1M̃iei

)2
]

+ e′e−
k+1∑
i=1

[
e′iXi(X

′
iXi)

−1X ′iei
]

Denoting F (r) = (1, r)′ and using the facts that

T−1Y ′−1M̃Y−1
p→ σ2/(1− α2)

T−1/2Y ′−1M̃e
d→
[
σ2/(1− α2)1/2

]
B2(1)

T−1Y ′i,−1M̃iYi,−1
p→ (λi − λi−1)σ2/(1− α2)

T−1/2Y ′i,−1M̃iei
d→ [σ2/(1− α2)1/2][B2(λi)−B2(λi−1)]

e′X(X ′X)−1X ′e
d→ σ2

[∫ 1

0

F (r)dB1(r)

]′ [∫ 1

0

F (r)F (r)′
]−1 [∫ 1

0

F (r)dB1(r)

]
k+1∑
i=1

[
e′iXi(X

′
iXi)

−1X ′iei
] d→ σ2

[∫ λi

λi−1

F (r)dB1(r)

]′ [∫ λi

λi−1

F (r)F (r)′
]−1 [∫ λi

λi−1

F (r)dB1(r)

]
[T − 3(k + 1)]−1SSR

(0)
2,k

p→ σ2
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the result follows. N

Proof of Theorem 4: Define zt = 1 for t = 1, ..., T and the [T × (m + 1)] matrix
Z̆ = [z̆1, ..., z̆m+1] where z̆i = (0, ..., 0, zT̂i−1+1, zT̂i−1+2, ..., zT̂i , 0, ..., 0)′. Further, define the
(T × 2) matrix W = (w1, ..., wT )′ where wt = (1, yt−1)′ and the [T × 2(m + 1)] matrix
W̆ = [w̆1, ..., w̆m+1] where w̆i = (0, ..., 0, wT̂i−1+1, wT̂i−1+2, ..., wT̂i , 0, ..., 0)′. When evaluated

at the true break dates (T 0
1 , ..., T

0
m), we denote the counterparts to Z̆ and W̆ as Z̆0 and

W̆ 0, respectively. Finally, let γ = (γ1, ..., γm+1)′ with γi = (ci, αi). Then the Wald statistic
can be expressed as

W ∗(m) = (T − 2(m+ 1))(SSR∗0 − SSR∗m)/SSR∗m

where

SSR∗0 = (MZ̆Y −MZ̆Y−1α̂)′(MZ̆Y −MZ̆Y−1α̂)′

SSR∗m =
(
Y − W̆ γ̂

)′ (
Y − W̆ γ̂

)
and

MZ̆ = IT − Z̆(Z̆ ′Z̆)−1Z̆ ′

α̂ =
(
Y ′−1MZ̆Y−1

)−1
Y ′−1MZ̆Y

γ̂ =
(
W̆ ′W̆

)−1

W̆ ′Y

Under the null hypothesis αi = α for all i with |αi| < 1, we have

SSR∗0 =
[
MZ̆(Z̆δ + Y−1α + e)−MZ̆Y−1α̂

]′ [
MZ̆(Z̆0 + Y−1α + e)−MZ̆Y−1α̂

]
=

[
MZ̆

(
Z̆0 − Z̆

)
δ +MZ̆e+MZ̆Y−1(α− α̂)

]′ [
MZ̆

(
Z̆0 − Z̆

)
δ +MZ̆e+MZ̆Y−1(α− α̂)

]
Then, using the fact that

∣∣∣T̂i − T 0
i

∣∣∣ = Op(1) for i = 1, ...,m, we can show that

SSR∗0 = −
(
Y ′−1MZ̆0Y−1

)−1 (
Y ′−1MZ̆0e

)2
+ e′MZ̆0e+ op(1)

= −
(
Y ′−1MZ̆0Y−1

)−1 (
Y ′−1MZ̆0e

)2
+ e′e

−
m+1∑
i=1

(
T 0
i − T 0

i−1

)−1

 T 0i∑
t=T 0i−1+1

et

2

+ op(1) (A.6)

Using similar arguments, we have

SSR∗m = −
(
e′W̆

)(
W̆ 0′W̆ 0

)−1

W̆ 0′e+ e′e+ op(1)

= e′e−
m+1∑
i=1

 T 0i∑
t=T 0i−1+1

wtet

′ T 0i∑
t=T 0i−1+1

wtw
′
t

−1 T 0i∑
t=T 0i−1+1

wtet

+ op(1)(A.7)
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Subtracting (A.7) from (A.6), we get

SSR∗0 − SSR∗m = −

T−1

m+1∑
i=1

T 0i∑
t=T 0i−1+1

(yt−1 − ȳi,−1)2

−1 T−1/2

m+1∑
i=1

T 0i∑
t=T 0i−1+1

(yt−1 − ȳi,−1) et

2

−
m+1∑
i=1

(
T 0
i − T 0

i−1

)−1

 T 0i∑
t=T 0i−1+1

et

2

+

m+1∑
i=1

 T 0i∑
t=T 0i−1+1

wtet

′ T 0i∑
t=T 0i−1+1

wtw
′
t

−1 T 0i∑
t=T 0i−1+1

wtet

+ op(1)

= S1 + S2 + S3 + op(1) (A.8)

We consider each of the terms S1-S3 in turn. For S1,we have

T−1

m+1∑
i=1

T 0i∑
t=T 0i−1+1

(yt−1 − ȳi,−1)2 p→ σ2/(1− α2)

T−1/2

m+1∑
i=1

T 0i∑
t=T 0i−1+1

(yt−1 − ȳi,−1) et ⇒ σ2(1− α2)−1/2B2(1)

so that S1⇒ −σ2B2(1)2. For S2,

−
m+1∑
i=1

(
T 0
i − T 0

i−1

)−1

 T 0i∑
t=T 0i−1+1

et

2

= −
m+1∑
i=1

(
T 0
i − T 0

i−1

T

)−1
T−1/2

T 0i∑
t=T 0i−1+1

et

2

⇒ −σ2

m+1∑
i=1

(
λ0
i − λ0

i−1

)−1 [
B1(λ0

i )−B1(λ0
i−1)
]2

Next, for S3 we have

m+1∑
i=1

 T 0i∑
t=T 0i−1+1

wtet

′ T 0i∑
t=T 0i−1+1

wtw
′
t

−1 T 0i∑
t=T 0i−1+1

wtet


⇒ σ2

m+1∑
i=1

(
λ0
i − λ0

i−1

)−1
[{
B1(λ0

i )−B1(λ0
i−1)
}2

+
{
B2(λ0

i )−B2(λ0
i−1)
}2
]

Finally, collecting the limit results for S1-S3 and using the fact that [T−2(m+1)]−1SSR∗m
p→

A-6



σ2, we get,

W ∗(m) ⇒ −B2(1)2 +

m+1∑
i=1

(
λ0
i − λ0

i−1

)−1 [
B2(λ0

i )−B2(λ0
i−1)
]2

≡
m∑
i=1

[λ0
iB2(λ0

i+1)− λ0
i+1B2(λ0

i )]
2

λ0
i+1λ

0
i (λ

0
i+1 − λ0

i )

which is a χ2(m) random variable. This proves the theorem. N

Proof of Theorem 5: (a) The proof is omitted since it follows using arguments very similar
to those used in the proof of Theorem 4.

(b) The Wald statistic can be expressed as

W̃1(m) = (T − 3(m+ 1))(S̃SR
(1)

0 − SSR
(1)
2,m)/SSR

(1)
2,m

with

S̃SR
(1)

0 =
m+1∑
i=1

T̂i∑
t=T̂i−1+1

yt − yt−1 − (T̂i − T̂i−1)−1

T̂i∑
t=T̂i−1+1

(yt − yt−1)

2

SSR
(1)
2,m =

m+1∑
i=1

T̂i∑
t=T̂i−1+1

(∆yt − ĉi − b̂it− α̂iyt−1)2

where (ĉi, b̂i, α̂i) are obtained from unrestricted OLS estimation using data in the (estimated)

regime i. Again, using
∣∣∣T̂i − T 0

i

∣∣∣ = Op(1) for i = 1, , , .,m, we have under the null hypothesis
αi = 1 for all i,

S̃SR
(1)

0 = −
m+1∑
i=1

(T 0
i − T 0

i−1)−1

 T 0i∑
t=T 0i−1+1

et

2

+ e′e+ op(1)

SSR
(1)
2,m = e′e−

m+1∑
i=1

{
(e′iXi)(X

′
iXi)

−1(X ′iei)
}
−

m+1∑
i=1

(
Y ′i,−1M̃iYi,−1

)−1 (
Y ′i,−1M̃iei

)2

(A.9)

Next, define Ỹi,−1 = (ỹT 0i−1 , ..., ỹT 0i −1)′, where ỹt =
∑t

s=T 0i−1
es. Then from (A.9), we have

S̃SR
(1)

0 − SSR
(1)
2,m =

m+1∑
i=1

(
Ỹ ′i,−1M̃iỸi,−1

)−1 (
Ỹ ′i,−1M̃iei

)2

+

m+1∑
i=1

{
(e′iXi)(X

′
iXi)

−1(X ′iei)
}

−
m+1∑
i=1

(T 0
i − T 0

i−1)−1

 T 0i∑
t=T 0i−1+1

et

2

+ op(1) (A.10)
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Now, we use the following facts:

T−2Ỹ ′i,−1M̃iỸi,−1 ⇒ σ2

∫ λ0i

λ0i−1

[
B̆

(i)
1

]2

T−1Ỹ ′i,−1M̃iei ⇒ σ2

∫ λ0i

λ0i−11

B̆
(i)
1 dB1 (A.11)

T−1/2

T 0i∑
t=T 0i−1+1

et ⇒ σ[B1(λ0
i )−B1(λ0

i−1)]

Using (A.11) in (A.10), we get

S̃SR
(1)

0 −SSR
(1)
2,m ⇒ σ2

m+1∑
i=1



(∫ λ0i
λ0i−1

[
B̆

(i)
1

]2
)−1 (∫ λ0i

λ0i−11
B̆

(i)
1 dB1

)2

+(∫ λ0i
λ0i−1

F (r)dB1(r)
)′ (∫ λ0i

λ0i−1
F (r)F (r)′

)−1 (∫ λ0i
λ0i−1

F (r)dB1(r)
)

− [B1(λ0i )−B1(λ0i−1)]
2

λ0i−λ0i−1


The result then follows from recognizing that (T − 3(m+ 1))−1SSR

(1)
2,m

p→ σ2. N

A-8


	text_ver5_purdue
	tables5
	appendix1_numbreaks

